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Abstract

In this paper, we establish some common fixed point theorems for generalized-
(ψ, α, β)-weakly contractive mappings in generalized metric spaces which extends
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the results of Isik et al. [3]. We present an example in support of our theorem.
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1. Introduction and preliminaries

In 2000, Branciari [2] introduced the concept of a generalized metric space as follows:

Definition 1.1. Let X be a non-empty set and d : X × X → [0, ∞) be a mapping such
that for all x, y ∈ X and for all distinct point u, v ∈ X, each of them different from x

and y, one has

(i) d(x, y) = 0 if and only if x = y,

(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (the rectangular inequality).

Then (X, d) is called a generalized metric space (or for short g.m.s.).

Definition 1.2. Let (X, d) be a generalized metric space. A sequence {xn} in X is said
to be

(i) g.m.s. convergent to x if and only if d(xn, x) → 0 as n → ∞. We denote this by
{xn} → x as n → ∞ or limn→∞â'¡xn = x

(ii) g.m.s. Cauchy sequence if and only if for each ε > 0 there exists a natural number
n(ε) such that for all n > m > n(ε), d(xn, xm) < ε.

(iii) complete g.m.s. if every g.m.s. Cauchy sequence is g.m.s. convergent in X.

We denote by � the set of functions ψ : [0, ∞) → [0, ∞) satisfying the following
hypotheses:

(ψ1) ψ is continuous and monotone nondecreasing,

(ψ2) ψ(t) = 0 if and only if t = 0.

We denote by � the set of functions ± : [0, ∞) → [0, ∞) satisfying the following
hypotheses:

(α1) α is continuous,

(α2) α(t) = 0 if and only if t = 0.
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We denote by � the set of functions β : [0, ∞) → [0, ∞) satisfying the following
hypotheses:

(β1) β is lower semi-continuous,

(β2) β(t) = 0 if and only if t = 0.

Definition 1.3. A mapping T : X → X is said to be (ψ, α, β) weak contraction
if there exists three maps ψ, α, β : [0, ∞) → [0, ∞) such that ψ(d(T x, T y)) ≤
α(d(x, y))âŁ“β(d(x, y)), where

(i) ψ is continuous and monotone non-decreasing,

(ii) α is continuous,

(iii) β is lower semi-continuous,

(iv) ψ(t) = 0 = α(t) = β(t), if and only if, t = 0.

Now, we introduce the following notions:

Definition 1.4. A mapping T : X → X is said to be generalized (ψ, α, β) weak con-
traction if there exists three maps ψ, α, β : [0, ∞) → [0, ∞) such that ψ(d(T x, T y)) ≤
α(M(x, y))β(M(x, y)), where

M(x, y) = max{d(x, y), d(x, T x), d(y, T y)},
(i) ψ is continuous and monotone non-decreasing,

(ii) α is continuous,

(iii) β is lower semi-continuous,

(iv) ψ(t) = 0 = α(t) = β(t), if and only if, t = 0.

Definition 1.5. A mapping g : X → X is said to be generalized (ψ, α, β) weak contrac-
tion with respect to f : X → X if there exists three maps ψ, α, β : [0, ∞) → [0, ∞)

such that

ψ(d(gx, gy)) ≤ α(N(x, y))β(N(x, y)),

where

N(f x, fy) = max

{
d(f x, fy), d(f x, gx), d(fy, gy),

d(f x, gx)d(fy, gy)

1 + d(f x, fy)
,
d(f x, gx)d(fy, gy)

1 + d(gx, gy)

}
,
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(i) ψ is continuous and monotone non-decreasing,

(ii) α is continuous,

(iii) β is lower semi-continuous,

(iv) ψ(t) = 0 = α(t) = β(t), if and only if, t = 0.

In 1996, Jungck et al. [4] introduced the concept of weakly compatible maps as follows:

Definition 1.6. Two maps f and g defined on a self map X are said to be weakly
compatible if they commute at their coincidence points.

In 2002, Aamri et al. [1] introduced the notion of E.A. property as follows:

Definition 1.7. Two self-mappings f and g of a metric space (X, d) are said to satisfy
E.A. property if there exists a sequence {xn} inX such that limn→∞f xn = limn→∞â'¡gxn =
t for some t ∈ X

In 2011, Sintunavarat et al. [5] introduced the notion of (CLRg) property as follows:

Definition 1.8. Two self-mappings f and g of a metric space (X, d) are said to sat-
isfy (CLRg) property if there exists a sequence {xn} in X such that limn→∞f xn =
limn→∞gxn = gx for some x ∈ X.

2. Main Results

For proving our main results, we need the following Lemma:

Lemma 2.1. Let {an} be a sequence of non-negative real numbers. If

ψ(an+1) ≤ α(an)β(an) (2.1)

for all n ∈ N , where ψ ∈ �, α ∈ �, β ∈ � and

ψ(t) − α(t) + β(t) > 0 (2.2)

for all t > 0, then the following hold:

(i) an+1 ≤ an if an > 0,

(ii) an → 0 as n → ∞.

Theorem 2.2. Let f and g be self mappings of a Hausdorff g.m.s. (X, d) satisfying the
followings:

gX ⊆ f X, (2.3)

f X or gX is a complete subspace of X, (2.4)

ψ(d(gx, gy)) ≤ α(N(f x, fy))β(N(f x, fy)), for all x, y ∈ X, (2.5)
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where ψ ∈ �, α ∈ � and β ∈ � and satisfy condition (2.2) with

N(f x, fy) = max

{
d(f x, fy), d(f x, gx), d(fy, gy),

d(f x, gx)d(fy, gy)

1 + d(f x, fy)
,
d(f x, gx)d(fy, gy)

1 + d(gx, gy)

}
.

Then f and g have a unique coincidence point in X. Moreover, if f and g are weakly
compatible, then f and g have a unique common fixed point.

Proof. Let x0 be an arbitrary point in X. Since gX ⊆ f X, we can define the sequences
xn and yn in X by

y2n = f x2n+1 = gx2n for all n ≥ 0. (2.6)

Moreover, we assume that if y2n = y2n+1 for some n ∈ N, then there is nothing to prove.
Now, we assume that y2n �= y2n+1 for all n ∈ N. We assert that

lim
n→∞ d(yn, yn+1) = 0. (2.7)

Substituting x = x2n and y = x2n+1 in (2.5), using (2.6), we have

ψ(d(y2n, y2n+1)) = ψ(d(gx2n, gx2n+1))

≤ α(N(f x2n, f x2n+1))β(N(f x2n, f x2n+1))

= α(N(y2n−1, y2n))β(N(y2n−1, y2n)), (2.8)

where

N(y2n−1, y2n) = max

{
d(y2n−1, y2n), d(y2n−1, y2n), d(y2n, y2n+1),

d(y2n−1, y2n)d(y2n, y2n+1)

1 + d(y2n−1, y2n)
,
d(y2n−1, y2n)d(y2n, y2n+1)

1 + d(y2n, y2n+1)

}

= max{d(y2n−1, y2n), d(y2n, y2n+1)},
since

d(y2n−1, y2n)d(y2n, y2n+1)

1 + d(y2n−1, y2n)
≤ d(y2n, y2n+1)

and
d(y2n−1, y2n)d(y2n, y2n+1)

1 + d(y2n, y2n+1)
≤ d(y2n−1, y2n).

If d(y2n−1, y2n) < d(y2n, y2n+1), then from (2.8), we get

ψ(d(y2n, y2n+1)) ≤ α(d(y2n, y2n+1))β(d(y2n, y2n+1)),

which implies that, d(y2n, y2n+1) = 0, that is, y2n = y2n+1, which is a contradiction. So

d(y2n, y2n+1) < d(y2n−1, y2n),
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then from (2.8), we obtain

ψ(d(y2n, y2n+1)) ≤ α(d(y2n−1, y2n))β(d(y2n−1, y2n)). (2.9)

Similarly, we also conclude that

ψ(d(y2n+1, y2n+2)) ≤ α(d(y2n, y2n+1))β(d(y2n, y2n+1)). (2.10)

Generally, we have that for each n ∈ N

ψ(d(yn, yn+1)) ≤ α(d(y2n, y2n+1))β(d(y2n, y2n+1)). (2.11)

From (ii) of Lemma 2.1, we obtain that

lim
n→∞ d(yn, yn+1) = 0.

Next, we prove that {yn} is a g.m.s. Cauchy sequence. Suppose that {yn} is not a g.m.s.
Cauchy sequence. Then there exists ε > 0 such that for k ∈ N, there are m(k), n(k) ∈ N

with m(k) > n(k) > k satisfying

(a) m(k) is even and n(k) is odd

(b) d(yn(k), ym(k)) ≤ ε

(c) m(k) is the smallest even number such that the condition (b) holds

Taking into account (b) and (c), we have that

ε ≤ d(yn(k), ym(k))

≤ d(yn(k), ym(k)−2) + d(ym(k)−2, ym(k)−1) + d(ym(k)−1, ym(k))

≤ ε + d(yn(k), yn(k)−2) + d(yn(k)−2, yn(k)−1). (2.12)

Letting k → ∞, we obtain

lim
k→∞ d(yn(k), ym(k)) = ε,

ε ≤ d(yn(k)−1, ym(k)−1) (2.13)

≤ d(yn(k)−1, ym(k)−3) + d(ym(k)−3, ym(k)−2) + d(ym(k)−2, ym(k)−1)

≤ ε + d(ym(k)−3, ym(k)−2) + d(ym(k)−2, ym(k)−1). (2.14)

Making k → ∞, we obtain

lim
k→∞ d(yn(k)−1, ym(k)−1) = ε (2.15)

Substituting x = xn(k)andy = xm(k) in (2.5), we have

ψ(d(gxn(k), gxm(k))) ≤ α(N(f xn(k), f xm(k)))β(N(f xn(k), f xm(k))), that is,

ψ(d(yn(k), ym(k))) ≤ α(N(yn(k)−1, ym(k)−1))β(N(yn(k)−1, ym(k)−1)), (2.16)
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where

d(yn(k)−1, ym(k)−1) ≤ N(yn(k)−1, ym(k)−1)

= max

{
d(yn(k)−1, ym(k)−1), d(yn(k)−1, yn(k)), d(ym(k)−1, ym(k)),

d(yn(k)−1, yn(k))d(ym(k)−1, ym(k))

1 + d(yn(k)−1, ym(k)−1)
,
d(yn(k)−1, yn(k))d(ym(k)−1, ym(k))

1 + d(yn(k), ym(k))

}
.

= max{d(yn(k)−1, ym(k)−1), d(yn(k)−1, yn(k)), d(ym(k)−1, ym(k))}.
Letting k → ∞ in (2.16) and using the lower semi-continuity of β and the continuities of
ψ and α, we obtain ψ(ε) ≤ α(ε)β(ε), which implies that ε = 0, by (2.2), a contradiction
with ε > 0. It follows that {yn} is a g.m.s. Cauchy sequence.

Since f X is complete, so there exists a point u in f X such that

lim
n→∞ yn = lim

n→∞ f xn+1 = u (2.17)

Since u ∈ f X, so we can find p ∈ X such that fp = u. We claim that fp = gp. From
(2.5), we have

ψ(d(f xn+1, gp)) = ψ(d(gxn, gp))

≤ α(N(gxn, gp))β(N(gxn, gp)).

Letting limit as n → ∞ and using the continuity of α and semi-continuity of β, we get

ψ(d(fp, gp)) ≤ α(limn→∞N(gxn, gp)) − β(limn→∞N(gxn, gp)), (2.18)

where

N(gxn, gp) = max

{
d(f xn, fp), d(f xn, gxn), d(fp, gp),

d(f xn, , gxn)d(fp, gp)

1 + d(f xn, fp)
,
d(f xn, gxn)d(fp, gp)

1 + d(gxn, gp)

}
.

Making limit as n → ∞, we have

lim
n→∞ N(gxn, gp)) = max

{
d(fp, fp), d(fp, fp), d(fp, gp),

d(fp, fp)d(fp, gp)

1 + d(fp, fp)
,
d(fp, gp)d(fp, gp)

1 + d(fp, gp)

}

= d(fp, gp). (2.19)

So, from (2.18) and (2.19), we have

ψ(d(fp, gp)) ≤ α(d(fp, gp)) − β(d(fp, gp)),
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which implies that, d(fp, gp) = 0, that is,

fp = gp = u. (2.20)

Therefore, p is a point of coincidence of f and g. The uniqueness of the point of
coincidence is a consequence of condition (2.5). Now, we show that there exists a
common fixed point of f and g. Since f and g are weakly compatible, by (2.20), we
have gfp = fgp, and

gu = gfp = fgp = f u. (2.21)

If p = u, then p is a common fixed point of f and g. If p �= u, then by (2.5), we have

ψ(d(gp, gu)) ≤ α(N(gp, gu)) − β(N(gp, gu)),

where,

N(gp, gu) = max

{
d(fp, f u), d(fp, gp), d(f u, gu),

d(fp, gp)d(f u, gu)

1 + d(fp, f u)
,
d(fp, gp)d(f u, gu)

1 + d(gp, gu)

}

= max{d(u, gu), d(u, u), 0, 0, 0}
= d(u, gu).

Therefore, we have

ψ(d(u, gu)) ≤ α(d(u, gu)) − β(d(u, gu)),

which by (2.2) implies that, d(u, gu) = 0, that is, u = gu = f u. Consequently, u is the
unique common fixed point of f and g. �

Denote by ∧ the set of functions γ : [0, ∞) → [0, ∞) satisfying the following
hypotheses:

(h1) γ is a Lebesgue-integrable mapping on each compact subset of [0, ∞),

(h2) for every ε > 0, we have ∫ ε

0
γ (s)ds < ε.

We have the following result.

Theorem 2.3. Let (X, d) be a Hausdorff g.m.s. and f, g : X → X be self mappings
satisfying (2.3), (2.4) and the following:

∫ d(gx,gy)

0
γ1(s)ds ≤

∫ N(f x,fy)

0
γ2(s)ds

−
∫ N(f x,fy)

0
γ3(s)ds,
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for all x, y ∈ X, where γ1, γ2, γ3 ∈ ∧ and satisfy condition (2.2). If f and g are weakly
compatible, then f and g have a unique common fixed point.

Proof. On taking ψ(t) =
∫ t

0
γ1(s)ds, α(t) =

∫ t

0
γ2(s)ds and β(t) =

∫ t

0
γ3(s)ds in

Theorem 2.2, we get Theorem 2.3. �

Taking γ3(s) = (1 − k)γ2(s) for k ∈ [0, 1) in Theorem 2.3, we obtain the following
result:

Corollary 2.4. Let (X, d) be a Hausdorff g.m.s. and f, g : X → X be self mappings
satisfying (2.3), (2.4) and the following:

∫ d(gx,gy)

0
γ1(s)ds ≤ k

∫ N(f x,fy)

0
γ2(s)ds,

for all x, y ∈ X, where γ1, γ2 ∈ ∧ and satisfy condition (2.2). If f and g are weakly
compatible, then f and g have a unique common fixed point.

Remark 2.5. If N(f x, fy) = d(f x, fy), then (2.5) reduces to

ψ(d(gx, gy)) ≤ α(d(f x, fy)) − β(d(f x, fy)), (2.22)

which is condition (2.3) of Theorem 1 [3].

Remark 2.6. If f is the identity mapping, then (2.22) reduces to

ψ(d(gx, gy)) ≤ α(d(x, y)) − β(d(x, y)). (2.23)

Example 2.7. Let X = [0, 10] ∪ 11, 12, 13, . . . and

d(x, y) =



|x − y|, if x, y ∈ [0, 10], x �= y;
x + y, if atleast one of x or y /∈ [0, 10] and x �= y;
0, if x = y.

(2.24)

Then (X, d) is a Hausdorff and g.m.s.
Let ψ, α, β : [0, ∞) → [0, ∞) be defined as

ψ(t) = α(t) =
{

t, if 0 ≤ t ≤ 10;
t2, if t > 10 and

β(t) =




1

5
t2, if 0 ≤ t ≤ 10;

1

5
, if t > 10.
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Let g : X → X be defined as

g(x) =



x − 1

5
x2, if 0 ≤ x ≤ 10;

x − 10, if x ∈ {11, 12, 13, . . .}.
Without loss of generality, we assume that x > y and discuss the following cases:

Case 1. (x ∈ [0, 10]). Then

ψ(d(gx, gy)) =
(

x − 1

5
x2

)
−

(
y − 1

5
y2

)

= (x − y) − 1

5
(x − y)(x + y) ≤ (x − y) − 1

5
(x − y)2

= d(x, y) − 1

5
(d(x, y))2

= α(d(x, y)) − β(d(x, y)).

Case 2. (x ∈ {12, 13, . . .}). Then

d(gx, gy) = d

(
x − 10, y − 1

5
y2

)
, if y ∈ [0, 10],

or, d(gx, gy) = x − 10 + y − 1

5
y2 ≤ x + y − 10.

and

d(gx, gy) = d(x − 10, y − 10), if y ∈ {11, 12, 13, . . .},
or, d(gx, gy) = x − 10 + y − 10 < x + y − 10.

Consequently, we have

ψ(d(gx, gy)) = (d(gx, gy))2 ≤ (x + y − 10)2 < (x + y − 10)(x + y + 10)

= (x + y)2 − 100 < (x + y)2 − 1

5
= α(d(x, y)) − β(d(x, y)).

Case 3. (x = 11). Then y ∈ [0, 10], gx = 1 and d(gx, gy) = 1 −
(

y − 1

5
y2

)
≤ 1.

So, we have ψ(d(gx, gy)) ≤ ψ(1) = 1. Again d(x, y) = 11 + y. So,

α(d(x, y)) − β(d(x, y)) = (11 + y)2 − 1

5

= 121 + y2 + 22y − 1

5

= 604

5
+ 22y + y2 > 1 = ψ(d(gx, gy)).
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Considering all the above cases, we conclude that the inequality (2.23) remains valid for
ψ, α, and β constructed as above and consequently, g has a unique fixed point.

Clearly, it is seen that 0 is the unique fixed point of g. �

3. Weakly compatible and E.A. property

Theorem 3.1. Let f and g be self mappings of a Hausdorff g.m.s (X, d) satisfying (2.3),
(2.5) and the following:

f and g are weakly compatible, (3.25)

f and g satisfy the E.A. property. (3.26)

If the range of f or g is a complete subspace of X, then f and g have a unique common
fixed point in X.

Proof. Since f and g satisfy the E.A. property, there exists a sequence {xn} in X such
that

lim
n→∞ f xn = limn→∞gxn = z, for some z in X. (3.27)

Since gX ⊆ f X, there exists a sequence {yn} in X such that gxn = fyn. Hence
limn→∞f xn = z. Now, we shall show that limn→∞gyn = z. Let us suppose that
limn→∞gyn = t . From (2.5), we have

ψ(d(gxn, gyn)) ≤ α(N(f xn, fyn))β(N(f xn, fyn)).

Letting n → ∞, we have

ψ(d(z, t)) ≤ α(limn→∞N(f xn, fyn))β(limn→∞N(f xn, fyn)), (3.28)

where,

N(f xn, fyn) = max {d(f xn, fyn), d(f xn, gxn), d(fyn, gyn),

d(f xn, gxn)d(fyn, gyn)

1 + d(f xn, fyn)
,
d(f xn, gxn)d(fyn, gyn)

1 + d(gxn, gyn)

}
.

Letting n → ∞, we have

lim
n→∞ N(f xn, fyn) = max

{
d(z, z), d(z, z), d(z, t),

d(z, z)d(z, t)

1 + d(z, z)
,
d(z, z)d(z, t)

1 + d(z, t)

}

= d(z, t). (3.29)

Thus, from (3.4) and (3.5), we get

ψ(d(z, t)) ≤ α(d(z, t))β(d(z, t)),
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which implies that d(z, t) = 0, that is, z = t . Hence, lim
n→â'¡∞ gyn = z. Now, suppose that

f X is complete subspace of X. Then, there exists u in X such that z = f u. Subsequently,
we have

lim
n→∞ f xn = lim

n→∞ gxn = lim
n→∞

fyn = lim
n→∞ gyn = z = f u.

Now, we show that f u = gu. From (2.5), we have

ψ(d(gxn, gu)) ≤ α(N(f xn, f u))β(N(f xn, f u)).

Letting n → ∞, we have

ψ(d(z, gu)) ≤ ( lim
n→∞ N(f xn, f u))( lim

n→∞ N(f xn, f u)), (3.30)

where,

N(f xn, f u) = max

{
d(f xn, f u), d(f xn, gxn),

d(f u, gu), d(f xn, gxn)d(f u, gu)

1 + d(f xn, f u)
,
d(f xn, gxn)d(f u, gu)

1 + d(gxn, gu)

}
.

Letting n → ∞, we have

lim
n→∞ N(f xn, f u) = max

{
d(z, z), d(z, z), d(z, gu),

d(z, z)d(z, gu)

1 + d(z, f u)
,
d(z, z)d(z, gu)

1 + d(z, gu)

}
= d(z, gu). (3.31)

Thus, from (3.6) and (3.7), we get

ψ(d(z, gu)) ≤ α(d(z, gu))β(d(z, gu)),

which implies that, d(z, gu) = 0, that is, z = gu = f u. Since f and g are weakly
compatible, therefore, gf u = fgu, implies that, ff u = fgu = gf u = ggu. Now, we
claim that gu is the common fixed point of f and g. From (2.5), we have

ψ(d(gu, ggu)) ≤ α(N(f u, ff u))β(N(f u, ff u))

= α(d(f u, ff u))β(d(f u, ff u))

= α(d(gu, ggu))β(d(gu, ggu)),

which implies that, gu = ggu = ff u.
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Therefore, gu is the common fixed point of f and g. For the uniqueness, let z and
w be two common fixed points of f and g. From (2.5), we have

ψ(d(z, w)) = ψ(d(gz, gw))

≤ α(N(f z, f w))β(N(f z, f w)), (3.32)

where,

N(f z, f w) = max

{
d(f z, f w), d(f z, gz), d(f w, gw),

d(f z, gz)d(f w, gw)

1 + d(f z, f w)
,
d(f z, gz)d(f w, gw)

1 + d(gz, gw)

}

= max{d(z, w), 0, 0, 0, 0} = d(z, w). (3.33)

From (3.8) and (3.9), we get

ψ(d(z, w)) ≤ α(d(z, w))β(d(z, w)),

which implies that, d(z, w) = 0, that is, z = w. Therefore, f and g have a unique
common fixed point in X. �

4. Weakly compatible and (CLRf ) property

Theorem 4.1. Let f and g be self mappings of a Hausdorff g.m.s (X, d) satisfying (2.3),
(2.5), (3.1) and the following:

f and g satisfy (CLRf ) property. (4.34)

Then f and g have a unique common fixed point in X.

Proof. Since f and g satisfy the (CLRf ) property, there exists a sequence {xn} in X

such that
lim

n→∞ f xn = lim
n→∞ gxn = f x, for some x ∈ X.

From (2.5), we have

ψ(d(gxn, gx)) ≤ α(N(f xn, f x))β(N(f xn, f x)).

Letting n → ∞, we have

ψ(d(f x, gx)) ≤ α( lim
n→∞ N(f xn, f x))β( lim

n→∞ N(f xn, f x)), (4.35)

where,

N(f xn, f x) = max

{
d(f xn, f x), d(f xn, gxn), d(f x, gx),

d(f xn, gxn)d(f x, gx)

1 + d(f xn, f x)
,
d(f xn, gxn)d(f x, gx)

1 + d(gxn, gx)

}
.
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Letting n → ∞, we have

lim
n→∞ N(f xn, f x) = max

{
d(f x, f x), d(f x, f x), d(f x, gx),

d(f x, f x)d(f x, gx)

1 + d(f x, f x)
,
d(f x, f x)d(f x, gx)

1 + d(f x, gx)

}

= d(f x, gx). (4.36)

Thus, from (4.3) and (4.4), we get

ψ(d(f x, gx)) ≤ α(d(f x, gx))β(d(f x, gx)),

which implies that d(f x, gx) = 0, that is, gx = f x. Now, let z = f x = gx. Since f and
g are weakly compatible, therefore, fgx = gf x, implies that, f z = fgx = gf x = gz.
Now, we claim that gz = z. From (2.5), we have

ψ(d(gz, z)) = ψ(d(gz, gx))

≤ α(N(f z, f x))β(N(f z, f x)). (4.37)

where,

N(f z, f x) = max

{
d(f z, f x), d(f z, gz), d(f x, gx),

d(f z, gz)d(f x, gx)

1 + d(f z, f x)
,
d(f z, gz)d(f x, gx)

1 + d(gz, gx)

}

= max{d(gz, z), 0, 0, 0, 0} = d(gz, z). (4.38)

From (4.5) and (4.6), we get

ψ(d(gz, z)) ≤ α(d(gz, z))β(d(gz, z)),

which implies that, d(gz, z) = 0, that is, gz = z. Hence, gz = z = f z. So, z is the
common fixed point of f and g. For the uniqueness, let w be another common fixed
point of f and g. From (2.5), we have

ψ(d(z, w)) = ψ(d(gz, gw))

≤ α(N(f z, f w))β(N(f z, f w)), (4.39)

where,

N(f z, f w) = max

{
d(f z, f w), d(f z, gz), d(f w, gw),

d(f z, gz)d(f w, gw)

1 + d(f z, f w)
,
d(f z, gz)d(f w, gw)

1 + d(gz, gw)

}

= max{d(z, w), 0, 0, 0, 0, 0} = d(z, w). (4.40)
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From (4.7) and (4.8), we get

ψ(d(z, w)) ≤ α(d(z, w))β(d(z, w)),

which implies that, d(z, w) = 0, that is, z = w. Therefore, f and g have a unique
common fixed point in X. �
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