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Abstract

This paper is concerned with the stochastic control problem arising in pricing bar-
rier option consisting of two or more assets. We refer to a barrier option where
the volatilities of the underlying assets are stochastically moving within specified
interval. The interval can be the maximum or the minimum value of the volatilities
during the life of the contract. These values of the volatilities may correspond to
the best and the worst case scenarios of the future positions in the portfolio of the
options. The concept of suprehedging strategies in pricing an option is applied.
Furthermore, in this case, the strategy is considered as a certain exit time control
problem. First, we prove that the control u is lower semicontinuous. Then, under
certain assumptions, we show the value function is bounded and nonnegative. Next,
by applying probability methods, we prove that the value function of the exit control
problem is continuous on the boundary. Finally, we prove that superhedging prices
of multi-asset barrier options can be represented in the dynamic programming prin-
ciple (DPP) for an exit control problem.

AMS subject classification: 35K55, 49J20, 91G80, 60H30, 93E20.
Keywords: Barrier Options, Stochastic Volatility, Dynamic Programming Princi-
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1. Introduction

It has been claimed in many publications that the volatility of underlying assets of
an option is not constant as in Black-Scholes framework. This has been identified
by Rubinstein and Reiner [13] who claimed that constant volatilities as in the Black-
Scholes model can not explain the observed market price for options. The use of constant
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volatilities may result in an over or under price of an option, hence hedging strategy
using this option may cause a problem. To overcome this problem, some researchers,
El-Karoui, Jeanblanc-Picque, and Shreve [4] provided conditions under which the Black-
Scholes formula is robust with respect to a misspecification of volatility. Gozzi and
Vargiolu [6], proposed a new method for the study of robustness of the Black-Scholes
formulae for several assets. The volatilities are considered to follow stochastic process
but lying on an interval band [σmin, σmax]. Then bounds on the option prices are obtained
by setting the volatility equal to σmin and σmax depending on the convexity or concavity
of the option price functions.

In the situation of pricing barrier options, the method proposed in [4] may not ap-
plicable. This is because the barrier option prices may not increase monotonically as
volatilities stochastically change. Moreover, the value function of the option is neither
convex nor concave. Hence, we apply a superhedge strategy to price barrier options.
This strategy may be considered as a certain exit time control problem.

Research on the application of the exit time control on pricing of the exotic options
is still a great challenge. The main difficulties come from the treatment of the boundary
conditions. Researchers such as Lions [10] and Barles and Rouy [1] relax the value
function to be continuous in the open set O and can be extended continuously to Ō.
Sofiene and Abergel [14] applies the optimal stochastic control for analytical expressions
to find the optimal bid and ask quotes of the market maker. Another version of stochastic
control problem is dynamic programming principle (DPP) which has also attracted a
great interest among researchers in financial mathematics, see for example paper by
Huang and Wu [7]. In this paper, the application of DPP on the maximizing investor’s
optimal portfolio proportion is discussed. For the existence of the solution for dynamic
programming principle, one may consult to Liu and Schikorra [11].

There are two main results of the present article. The first result is Theorem 4.6, under
a certain assumption, we show that the value function problem satisfies the properties
of the dynamic programming relation. Second result is Theorem 4.7. We show, by a
probability approach, that the value function of the exit control problem v is continuous
with respect to time t and space of price x, and is regular enough to apply the Ito formula.

The article is organized as follows. In Section 2 we describe the tools and assumption
that we use to prove the theorems. In Section 3 we set up the financial model to which
actually, we apply the exit control problems. In section 4, we establish the dynamic
programming principle for the exit control problem and the main results are presented
here. In section 5, we give an illustration example for the case of two assets. In section
6, we summarize our results and make some remarks.

2. Preliminaries

Throughout this paper, (�, F, F, P) is a filtered probability space with filtration F =
{F, t ≥ 0} satisfying the usual conditions. Given a bounded Borel subset U ⊂ Rn,
we denote by U a set of progressively measurable processes u = (ut , t ≥ 0) defined
on (�, F, F, P) such that P(ut ∈ U) = 1 for all t ≥ 0. The elements of U are called
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admissible control processes. For each control process (ut ) ∈ U , we consider a stochastic
differential equation, for t ≥ s,{

dX
s,x0,u
t = µ(t, X

s,x0,u
t , ut )dt + σ(t, X

s,x0,u
t , ut )dWt,

Xs = x0
(2.1)

where X
s,x0,u
t ∈ Rd , and µ : R+ × Rd ×U → Rd , and σ : R+ × Rd ×U → Rd×n are

assigned Lipschitz continuous functions for each u ∈ Rn. The process Xt = Xt(ω) is
interpreted as the state of the system at time t . By a pathwise solution of this equation,
we mean an (Ft )-adapted continuous stochastic process X

s,x,u
t satisfying

X
s,x0,u
t = x0 +

∫ t

s

µ(r, Xs,x0,u
r , ur)dr +

∫ t

s

σ (r, Xs,x0,u
r , ur)dWr, 0 ≤ s ≤ t. (2.2)

If the above equation has a unique solution X
s,x0,u
t , the process (Xt) is called a controlled

process.

Definition 2.1. Let x0 be an Fs-measurable random variable and for p ≥ 2 such that
E|x0|p < ∞, the stopping time τn is defined as

τn =



inf{t ∈ [s, T ]; |Xs,x0,u
t | ≥ n}, n ≥ 1,

T , if {t [s, T ]; |Xs,x0,u
t | ≥ n} = ∅

(2.3)

The stopping times τn are well defined since the process X
s,x0,u
t is continuous in t ∈

[s, T ]. Then following (2.2) we have

X
s,x0,u
t∧τn

= x0 +
∫ t∧τn

s

b(r, Xs,x0,u
r , ur)dr +

∫ t∧τn

s

σ (r, Xs,x0,u
r , ur)dWr. (2.4)

Assumption 2.2. For each T > 0 there exists a constant K > 0 such that for all
u ∈ U, s ≤ T and x, y ∈ Rd

|b(s, x, u) − b(s, y, u)| + |σ(s, x, u) − σ(s, y, u)| ≤ K|x − y| (2.5)

|b(s, x, u)| + |σ(s, x, u)| ≤ K(1 + |x|) (2.6)

This assumption is very standard in control theories where functions µ and σ appearing
in the control system. The existence of constant K > 0 such that for all u ∈ U, s ≤ T

and x, y ∈ Rd is granted. Assumption 2.2 yields the existence of a unique strong solution
of (X

s,x0,u
t ) of (2.1), for each s > 0, each initial condition x0, and each u ∈ U . Moreover,

(X
s,x0,u
t ) is continuous on [s, T ].

Assumption 2.3. The function φ > 0 and φ : Rd → R is Lipschitz, that is, there
exists K > 0 such that

|φ(x) − φ(y)| ≤ K|x − y|, x, y ∈ Rd .
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Proposition 2.4. Let x be an Fs-measurable random variable and for p ≥ 2 such that
E|x0|p < ∞. Then there exists a constant K(T , p) > 0 which is independent of u such
that for all 0 ≤ s ≤ t ≤ T ,

E|Xs,x0,u
t |p ≤ KE(1 + |ξ |p). (2.7)

Proposition 2.5. Let Xn
t be the solution of the stochastic differential equation

X
s,x0,u
t = xn

0 +
∫ t

s

µ(r, X
s,xn

0 ,u
r , ur)dr +

∫ t

s

σ (r, X
s,xn

0 ,u
r , ur)dWr, 0 ≤ s ≤ t (2.8)

Let (Xt) be the solution of (2.4) and assume that for a certain p ≥ 2

E
(∣∣ξn

∣∣p + |ξ |p) < ∞, n ≥ 1.

Then there exists a constant C(p, K, T ) which is independent of u such that

E sup
t≤T

∣∣Xn
t − Xt

∣∣p ≤ C(p, K, T )E
∣∣ξn − ξ

∣∣p .

Proposition 2.6. Let X
sn,x0,u
t , where 0 ≤ sn ≤ t ≤ T be a solution of the stochastic

differential equation

X
sn,x0,u
t∧T = x0 +

∫ t∧T

sn

b(r, Xsn,x0,u
r , ur)dr +

∫ t∧T

sn

σ (r, Xsn,x0,u
r , ur)dWr. (2.9)

Then for all p ≥ 2 there exists a constant C(T , p) which is independent of u and such
that

E sup
s̄≤t≤T

∣∣Xsn,x0,u
t − X

s,x0,u
t

∣∣p ≤ C(T , p)|sn − s|p/2

where s̄ = max (s, sn).

Proposition 2.7. Let Assumption 2.2 hold. For each p ≥ 1, T > 0, t ≥ s2 > s1 > 0,

E sup
s2≤t≤T

∣∣Xs2,x2,u
t − X

s1,x2,u
t

∣∣p ≤ C1(|x2 − x1|p + |s2 − s1|p/2),

where C1, is independent of u, s, sn, ξ .

Reader who may be interested in the proof of Preposition 2.4–2.7 may refer to [3].

3. The financial Market Model

Given a finite time horizon T > 0, consider a complete probability (�, F, F, P),
equipped with a Wiener process Wt = {(W 1

t , . . . , Wn
t ), 0 ≤ t < T } valued in Rn with
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respect to filtration F = {Ft}. The filtration F = {Ft ; 0 ≤ t ≤ T } is P-augmentation of
the natural filtration

FW
t = σ(Ws, 0 ≤ s ≤ t), 0 ≤ t ≤ T .

Throughout this paper, we shall consider the market for d risky assets, {Si
t , i =

1, . . . , d; 0 ≤ t ≤ T }. The assets are traded continuously in a frictionless market
(no transaction cost, no tax). The risky asset prices {Si

t , i = 1, . . . , d; 0 ≤ t ≤ T } are
modelled by the linear stochastic differential equation

dSi
t = Si

t


bi

t dt +
n∑

j=1

σ
ij
t dW

j
t


 (3.10)

Si
0 = xi, i = 1, . . . , d.

In this model, the sources of randomness are given by the independent components of
the Wiener processes Wt = (W 1

t , · · · , Wn
t )′, 0 ≤ t ≤ T . The vector process {bt =

(b1
t , . . . , b

d
t )′, 0 ≤ t ≤ T } is the vector of appreciation rates which is assumed to be

bounded and adapted to F. The matrix-process of volatilities

{σt =
(
σ

ij
t

)
1≤i≤d,1≤j≤n

, 0 ≤ t ≤ T },

whose rows are σ 1
t , . . . , σ d

t , is assumed to be bounded.
Consider a payoff function for a barrier option h(ST )1{τ>T }, where τ is the first

moment of time where the stock price hits a bounded domain O ⊂ Rd pre-specified
level of barrier. The payoff function h in this case is discontinues and the value function
is

v(t, x) = EQ

[
h(S

t,x,σ
T −t )1{τ>(T −t)}|Ft

]
where EQ is the expectation operator with respect to measure Q and τ is the first moment
of time when the stock price St hits the the boundary barrier boundary defined by

τ = inf{t > s; S
s,x,σ
t ∈ ∂O}. (3.11)

In this case, h is not a convex function. Based on the position of the barrier, we categorize
the multi-asset barrier options into three different types. The first one is the external
barrier option. The value of the option at maturity and the hitting time τ are determined
by different (both tradeable) assets. If a certain stock hits a predetermined level then the
value of such an option is zero. The second one is the basket barrier option. The value
of this option depends on whether the underlying assets in the basket hit a certain level
of barrier or not. The third one termed the max/min barrier option is a barrier option
where the value of the option depends on whether the maximum of the underlying assets
hits a certain level of barrier or not. To begin with let us define a price process for the
multi-asset barrier option.



3060 Komang Dharmawan

Definition 3.1. A price process for a barrier option is any adapted process {vt ; 0 ≤ t ≤
T } satisfying

vT = h(S
t,x,σ
T )1{τ>T }, a.s.

where h : Rd+ → [0, ∞) is a given function and τ is the first moment of time when St

hits the barrier, defined as

τ = inf{t > 0; St ∈ ∂O}. (3.12)

Here St is the solution of (3.10), O ⊂ Rd+1 and ∂O is the boundary of O.

We propose here a payoff function for a multi-asset barrier option with an external
barrier in which the terminal payoff is characterized by

h(ST ) = (max(S2
T , . . . , Sd

T ) − K)+1{τ>T }.

We adopt the usual Black-Scholes assumptions on the capital market and we assume that
the volatilities are fixed. In the risk-neutral assumption, the stock price Si

t , i = 1, . . . , d

follow the lognormal diffusion processes. Let ρij denote the correlation coefficients
between dWi and dWj which are constant. Let H denote the upper barrier. The call
option will be knocked out when S1

t ≥ H at any time before expiry time T . The value
of the multi-asset barrier option with barrier level H is given by

v(t, x) = EQ

[
h(S

x,σ
T −t )1{τ>(T −t)}

]
(3.13)

This formulation gives rise to the analytical evaluation of the expectation integral in
many dimensions. This is beyond our discussion. Instead we convert the problem into
the partial differential equation given by the following theorem.

Theorem 3.2. Suppose that v is a solution of the partial differential equation

∂

∂t
v(t, x) + 1

2
tr(D2

xv(t, x)(σ x̄)(σ x̄)′) = 0, 0 ≤ t < T , x1 < H, (3.14)

with terminal and boundary conditions, where x = (x1, x2, . . . xd).

v(T , x) = h(x1), x1 < H, (3.15)

v(t, x) = 0, x1 = H, 0 ≤ t ≤ T . (3.16)

Then v is given by (3.13).

4. Main Results

Before we discuss the results, we assume that O is an open bounded domain in Rd with
C2 boundary and Q = [0, T ) × O. In addition to (2.2), we also assume that

σ(s, x, u) = sσ0(s, x, u), and
(
σ ∗

0 σ0(s, x, u)h, h
) ≥ cn|h|2, h ∈ Rd, (4.17)
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uniformly in s ≤ T , u ∈ U and |x| ≤ n. Most of the results that follow can be proved
under more general assumptions but the above condition is usually satisfied in problems
arising in option pricing.

The first moment of time when Xt hits the boundary is given by

τ = inf{t > s; X
s,x,u
t ∈ ∂O}. (4.18)

Lemma 4.1. Let
τ s,x,u = inf{t > s; X

s,x,u
t ∈ ∂O}.

Then for each u the function (s, x) → τ s,x,u is lower semicontinuous.

Proof. All quantities defined here are standard. For sn → s and xn → x, xn, x ∈ O, we
need to show that

τ s,x,u ≤ lim inf
n→∞ τ sn,xn,u. (4.19)

Assume that (4.19) is not true. Then

P

(
τ s,x,u > lim inf

n→∞ τ sn,xn,u
)

> 0. (4.20)

For any rational r1 < r2, let

Ar1,r2 =
{
ω ; τ s,x,u > r2 > r1 > lim inf

n→∞ τ sn,xn,u
}

.

Then {
τ s,x,u > lim inf

n→∞ τ sn,xn,u
}

=
⋃

r1<r2

Ar1,r2

and therefore
P(Ar1,r2) > 0

for at least one pair r1 < r2. Let

Bm =
{

inf
t≤r2

dist(Xs,x,u
t , ∂O) ≥ 1

m

}
.

Then Ar1,r2 ⊂
∞⋃

m=1

Bm. Hence, for a certain m,

P(Ar1,r2 ∩ Bm) > 0.

Let Xk
t = X

snk
,xnk

,u

t for any subsequence nk → ∞. By Proposition (2.7),

P

(
sup
t≤r2

|Xk
t − Xt | ≥ ε

)
<

1

ε2

(|xnk
− x|2 + |snk

− s|) . (4.21)
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Let nk be such that
τ snk

,xnk
,u → lim inf

k→∞ τ snk
,xnk

,u

and let ε = 1

2m
. We also have

Ar1,r2 = {
τ s,x,u > r2

} ∩
⋃
j

⋂
i

{
τ si+j ,xi+j ,u < r1

}

and therefore, for a certain j

P

({
τ s,x,u > r2

} ∩
⋂
i

Bi+j

)
> 0.

Hence

0 < P

({
τ s,x,u > r2

} ∩
⋂
i

Bi+j

)
≤

P
(
τ si+j ,xi+j ,u > r2 > r1 > τi+j

)
,

where by (4.21)

P
(
τ si+j ,xi+j ,u > r2 > r1 > τi+j

) ≤ P

(
sup
t≤r2

|Xsi+j ,xi+j ,u
t − X

i+j
t | >

1

2m

)
≤ (|xi+j − x|2 + |si+j − s|)4m2.

Since
lim

i,j→∞ |xi+j − x|2 + |si+j − s| = 0,

we obtain
P
(
τ si+j ,xi+j ,u > r2 > r1 > τi+j

) = 0.

This is a contradiction with (4.20). So,

τ s,x,u ≤ lim inf
n→∞ τ sn,xn,u.

�

Now, we shell establish the dynamic programming principle for the exit time control
problem given a stochastic differential equation as described in (2.1)–(2.2). Let τ be the
exit time of Xt from the open domain O. This choice is related to the multi-asset barrier
options. The value function v is automatically 0 when (Xt) exits from the open domain O.
This condition may result in non-smoothness of the value function v. Moreover, this may
create degeneracy in the partial differential equations, see [9] for non-degeneracy case.
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For any admissible progressively measurable control process u(·), the payoff function is
given by

J (s, x; u) = E
[
φ(X

s,x,u
T −s )1τ>T −s

]
s ∈ [0, T ), (4.22)

where φ ∈ Cb(O) and (s, x) ∈ Q is given. Cb(O is a set of bounded functions in C(O).
The problem now is to choose u(·) to maximize J . The terminal payoff function for this
problem is given by equation (4.22). The general form of the value function contains an
integral term which is not relevant in this work. Formally, the optimal control problem
is then formulated as follows. For any given (s, x) ∈ [0, T ) × O, find ū ∈ U , such that

J (s, x; ū) = sup
u∈U

J (s, x; u) = v(s, x). (4.23)

Any process u ∈ U which is adapted to the natural filtration F of the associated state
process is called feedback control. A process u ∈ U which can be written in the form
us = ũ(s, Xs) for some measurable ũ : [0, T ) × O → U , is called Markovian control.

We will make use of the following standing assumption on the function φ appearing
in the value function. We start by examining the value function v(s, ·) for fixed s ∈
[0, τ ∧ T ).

Theorem 4.2. Assume that Assumption 2.2 and 2.3 hold. There exists K > 0, such that
for any s ∈ [0, T ) and x ∈ Rd , it holds that

0 ≤ v(s, x) ≤ K(1 + |x|). (4.24)

Proof. The value function is obviously nonnegative. The second inequality is proved as
follows. Let u ∈ U be a control process. Then by the Lipschitz property of φ we obtain

E[φ(X
s,x,u
T −s )1τ>T −s] ≤ E[K1(1 + |Xs,x,u

T −s |)].
≤ K1 + K1E|Xs,x,u

T −s |
By Lemma 2.4, and noting that Xs = x, we have

E[φ(X
s,x,u
T −s )1τ>T −s] ≤ K1 + K1K2(1 + |x|)

≤ K(1 + |x|),
where K = max(K1(1 + K2), K1K2)). Since this holds for every u ∈ U , it also holds
for value function v. �

Now, we can claim the continuity of the value function by proposing the following
theorem.

Theorem 4.3. Let assumption 2.2 and 2.3 hold. Then for any fixed s ∈ [0, T ) the
function x → v(s, x) is continuous on O.

|v(s, x) − v(s, y)| ≤ K|x − y|. (4.25)
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Proof. Let us first prove the inequality above without the exit time in the value function,
so our first estimate

|v(s, x) − v(s, y)| = | sup
u∈U

Eφ(X
s,x,u
T −s ) − sup

u∈U

Eφ(X
s,y,u

T −s )|
≤ sup

u∈U

|Eφ(X
s,x,u
T −s ) − Eφ(X

s,y,u

T −s )|.

Then Assumption 2.2 and Lemma 2.5 give

|v(s, x) − v(s, y)| ≤ KE|Xs,x,u
T −s − X

s,y,u

T −s |
≤ K|x − y|

Now we include the exit time in the value function. For x, y ∈ O and u ∈ U , we first
estimate that:

|v(s, x) − v(s, y)| ≤ sup
u∈U

E|φ(X
s,x,u
T −s )1τ>T −s

− φ(X
s,y,u

T −s )1τ>T −s |.
Let us take Br(x) ⊂ O, a small ball with radius r in O. For a small T > 0, we define

P(τ s,z,u < T ) = P

[
sup

0≤t≤T

|Xs,z,u
t | > r

]
≤ CT e−rβ z ∈ Br(x), (4.26)

where β > 0 and CT → 0 for T → 0. For some s ∈ [0, T ], we have

|v(s, x) − v(s, y)| ≤ sup
u∈U

E|(φ(X
s,x,u
T −s ) − φ(X

s,y,u

T −s )) − φ(X
s,x,u
T −s )1(τ s,x,u<T −s)

+ φ(X
s,y,u

T −s )1(τ s,y,u<T −s)|
or

|v(s, x) − v(s, y)| ≤ sup
u∈U

E|φ(X
s,x,u
T −s ) − φ(X

s,y,u

T −s )| + sup
u∈U

E|φ(X
s,y,u

T −s )|1(τ s,y,u<T −s)

+ sup
u∈U

E|φ(X
s,y,u

T −s )|1(τ s,y,u<T −s).

The first term above is Lipschitz continuous by the first part of the proof. For the last two
terms we may assume that T − s is arbitrarily small because X

s,x,u
t is a unique strong

solution of SDE. Therefore, (4.26) implies that that

sup
u∈U

E
∣∣φ(X

s,y,u

T −s )
∣∣ 1(τ s,y,u<T −s) ≤ CP

(
τ s,y,u < T − s

)
can be made arbitrarily small uniformly in y ∈ Br(x) hence the continuity follows. �

Now using approximations as proposed by Fleming and Soner [5], we will show that
the exit control problem satisfies the Dynamic Programming Principle. Let us replace
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the payoff function φ by a function φ̄ ∈ C2
b(Rd) such that φ̄(x) = φ(x) for x ∈ O. Let

us now introduce the approximation of the control problem J . The payoff function is
approximated by a sequence of problems defined on the entire space Q̄ = [0, T ) × Rd .
For ε > 0, (s, x) ∈ Q̄,

Jε(s, x; u) = E[e−gε(X
s,x,u
t )φ̄(X

s,x,u
T )] s ∈ [0, T ), (4.27)

where

gε(X
s,x,u
t ; s ≤ t) = 1

ε

∫ t

s

c(Xs,x,u
r )dr

and c ∈ C2
b(Rd). Furthermore, c = 0 on O and c > 0 on Ōc. Now the value function is

given by
vε(s, x) = sup

u∈U

Jε(s, x; u). (4.28)

The following lemma provides properties of the approximations.

Lemma 4.4. The following holds:

(i) gε(X
s,x,u
t ) ≥ gε′(Xs,x,u

t ) for ε′ > ε, gε(X
s,x,u
t ) = 0 for τ > t , and

gε(X
s,x,u
t ) → ∞ as ε → 0 for τ < t .

(ii) Jε(t, x; u) ≥ J (t, x; u) ∀(t, x) ∈ Q and u ∈ U .

(iii) lim
ε→0

Jε(t, x; u) = J (t, x; u).

Proof.

(i) It is obvious that as ε → 0, gε(X
s,x,u
t ) → ∞ for τ < t .

(ii) The positivity of φ̄ implies that Jε(t, x; u) ≥ J (t, x; u) ∀(t, x) ∈ Q̄.

(iii) Using the fact that gε(X
s,x,u
t ) → 0 as ε → ∞ for τ < t , so egε(X

s,x,u
t ) → 1 as

ε → ∞ for τ < t . This implies that lim
ε→0

Jε(t, x; u) = J (t, x; u). �

Theorem 4.5. Then the sequence of the functions vε ≥ 0 is non-increasing in ε and

lim
ε→0

vε(s, x) = v(s, x).

Proof. Note first that by Lemma 4.4 part (i) vε is non-increasing. Let

v̄(s, x) = lim
ε→0

vε(s, x).

From Lemma 4.4 part (ii), we have Jε(t, x; u) ≥ J (t, x; u) ∀(t, x) ∈ Q. Hence
vε(s, x) ≥ v(s, x) ∀(s, x) ∈ Q and u ∈ U . This results in

vε(t, x) ≥ v̄(s, x) ≥ v(s, x)
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for all ε > 0 and (s, x) ∈ Q. Assume that for a certain (s, x)

vε(s, x) ≥ v̄(s, x) > v(s, x).

Hence, there exists c > 0 such that

vε(s, x) > c > v(s, x) ≥ J (s, x; u).

Therefore, there exists a sequence (un
ε) such that

lim
ε→0

lim
n→∞ Jε(s, x; un

ε) > c > J(s, x; u) = lim
ε→0

Jε(s, x; uε),

where u is arbitrary but fixed. Then for any ε1 and n,

Jε(s, x; un
ε) > c > Jε1(s, x; u).

Finally, we have

Jε(s, x; un
ε) > c ≥ lim

ε1→0
sup
u∈U

Jε1(s, x; u) = v̄(s, x).

This yields a contradiction: that v̄(s, x) > c ≥ v̄(s, x). So we can conclude that
v(s, x) = v̄(s, x). Hence,

lim
ε→0

vε(s, x) = v(s, x).

�

Theorem 4.6. Assume that U is compact, and that Assumptions 2.2 and 2.3 hold. Let
θ ∈ [0, T − s] be a stopping time. Then the function v satisfies the following property
of the dynamic programming relation.

v(s, x) = sup
u∈U

E
[
v(s + θ, X

s,x,u
θ )1{τ>θ}

]
,

s ∈ [0, T ), x ∈ Ō. (4.29)

In more general terms,

(a) For any given (s, x) ∈ Q and control process u

v(s, x) ≥ E
[
v(s + θ, X

s,x,u
θ )1{τ>θ}

]
. (4.30)

(b) For every δ > 0, there exists a control process u ∈ U such that

v(s, x) − δ ≤ E
[
v(s + θ, X

s,x,u
θ )1{τ>θ}

]
. (4.31)
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Proof. Let K
s,x,u,ε
t = vε(s + t, X

s,x,u
t ). By Theorem 3.5 in Krylov [8], p.149, the

process (K
s,x,u,ε
t ) is a supermartingale with respect to (Ft ). Then, we have

vε(s, x) ≥ E|Ks,x,u,ε
0 | ≥ E

[
vε(T − s, X

s,x,u
θ )1{τ>θ}

]
≥ sup

u∈U

E|Ks,x,u,ε
θ |

≥ sup
u∈U

E[vε(s + θ, X
s,x,u
θ )1{τ>θ}].

Taking limits of both sides and applying Theorem 4.5, we have

v(s, x) = lim
ε→0

sup
u∈U

E[vε(s + θ, X
s,x,u
θ )1{τ>θ}]

= sup
u∈U

E[v(s + θ, X
s,x,u
θ )1{τ>θ}].

Then v satisfies the dynamic programming principle. �

Our approach here is to approximate the exit time control problem by a sequence
of problem with state space Q̄. Then, we can use the verification theorem to show the
uniqueness of the problems.

Theorem 4.7. Assume that U is compact and Assumption 2.2, 2.3 hold. Then the
function v : [0, T ] × Ō → R is continuous.

Proof. We provide here a simple proof that v is lower-semicontinuous. Let sn →
s, xn → x, where (xn) ⊂ Ō. We will show first that v is a lower semi-continuous
function. It is enough to show that the function

(s, x) → J (s, x, u)

is lower semi-continuous for each u ∈ U . Let Xn
t = X

sn,xn,u
t and τn = τ sn,xn,u. By

Lemma 4.1,
τ = τ s,x,u ≤ lim inf

n→∞ τn.

Then, invoking the Fatou Lemma (see [12], page 82) we obtain

lim inf
n→∞ J (sn, xn, u) ≥ E lim inf

n→∞ φ(Xn
T −sn

)1τn>(T −sn).

By Proposition 2.7 and since φ is continuous we obtain

lim inf
n→∞ J (sn, xn, u) ≥ Eφ(XT −s) lim inf

n→∞ 1τn>(T −sn).

Note that
lim inf
n→∞ 1τn>(T −sn) ≥ 1τ>(T −s). (4.32)

Indeed, if 1τ>(T −s) = 0 then (4.32) holds. Let

1τ>(T −s) = 1.
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Then
lim inf
n→∞ τn ≥ τ > (T − s)

and therefore
lim inf
n→∞

(
τn − (T − sn)

)
> 0.

It follows that
lim inf
n→∞ 1τn>(T −sn) = 1,

hence (4.32) follows. Finally

lim inf
n→∞ J (sn, xn, u) ≥ Eφ(XT −s)1τ>(T −s)

= J (s, x)

�

By using the result of Theorem 4.7, we can state the dynamic programming equation
in the following theorem.

Theorem 4.8. Let f ∈ C(O). We assume here that v ∈ C1,2((0, T ) × O). Then the
dynamic programming equation is given by

∂

∂s
v(s, x) + sup

u∈U

1

2
tr(D2

xv(s, x)(σσ ′)(s, x, u)) = 0, (t, x) ∈ Q (4.33)

with boundary condition

v(T , x) = f (x) (4.34)

v(s, x) = 0, x ∈ ∂O. (4.35)

Proof. Let us introduce the linear second order operator Lu associated with the process
(Xt) controlled by the control process u:

Luϕ(s, x) = 1

2
tr
(
D2

xϕ(s, x)σ (s, x, u)σ ′(s, x, u)
)
. (4.36)

With this notation, by Ito’s formula we have

ϕ(t, X
s,x,u
t ) − ϕ(s, x) =

∫ t

s

(
∂

∂r
+ Lu

)
ϕ(r, Xs,x,u

r )dr +∫ t

s

Dxϕ(s, Xs,x,u
r )σ (s, x, u)dWr t > s(4.37)

for all smooth functions ϕ ∈ C1,2([0, T ) × O) and all admissible control processes
u ∈ U . In this case, Dx and D2

x denote the gradient and the Hessian operator with
respect to the x variable, respectively.
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Fix (s, x) ∈ Q and a control process u. Let Xt be the solution of (2.1) with control
u and the initial data Xs = x. Ito’s formula (4.37) yields

Ew(T ∧ τ, X
s,x,u
T ∧τ ) = w(s, x) + E

∫ T ∧τ

s

[
∂

∂r
w(r, Xs,x,u

r ) + Luw(r, Xs,x,u
r )

]
dr,

since w solves (4.33), and

∂

∂r
w(r, Xs,x,u

r ) + Luw(r, Xs,x,u
r ) ≥ 0

Combining (4.34),(4.35) and the above inequalities, we obtain w(s, x) ≥ J (s, x, u). (b)
Suppose that X̄s is the solution of (2.1) with control process ū. Then by definition of ū

we have the dynamic programming equation, that is

∂

∂r
w(s, x) + Lū(s, x) = 0, s < T , x ∈ O.

Therefore
∂

∂r
w(r, X̄s,x,ū

r ) + Lūrw(r, X̄s,x,ū
r ) = 0

for almost every (s, ω). Using (4.34) and (4.35), we obtain w(s, x) = J (s, x, ū). �

5. Financial Applications

Consider a market consist of two risky asset (d = 2) as shown by equation (3.10).
Without loss of generality, assume that =

¯
0. The risk neutral price processes for the two

assets S1
t and S2

t follow the stochastic differential equations

dS1
t = σ 1

t S1
t dW 1

t (5.38)

dS2
t = σ 2

t S2
t dW 2

t (5.39)

S1
0 = x1, S2

0 = x2. (5.40)

Let ρ denote the correlation coefficient of the Brownian motion dW 1
t and dW 2

t . Assume
that the interest rate is zero. We can write the dynamics of the two assets in a more
compact vectorial notation:

d


 S1

t

S2
t


 =


 S1

t 0

0 S2
t




 (σ 1

t )2 ρσ 1
t σ 2

t

ρσ 1
t σ 2

t (σ 2
t )2


 d


 W 1

t

W 2
t


 (5.41)

or
dSt = S̄tσtdWt . (5.42)

Here

S̄t = diag(St ) =
(

S1
t 0

0 S2
t

)
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and (σt ) is a two-dimensional process such that σt ∈ A(�), where A(�) is a set of
admissible volatilities which is progressively measurable with respect to (F).

Consider a price process {vt ; 0 ≤ t ≤ T } for a two-asset barrier option satisfying

vT = (max(S1
T , S2

T ) − K)+1{τ>T }, 0 ≤ t ≤ T .

Let S∗
t = max(S1

t , S
2
t ), 0 ≤ t ≤ T . Then the first moment of time when the process S∗

t

hits the barrier H is given by

τ = inf{t ≥ 0; S∗
t ≥ H }, (5.43)

where 0 < K < H . The value of the option at time t is given by

v(0, x1, x2) = E
[
min((S1

T , S2
T ) − K)+1{τ>T }|S1

t = x1, S
2
t = x2

]
. (5.44)

For constant volatilities σt = σ , the option price v can be computed by solving the partial
differential equation

∂v

∂t
+ 1

2
(σ 1)2x2

1
∂2v

∂x2
1

+ 1

2
(σ 2)2x2

2
∂2v

∂x2
2

+ ρσ 1σ 2x1x2
∂2v

∂x1∂x2
= 0 (5.45)

with terminal and boundary conditions

v(T , x1, x2) = (min(x1, x2) − K)+, 0 ≤ max(x1, x2) < H (5.46)

v(t, x1, x2) = 0, max(x1, x2) ≥ H, 0 ≤ t ≤ T . (5.47)

Equation (5.45) can be written as

∂v

∂t
+ 1

2
tr(D2

xv(x̄σ )(x̄σ )′ = 0 (5.48)

where the vector x = (x1, x2) and the matrix

x̄D2
xvx̄′ =




x2
1
∂2v

∂x2
1

x1x2
∂2v

∂x1∂x2

x1x2
∂2v

∂x1∂x2
x2

2
∂2v

∂x2
2


 .

Now we assume that the true volatilities are not known and limited to move in a
certain interval. We write the set of admissible volatilities as follows:

� =
{

γ ∈ R2×2

∣∣∣∣∣ γ =
(

σ 1
t ρσ 1

t

ρσ 2
t σ 2

t

)
, σ−

1 ≤ σ 1
t

≤ σ+
1 , σ−

2 ≤ σ 2
t ≤ σ+

2 , ρ− ≤ ρ ≤ ρ+
}

.
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Then we have

γ γ ∗ =

 (σ 1

t )2 ρσ 1
t σ 2

t

ρσ 1
t σ 2

t (σ 2
t )2


 .

Let At,x = A be

A =
(

a b

b c

)
.

Then the dynamic programming programming equation can be written as:

∂v

∂t
+ 1

2
max

γ∈A(�)
tr(Aγ γ ∗) = 0, (5.49)

with terminal and boundary condition

v(T , x1, x2) = (max(x1, x2) − K)+, 0 ≤ max(x1, x2) < H (5.50)

v(t, S1
T , S2

T ) = 0, , max(x1, x2) ≥ H, 0 ≤ t ≤ T . (5.51)

the optimization problem appearing in the DPP equation (5.49). First, we write the
function to be maximized as follows:

f (σ1, σ2, ρ) = tr(Aγ γ ∗) = aσ 2
1 + 2bρσ1σ2 + cσ 2

2 , (5.52)

where σ−
1 ≤ σ 1

t ≤ σ+
1 , σ−

2 ≤ σ 2
t ≤ σ+

2 , ρ− ≤ ρ ≤ ρ+.
The numerical solution of problem (5.49)-(5.51) is beyond our discussion. One may

refer to [3] for the outline solution of problem.

6. Concluding remark

Our discussion above shows that the exit time control problem can be solved by ap-
proximating the problem by a sequence of problems with state space Q̄. We have also
shown that the approximation satisfies the dynamic programming principle, Theorem
4.6. If v ∈ C2,1(Q̄) then the nonlinear Black-Scholes equation is easily derived from
the dynamic programming principles via Ito’s formula (see Theorem 4.8).
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