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Abstract

We study in this paper the strong regularity of right SSF-rings and obtain the follow-
ing result: Let R be aright SSF-ring. If R satisfies one of the following conditions,
then R is a strongly regular ring:

1) RisalFP ring;

2) R is aleft N-duo ring;
3) R is aright N-duo ring;
4) R isaSRB ring;

5) RisaSLB ring.
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1. Introduction

Throughout this paper, R denotes an associative ring with identity, and all modules are
unitary. A ring R is called strongly regular if for each @ € R there exists b € R such that
a = a*b. 1t is well-known that a ring R is strongly regular if and only if R is reduced
and regular if and only if R is regular and right (left) duo. Following Ramamurthy
[10], aring R is called left (right) SF-ring if each simple left (right) R-modules are flat.
It is well-known that regular rings are left and right SF-rings. And ring R is strongly
regularl if and only if R is reduced right SF-rings. Ramamurthy [10] initiaed the von
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Neumann regularity of SF-rings, asking whether a right and left SF-rings is necessary
von Neumann regular. This question has drawn the atention of many authors [3], [6],
[10], [11], etc. For example, Rege [11] proved that R is a reduced left (right) SF rings,
then R is a strongly regular. Subedi [12] proved that R is a N-duo left (right) SF rings,
then R is a strongly regular. Zhang and Du [16] proved that a ring R is strongly regular
if and only if R is SRB right SF-ring.

Recall the following definitions and facts: A ring is R is called reduced if R has no
nonzero nilpotent elements. A ring R is called right (left) duo if every right (left) ideal
of R is two-sided. Following Wei [15], aring R is called left N-duo if forany a € N(R),
Ra is an ideal. Right N-duo rings is defined similarly. It is well-known that reduced
rings are right (left) N-duo rings, the converse is not true in general.

A ring R is called right (left) duo if every right (left) ideal of R is two-sided. The
notation of bounding a one-sided ideal by a two-sided ideal goes back at least to Jacobson
[5]. He said that a right ideal of R is bounded if it contains a nonzero ideal of R. This
concept has been extended in several ways. From Faith [4], aring R is called SRB (SLB)
if every nonzero right (left) ideal of R contains a nonzero two-sided ideal of R. A ring is
called strongly bounded if it both strongly right bounded and strongly left bounded. The
class of strongly one-sided bounded rings has been observed by many authors [2], [9],
[11], etc. It is well-known that right duo rings are SRB rings, the converse is not true in
general.

According to Mahmood [9], aring R is called left (right) SSF-ring if simple singular
left (right) R-modules are flat. In this note ,we study conditions under which right SSF-
rings are strongly regular. We show that SSF-ring R is strongly regular if R is right (left)
N-duo. We also show that SSF-ring R is strongly regular if R is SRB (SLB).

We denote the set of all nilpotent elements, the Jacobson radical, the left (right)
singular ideal R by N(R), J(R), Z;(R) (Z,(R), resp.), respectively. For any nonempty
subset S of R, r(S) and [(S) denote the right annihilator and the left annihilator of S in
R, respectively. Especially, if X = {a}, we write [(X) = l(a) and r(X) = r(a).

Lemma 1.1. ([11]) Let R be a ring, and let / be a right ideal of R. Then R/I is a flat
right ideal of R if and only if for each a € I there exists b € I such thata = ba.

Lemma 1.2. ([9]) Let R be a right (left) SSF-ring. If I is an ideal of R, then R/I is a
right (left) SSF-ring.

Lemma 1.3. ([1]) If R is a reduced left (right) SSF-ring, then R is a strongly regular
ring.

2. N-duo and SRB rings

A ring is R is called reduced if R has no nonzero nilpotent elements. A ring R is called
right (left) duo if every right (left) ideal of R is two-sided. Following Wei [15], a ring R
is called left N-duo if for any @ € N(R), Ra is an ideal. Right N-duo rings is defined
similarly. It is well-known that reduced rings are right (left) N-duo rings, the converse
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is not true in general [15].
The following lemmas gives properties of N-duo rings.

Lemma 2.1. For any a € N(R), Then;
(1) If R is aright N-duo ring, then /(a) is an ideal.

(2) If R is a left N-duo ring, then r(a) is an ideal.

Proof.

(1) Let x € I(a) and r € R. Since R is right N-duo ring and a € N(R), aR is an
ideal. Thus ra € aR, and there exists t € R, ra = at. By left multiplication x,
xra = xat. Since x € [(a), xra = 0. Therefore xR C [(a), and so [(a) is an
ideal.

(2) Similary proof of (1). [

Recall thataring R is semiprimeifaRa = Oimpliesa = Oforanya € R. Obviously,
every reduced rings are left (right) N-duo rings. The converse holds if R is semiprime.

Lemma 2.2. [12, Proposition 3.1] The following conditions are equivalent for aring R.
(1) R is areduced ring.
(2) R is a semi-prime left (right) N-duo ring.
Theorem 2.3. [12, Theorem 3.7] The followings are equivalents
(1) R is a strongly regular ring.
(2) R is aright N-duo right SF-ring.
(3) R is aleft N-duo right SF-ring.
The following theorem gives extending the result of Subedi [12].
Theorem 2.4. The followings are equivalents.
(1) R is a strongly regular ring.
(2) R is aright N-duo right SSF-ring.

(3) R is aleft N-duo right SSF-ring.
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Proof. Clearly (1) = (2) and (1) = (3). (2) = (1): First we will show that R is a
reduced ring. Let a’> = 0. If a = 0, then we have done. If ¢ # 0, then /(a) # R. Since
a € N(R) and R is a right N-duo ring, /(a) is an ideal by Lemma 2.1. There exists a
maximal right ideal K of R such that [(a) € K. First observe that K is an essential
right ideal of R. If not, then K is a direct summand of R. So we can write K = r(e) for
some 0 # e = e> € R. Thusa € K = r(e),and ea = 0. Hence e C l(a) C K =r(e);
whence e = 0. It is a contradiction. Therefore K is an essential right ideal of R. Thus
R/K is a simple singular right R-module and flat by hypothesis. Now since R is right
SSF-ring, there exist ¢ € K such that a = ca by Lemma 1.1. Thus (1 — ¢)a = 0, and
1 —c Cl(a) € K; whence 1 € K. Itis a contradiction. Thus a = 0, and so R is
reduced. Therefore R is a strongly regular ring by Lemma 1.3.

(3) = (1). First we will show that J(R) is reduced. Let 0 # b € J(R) such that
b* = 0. We claim that J (R) + I(Rb) = R. If not, there exists a maximal right ideal L
such that J(R) +[(Ra) < L. First observe that L is an essential right ideal of R. If not,
then L is a direct summand of R. So we can write L = r(e) for some 0 # e = ¢’ € R.
Since b € L = r(e),eb = 0and b € r(e). By Lemma 2.1, r(e) is an ideal. Thus
Rb e r(e),and e € [(Rb) C L = r(e) ; whence e = 0. It is a contradiction. Therefore
L is an essential right ideal of R. Thus R/L is a simple singular right R-module and flat
by hypothesis. Now since R is right SSF-ring, there exist ¢ € L such that b = cb by
Lemma 1.1. Thus (1 —¢)b = 0. If 1 — ¢ = 0, then 1 € L; It is a contradiction. If
I —c#0,thenb € r(1 —c). By Lemma 2.1, r(1 — ¢) is an ideal.

Thus Rb € r(1 —c),and 1 —c € [(Ra) C L ; whence 1 € L. Itis a contradiction.
Hence J(R) 4+ [(Rb) = R. Thus there exists x € J(R) and y € [(Rb) such that
x+y=1.Soxb+ yb=>b,and (x —1)b = 0. Since x € J(R) and x — 1 is invertible,
hence b = 0. Also it is a contradiction. Thus J(R) is reduced, and so R is a semiprime
ring. Hence R is reduced by Lemma 2.2. Therefore R is a strongly regular ring by
Lemma 1.3. [ |

A ring R is called right (left) duo if every right (left) ideal of R is two-sided. From
Faith [4], aring R is called SR B (SL B) if every nonzero right(left) ideal of R contains a
nonzero two-sided ideal of R. A ring is called strongly bounded if it both strongly right
bounded and strongly left bounded. It is well-known that right duo rings are SRB rings,
the converse is not true in general [13].

Proposition 2.5. [2, Lemma 1] If R is a semiprime SRB (SLB) rings, then R is reduced.

Proposition 2.6. [16, Theorem 3] If R is SRB (SLB) right SF-ring, then R is strongly
regular.

The following proposition shows properties of right SSF-ring.
Lemma 2.7. If R is a right SSF-ring, then Z;(R) € J(R).

Proof. For any x € Z;(R), then [(x) is an essential left ideal of R. Note that /(x) N
I[((1 —x)=0. Thus /((1 — x)) = 0. We claim that (1 — x)R = R. Suppose not. Then
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there exists a maximal right ideal M of R containing (1 —x)R. We claim that M is right
essential in R. Assume that M is not right essential in R. Then there exists a nonzero
right ideal 7 of R suchthat M NI =0and so M @ I = R. This impliesa + b =1 for
somea € Mandb € [ andsoa(l —x)+b(1 —x) =1—x. Sincel —x € M, we
have (1 —x) —a(l —x) =b(1 —x) e MNI =0. Thus (1 —a)(1 — x) = 0. Since
Lr(1—x) = 0,wehavea = 1, whichis a contradiction. Hence M is an essential maximal
right ideal of R. Thus R/M is a simple singular right R-module and flat by hypothesis.
Now since R is right SSF-ring, there exist c € M such that (1 —x) = ¢(1 —x) by Lemma
1.1. Thus 1 —c € I[(1 —x) = 0and so 1 € M, which is also a contradiction. Therefore
(1 —x)R=R,andso Z;(R) C J(R). |

In the following theorems we give partial answer to Ramamurthy question, extending
the result of Zhang and Du [16].

Theorem 2.8. The following conditions are all equivalent:
(1) R is a strongly regular ring.
(2) Risa SRB right SSF-ring.

(3) Risa SLB right SSF-ring.

Proof. (1) = (2) and (1) = (3) are obvious. (2) = (1): We claim that R is reduced.
Suppose that a’> = 0 with a # 0. Then rl(a) is nonzero right ideal of R, and so there
exists a nonzero two-sided ideal I of R such that I C rl(a) . Sol(a) C I(I). We claim
that /[(I) = R. If not, [(I) € M for some maximal right ideal M of R because [(/)
is two-sided. Note that M is right essential in R. Thus R/M is a simple singular right
R-module and flat by hypothesis. Now since R is right SSF-ring, there exist ¢ € M such
that a = ca by Lemma 1.1. Thus 1 —c € l(a) C I(I) € M, and so 1 € M, which is
also a contradiction. Thus R is reduced. Therefore R is strongly regular by Lemma 1.3.

(3) = (1): We first claim that R/Z;(R) is reduced. Assume that there exists a ¢
Z;(R) such that a’ e Z;(R). Then there exists a nonzero left ideal / of R such that
llay I C l(az). Since R is SLB, there exists a nonzero two-sided ideal L such that
L C1.ThenLa®>=0andso La C l(a)NL Cl(a)NI =0. Thus La = 0 and hence
L C l(a)NI = 0, which is a contradiction. Therefore R/Z;(R) is reduced. By applying
Lemma 1.2, R/Z;(R) is strongly regular. Thus J(R) € Z;(R),andhence J(R) = Z;(R)
by Lemma 2.7. This implies that R/J (R) is strongly regular. Suppose J(R) # 0. Then
there exists 0 # b € J(R) such that b* = 0. We claim that J(R) + l(b) = R for any
b € J(R). If not, then there exist b € J(R) such that J(R) + [(b) # R. There exists a
maximal right ideal K such that J(R) + [(a) € K. First observe that L is an essential
right ideal of R. If not, then K is a direct summand of R. So we can write K = r(e) for
some ) # e = e’ € R. Since b € K,ea=0,ande € l(a) C K =r(e); whence e = 0.
It is a contradiction. Therefore K is an essential right ideal of R. Thus R/K is a simple
singular right R-module and flat by hypothesis. Now since R is right SSF-ring, there
existc € K suchthata = ca by Lemma 1.1. Thus (1 —c)a =0,and 1 —c € l(a) C K;
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whence 1 € K. It is a contradiction. Hence J(R) 4 I[(b) = R for any b € J(R).
Thus there exists x € J(R) and y € [(b) suchthatx +y = 1. So xb + yb = b, and
(x —1)b = 0. Since b € J(R) and x — 1 is invertible, hence » = 0. Also itis a
contradiction. Therefore J(R) = 0, and so R is a strongly regular ring. |
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