Common fixed point for generalized- (ψ, α, β)-weakly contractive mappings in generalized metric spaces

Manoj Kumar ${ }^{1}$
Department of Mathematics, Lovely Professional University, Punjab.
Serkan Araci
Department of Economics, Faculty of Economics, Hasan Kalyoncu University, Gaziantep, Turkey.
Anita Dahiya
Department of Mathematics, SRM University, Sonipat.
Asha Rani
Department of Mathematics, SRM University, Sonipat.
Pushpinder Singh
Department of Mathematics, Lovely Professional University, Punjab.

Abstract

In this paper, we establish some common fixed point theorems for generalized(ψ, α, β)-weakly contractive mappings in generalized metric spaces which extends

[^0]the results of Isik et al. [3]. We present an example in support of our theorem.
AMS subject classification: $47 \mathrm{H} 10,54 \mathrm{H} 25$.
Keywords: Generalized metric, generalized weakly contractive condition, weakly compatible maps, E.A. property, (CLR) property.

1. Introduction and preliminaries

In 2000, Branciari [2] introduced the concept of a generalized metric space as follows:
Definition 1.1. Let X be a non-empty set and $d: X \times X \rightarrow[0, \infty)$ be a mapping such that for all $x, y \in X$ and for all distinct point $u, v \in X$, each of them different from x and y, one has
(i) $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$,
(iii) $d(x, y) \leq d(x, u)+d(u, v)+d(v, y)$ (the rectangular inequality).

Then (X, d) is called a generalized metric space (or for short g.m.s.).
Definition 1.2. Let (X, d) be a generalized metric space. A sequence $\left\{x_{n}\right\}$ in X is said to be
(i) g.m.s. convergent to x if and only if $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. We denote this by $\left\{x_{n}\right\} \rightarrow x$ as $n \rightarrow \infty$ or $\lim _{n \rightarrow \infty} \hat{a}^{\prime} ; x_{n}=x$
(ii) g.m.s. Cauchy sequence if and only if for each $\epsilon>0$ there exists a natural number $n(\epsilon)$ such that for all $n>m>n(\epsilon), d\left(x_{n}, x_{m}\right)<\epsilon$.
(iii) complete g.m.s. if every g.m.s. Cauchy sequence is g.m.s. convergent in X.

We denote by Ψ the set of functions $\psi:[0, \infty) \rightarrow[0, \infty)$ satisfying the following hypotheses:
$(\psi 1) \psi$ is continuous and monotone nondecreasing,
$(\psi 2) \psi(t)=0$ if and only if $t=0$.
We denote by Φ the set of functions $\pm:[0, \infty) \rightarrow[0, \infty)$ satisfying the following hypotheses:
$(\alpha 1) \alpha$ is continuous,
$(\alpha 2) \alpha(t)=0$ if and only if $t=0$.

We denote by Γ the set of functions $\beta:[0, \infty) \rightarrow[0, \infty)$ satisfying the following hypotheses:
($\beta 1$) β is lower semi-continuous,
$(\beta 2) \beta(t)=0$ if and only if $t=0$.
Definition 1.3. A mapping $T: X \rightarrow X$ is said to be (ψ, α, β) weak contraction if there exists three maps $\psi, \alpha, \beta:[0, \infty) \rightarrow[0, \infty)$ such that $\psi(d(T x, T y)) \leq$ $\alpha(d(x, y))$ âŁ " $\beta(d(x, y))$, where
(i) ψ is continuous and monotone non-decreasing,
(ii) α is continuous,
(iii) β is lower semi-continuous,
(iv) $\psi(t)=0=\alpha(t)=\beta(t)$, if and only if, $t=0$.

Now, we introduce the following notions:
Definition 1.4. A mapping $T: X \rightarrow X$ is said to be generalized (ψ, α, β) weak contraction if there exists three maps $\psi, \alpha, \beta:[0, \infty) \rightarrow[0, \infty)$ such that $\psi(d(T x, T y)) \leq$ $\alpha(M(x, y)) \beta(M(x, y))$, where

$$
M(x, y)=\max \{d(x, y), d(x, T x), d(y, T y)\}
$$

(i) ψ is continuous and monotone non-decreasing,
(ii) α is continuous,
(iii) β is lower semi-continuous,
(iv) $\psi(t)=0=\alpha(t)=\beta(t)$, if and only if, $t=0$.

Definition 1.5. A mapping $g: X \rightarrow X$ is said to be generalized (ψ, α, β) weak contraction with respect to $f: X \rightarrow X$ if there exists three maps $\psi, \alpha, \beta:[0, \infty) \rightarrow[0, \infty)$ such that

$$
\psi(d(g x, g y)) \leq \alpha(N(x, y)) \beta(N(x, y)),
$$

where

$$
\begin{aligned}
N(f x, f y)= & \max \{d(f x, f y), d(f x, g x), d(f y, g y), \\
& \left.\frac{d(f x, g x) d(f y, g y)}{1+d(f x, f y)}, \frac{d(f x, g x) d(f y, g y)}{1+d(g x, g y)}\right\},
\end{aligned}
$$

(i) ψ is continuous and monotone non-decreasing,
(ii) α is continuous,
(iii) β is lower semi-continuous,
(iv) $\psi(t)=0=\alpha(t)=\beta(t)$, if and only if, $t=0$.

In 1996, Jungck et al. [4] introduced the concept of weakly compatible maps as follows:
Definition 1.6. Two maps f and g defined on a self map X are said to be weakly compatible if they commute at their coincidence points.

In 2002, Aamri et al. [1] introduced the notion of E.A. property as follows:
Definition 1.7. Two self-mappings f and g of a metric space (X, d) are said to satisfy E.A. property if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} \hat{a}^{\prime} ; g x_{n}=$ t for some $t \in X$

In 2011, Sintunavarat et al. [5] introduced the notion of (CLRg) property as follows:
Definition 1.8. Two self-mappings f and g of a metric space (X, d) are said to satisfy $\left(C L R_{g}\right)$ property if there exists a sequence $\left\{x_{n}\right\}$ in X such that $\lim _{n \rightarrow \infty} f x_{n}=$ $\lim _{n \rightarrow \infty} g x_{n}=g x$ for some $x \in X$.

2. Main Results

For proving our main results, we need the following Lemma:
Lemma 2.1. Let $\left\{a_{n}\right\}$ be a sequence of non-negative real numbers. If

$$
\begin{equation*}
\psi\left(a_{n+1}\right) \leq \alpha\left(a_{n}\right) \beta\left(a_{n}\right) \tag{2.1}
\end{equation*}
$$

for all $n \in N$, where $\psi \in \Psi, \alpha \in \Phi, \beta \in \Gamma$ and

$$
\begin{equation*}
\psi(t)-\alpha(t)+\beta(t)>0 \tag{2.2}
\end{equation*}
$$

for all $t>0$, then the following hold:
(i) $a_{n+1} \leq a_{n}$ if $a_{n}>0$,
(ii) $a_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Theorem 2.2. Let f and g be self mappings of a Hausdorff g.m.s. (X, d) satisfying the followings:

$$
\begin{align*}
& g X \subseteq f X \tag{2.3}\\
& f X \text { or } g X \text { is a complete subspace of } X \tag{2.4}\\
& \psi(d(g x, g y)) \leq \alpha(N(f x, f y)) \beta(N(f x, f y)), \text { for all } x, y \in X, \tag{2.5}
\end{align*}
$$

where $\psi \in \Psi, \alpha \in \Phi$ and $\beta \in \Gamma$ and satisfy condition (2.2) with

$$
\begin{aligned}
N(f x, f y)= & \max \{d(f x, f y), d(f x, g x), d(f y, g y), \\
& \left.\frac{d(f x, g x) d(f y, g y)}{1+d(f x, f y)}, \frac{d(f x, g x) d(f y, g y)}{1+d(g x, g y)}\right\} .
\end{aligned}
$$

Then f and g have a unique coincidence point in X. Moreover, if f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. Let x_{0} be an arbitrary point in X. Since $g X \subseteq f X$, we can define the sequences x_{n} and y_{n} in X by

$$
\begin{equation*}
y_{2 n}=f x_{2 n+1}=g x_{2 n} \text { for all } n \geq 0 \tag{2.6}
\end{equation*}
$$

Moreover, we assume that if $y_{2 n}=y_{2 n+1}$ for some $n \in \mathbb{N}$, then there is nothing to prove. Now, we assume that $y_{2 n} \neq y_{2 n+1}$ for all $n \in \mathbb{N}$. We assert that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0 \tag{2.7}
\end{equation*}
$$

Substituting $x=x_{2 n}$ and $y=x_{2 n+1}$ in (2.5), using (2.6), we have

$$
\begin{align*}
\psi\left(d\left(y_{2} n, y_{2 n+1}\right)\right) & =\psi\left(d\left(g x_{2 n}, g x_{2 n+1}\right)\right) \\
& \leq \alpha\left(N\left(f x_{2} n, f x_{2 n+1}\right)\right) \beta\left(N\left(f x_{2 n}, f x_{2 n+1}\right)\right) \\
& =\alpha\left(N\left(y_{2 n-1}, y_{2 n}\right)\right) \beta\left(N\left(y_{2 n-1}, y_{2 n}\right)\right), \tag{2.8}
\end{align*}
$$

where

$$
\begin{aligned}
N\left(y_{2 n-1}, y_{2 n}\right)= & \max \left\{d\left(y_{2 n-1}, y_{2 n}\right), d\left(y_{2 n-1}, y_{2 n}\right), d\left(y_{2 n}, y_{2 n+1}\right),\right. \\
& \left.\frac{d\left(y_{2 n-1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n+1}\right)}{1+d\left(y_{2 n-1}, y_{2 n}\right)}, \frac{d\left(y_{2 n-1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n+1}\right)}{1+d\left(y_{2 n}, y_{2 n+1}\right)}\right\} \\
= & \max \left\{d\left(y_{2 n-1}, y_{2 n}\right), d\left(y_{2 n}, y_{2 n+1}\right)\right\},
\end{aligned}
$$

since

$$
\frac{d\left(y_{2 n-1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n+1}\right)}{1+d\left(y_{2 n-1}, y_{2 n}\right)} \leq d\left(y_{2 n}, y_{2 n+1}\right)
$$

and

$$
\frac{d\left(y_{2 n-1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n+1}\right)}{1+d\left(y_{2 n}, y_{2 n+1}\right)} \leq d\left(y_{2 n-1}, y_{2 n}\right) .
$$

If $d\left(y_{2 n-1}, y_{2 n}\right)<d\left(y_{2 n}, y_{2 n+1}\right)$, then from (2.8), we get

$$
\psi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq \alpha\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \beta\left(d\left(y_{2 n}, y_{2 n+1}\right)\right),
$$

which implies that, $d\left(y_{2 n}, y_{2 n+1}\right)=0$, that is, $y_{2 n}=y_{2 n+1}$, which is a contradiction. So

$$
d\left(y_{2 n}, y_{2 n+1}\right)<d\left(y_{2 n-1}, y_{2 n}\right),
$$

then from (2.8), we obtain

$$
\begin{equation*}
\psi\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \leq \alpha\left(d\left(y_{2 n-1}, y_{2 n}\right)\right) \beta\left(d\left(y_{2 n-1}, y_{2 n}\right)\right) . \tag{2.9}
\end{equation*}
$$

Similarly, we also conclude that

$$
\begin{equation*}
\psi\left(d\left(y_{2 n+1}, y_{2 n+2}\right)\right) \leq \alpha\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \beta\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) . \tag{2.10}
\end{equation*}
$$

Generally, we have that for each $n \in \mathbb{N}$

$$
\begin{equation*}
\psi\left(d\left(y_{n}, y_{n+1}\right)\right) \leq \alpha\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) \beta\left(d\left(y_{2 n}, y_{2 n+1}\right)\right) . \tag{2.11}
\end{equation*}
$$

From (ii) of Lemma 2.1, we obtain that

$$
\lim _{n \rightarrow \infty} d\left(y_{n}, y_{n+1}\right)=0 .
$$

Next, we prove that $\left\{y_{n}\right\}$ is a g.m.s. Cauchy sequence. Suppose that $\left\{y_{n}\right\}$ is not a g.m.s. Cauchy sequence. Then there exists $\epsilon>0$ such that for $k \in \mathbb{N}$, there are $m(k), n(k) \in \mathbb{N}$ with $m(k)>n(k)>k$ satisfying
(a) $m(k)$ is even and $n(k)$ is odd
(b) $d\left(y_{n(k)}, y_{m(k)}\right) \leq \epsilon$
(c) $m(k)$ is the smallest even number such that the condition (b) holds

Taking into account (b) and (c), we have that

$$
\begin{align*}
\epsilon & \leq d\left(y_{n(k)}, y_{m(k)}\right) \\
& \leq d\left(y_{n(k)}, y_{m(k)-2}\right)+d\left(y_{m(k)-2}, y_{m(k)-1}\right)+d\left(y_{m(k)-1}, y_{m(k)}\right) \\
& \leq \epsilon+d\left(y_{n(k)}, y_{n(k)-2}\right)+d\left(y_{n(k)-2}, y_{n(k)-1}\right) . \tag{2.12}
\end{align*}
$$

Letting $k \rightarrow \infty$, we obtain

$$
\begin{align*}
& \lim _{k \rightarrow \infty} d\left(y_{n(k)}, y_{m(k)}\right)=\epsilon \\
& \epsilon \leq d\left(y_{n(k)-1}, y_{m(k)-1}\right) \tag{2.13}\\
& \quad \leq d\left(y_{n(k)-1}, y_{m(k)-3}\right)+d\left(y_{m(k)-3}, y_{m(k)-2}\right)+d\left(y_{m(k)-2}, y_{m(k)-1}\right) \\
& \quad \leq \epsilon+d\left(y_{m(k)-3}, y_{m(k)-2}\right)+d\left(y_{m(k)-2}, y_{m(k)-1}\right) \tag{2.14}
\end{align*}
$$

Making $k \rightarrow \infty$, we obtain

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(y_{n(k)-1}, y_{m(k)-1}\right)=\epsilon \tag{2.15}
\end{equation*}
$$

Substituting $x=x_{n(k)}$ and $y=x_{m(k)}$ in (2.5), we have

$$
\begin{align*}
& \psi\left(d\left(g x_{n(k)}, g x_{m(k)}\right)\right) \leq \alpha\left(N\left(f x_{n(k)}, f x_{m(k)}\right)\right) \beta\left(N\left(f x_{n(k)}, f x_{m(k)}\right)\right), \text { that is, } \\
& \psi\left(d\left(y_{n(k)}, y_{m(k)}\right)\right) \leq \alpha\left(N\left(y_{n(k)-1}, y_{m(k)-1}\right)\right) \beta\left(N\left(y_{n(k)-1}, y_{m(k)-1}\right)\right), \tag{2.16}
\end{align*}
$$

where

$$
\begin{aligned}
d\left(y_{n(k)-1}, y_{m(k)-1}\right) & \leq N\left(y_{n(k)-1}, y_{m(k)-1}\right) \\
& =\max \left\{d\left(y_{n(k)-1}, y_{m(k)-1}\right), d\left(y_{n(k)-1}, y_{n(k)}\right), d\left(y_{m(k)-1}, y_{m(k)}\right),\right. \\
& \left.\frac{d\left(y_{n(k)-1}, y_{n(k)}\right) d\left(y_{m(k)-1}, y_{m(k)}\right)}{1+d\left(y_{n(k)-1}, y_{m(k)-1}\right)}, \frac{d\left(y_{n(k)-1}, y_{n(k)}\right) d\left(y_{m(k)-1}, y_{m(k)}\right)}{1+d\left(y_{n(k)}, y_{m(k)}\right)}\right\} . \\
& =\max \left\{d\left(y_{n(k)-1}, y_{m(k)-1}\right), d\left(y_{n(k)-1}, y_{n(k)}\right), d\left(y_{m(k)-1}, y_{m(k)}\right)\right\} .
\end{aligned}
$$

Letting $k \rightarrow \infty$ in (2.16) and using the lower semi-continuity of β and the continuities of ψ and α, we obtain $\psi(\epsilon) \leq \alpha(\epsilon) \beta(\epsilon)$, which implies that $\epsilon=0$, by (2.2), a contradiction with $\epsilon>0$. It follows that $\left\{y_{n}\right\}$ is a g.m.s. Cauchy sequence.

Since $f X$ is complete, so there exists a point u in $f X$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} y_{n}=\lim _{n \rightarrow \infty} f x_{n+1}=u \tag{2.17}
\end{equation*}
$$

Since $u \in f X$, so we can find $p \in X$ such that $f p=u$. We claim that $f p=g p$. From (2.5), we have

$$
\begin{aligned}
\psi\left(d\left(f x_{n+1}, g p\right)\right) & =\psi\left(d\left(g x_{n}, g p\right)\right) \\
& \leq \alpha\left(N\left(g x_{n}, g p\right)\right) \beta\left(N\left(g x_{n}, g p\right)\right) .
\end{aligned}
$$

Letting limit as $n \rightarrow \infty$ and using the continuity of α and semi-continuity of β, we get

$$
\begin{equation*}
\psi(d(f p, g p)) \leq \alpha\left(\lim _{n \rightarrow \infty} N\left(g x_{n}, g p\right)\right)-\beta\left(\lim _{n \rightarrow \infty} N\left(g x_{n}, g p\right)\right), \tag{2.18}
\end{equation*}
$$

where

$$
\begin{aligned}
& N\left(g x_{n}, g p\right)=\max \left\{d\left(f x_{n}, f p\right), d\left(f x_{n}, g x_{n}\right), d(f p, g p),\right. \\
& \left.\frac{d\left(f x_{n},, g x_{n}\right) d(f p, g p)}{1+d\left(f x_{n}, f p\right)}, \frac{d\left(f x_{n}, g x_{n}\right) d(f p, g p)}{1+d\left(g x_{n}, g p\right)}\right\} .
\end{aligned}
$$

Making limit as $n \rightarrow \infty$, we have

$$
\begin{align*}
\left.\lim _{n \rightarrow \infty} N\left(g x_{n}, g p\right)\right) & =\max \{d(f p, f p), d(f p, f p), d(f p, g p) \\
& \left.\frac{d(f p, f p) d(f p, g p)}{1+d(f p, f p)}, \frac{d(f p, g p) d(f p, g p)}{1+d(f p, g p)}\right\} \\
& =d(f p, g p) . \tag{2.19}
\end{align*}
$$

So, from (2.18) and (2.19), we have

$$
\psi(d(f p, g p)) \leq \alpha(d(f p, g p))-\beta(d(f p, g p)),
$$

which implies that, $d(f p, g p)=0$, that is,

$$
\begin{equation*}
f p=g p=u \tag{2.20}
\end{equation*}
$$

Therefore, p is a point of coincidence of f and g. The uniqueness of the point of coincidence is a consequence of condition (2.5). Now, we show that there exists a common fixed point of f and g. Since f and g are weakly compatible, by (2.20), we have $g f p=f g p$, and

$$
\begin{equation*}
g u=g f p=f g p=f u \tag{2.21}
\end{equation*}
$$

If $p=u$, then p is a common fixed point of f and g. If $p \neq u$, then by (2.5), we have

$$
\psi(d(g p, g u)) \leq \alpha(N(g p, g u))-\beta(N(g p, g u)),
$$

where,

$$
\begin{aligned}
N(g p, g u)= & \max \{d(f p, f u), d(f p, g p), d(f u, g u), \\
& \left.\frac{d(f p, g p) d(f u, g u)}{1+d(f p, f u)}, \frac{d(f p, g p) d(f u, g u)}{1+d(g p, g u)}\right\} \\
= & \max \{d(u, g u), d(u, u), 0,0,0\} \\
= & d(u, g u) .
\end{aligned}
$$

Therefore, we have

$$
\psi(d(u, g u)) \leq \alpha(d(u, g u))-\beta(d(u, g u)),
$$

which by (2.2) implies that, $d(u, g u)=0$, that is, $u=g u=f u$. Consequently, u is the unique common fixed point of f and g.

Denote by \wedge the set of functions $\gamma:[0, \infty) \rightarrow[0, \infty)$ satisfying the following hypotheses:
(h1) γ is a Lebesgue-integrable mapping on each compact subset of $[0, \infty)$,
(h2) for every $\epsilon>0$, we have

$$
\int_{0}^{\epsilon} \gamma(s) d s<\epsilon
$$

We have the following result.
Theorem 2.3. Let (X, d) be a Hausdorff g.m.s. and $f, g: X \rightarrow X$ be self mappings satisfying (2.3), (2.4) and the following:

$$
\begin{aligned}
\int_{0}^{d(g x, g y)} \gamma_{1}(s) d s \leq & \int_{0}^{N(f x, f y)} \gamma_{2}(s) d s \\
& -\int_{0}^{N(f x, f y)} \gamma_{3}(s) d s,
\end{aligned}
$$

for all $x, y \in X$, where $\gamma_{1}, \gamma_{2}, \gamma_{3} \in \wedge$ and satisfy condition (2.2). If f and g are weakly compatible, then f and g have a unique common fixed point.

Proof. On taking $\psi(t)=\int_{0}^{t} \gamma_{1}(s) d s, \alpha(t)=\int_{0}^{t} \gamma_{2}(s) d s$ and $\beta(t)=\int_{0}^{t} \gamma_{3}(s) d s$ in Theorem 2.2, we get Theorem 2.3.

Taking $\gamma_{3}(s)=(1-k) \gamma_{2}(s)$ for $k \in[0,1)$ in Theorem 2.3, we obtain the following result:

Corollary 2.4. Let (X, d) be a Hausdorff g.m.s. and $f, g: X \rightarrow X$ be self mappings satisfying (2.3), (2.4) and the following:

$$
\int_{0}^{d(g x, g y)} \gamma_{1}(s) d s \leq k \int_{0}^{N(f x, f y)} \gamma_{2}(s) d s
$$

for all $x, y \in X$, where $\gamma_{1}, \gamma_{2} \in \wedge$ and satisfy condition (2.2). If f and g are weakly compatible, then f and g have a unique common fixed point.

Remark 2.5. If $N(f x, f y)=d(f x, f y)$, then (2.5) reduces to

$$
\begin{equation*}
\psi(d(g x, g y)) \leq \alpha(d(f x, f y))-\beta(d(f x, f y)), \tag{2.22}
\end{equation*}
$$

which is condition (2.3) of Theorem 1 [3].
Remark 2.6. If f is the identity mapping, then (2.22) reduces to

$$
\begin{equation*}
\psi(d(g x, g y)) \leq \alpha(d(x, y))-\beta(d(x, y)) . \tag{2.23}
\end{equation*}
$$

Example 2.7. Let $X=[0,10] \cup 11,12,13, \ldots$ and

$$
d(x, y)= \begin{cases}|x-y|, & \text { if } x, y \in[0,10], x \neq y ; \tag{2.24}\\ x+y, & \text { if atleast one of } x \text { or } y \notin[0,10] \text { and } x \neq y \\ 0, & \text { if } x=y\end{cases}
$$

Then (X, d) is a Hausdorff and g.m.s.
Let $\psi, \alpha, \beta:[0, \infty) \rightarrow[0, \infty)$ be defined as

$$
\begin{gathered}
\psi(t)=\alpha(t)= \begin{cases}t, & \text { if } 0 \leq t \leq 10 \\
t^{2}, & \text { if } t>10 \text { and }\end{cases} \\
\beta(t)= \begin{cases}\frac{1}{5} t^{2}, & \text { if } 0 \leq t \leq 10 \\
\frac{1}{5}, & \text { if } t>10\end{cases}
\end{gathered}
$$

Let $g: X \rightarrow X$ be defined as

$$
g(x)= \begin{cases}x-\frac{1}{5} x^{2}, & \text { if } 0 \leq x \leq 10 \\ x-10, & \text { if } x \in\{11,12,13, \ldots\}\end{cases}
$$

Without loss of generality, we assume that $x>y$ and discuss the following cases:
Case 1. $(x \in[0,10])$. Then

$$
\begin{aligned}
\psi(d(g x, g y)) & =\left(x-\frac{1}{5} x^{2}\right)-\left(y-\frac{1}{5} y^{2}\right) \\
& =(x-y)-\frac{1}{5}(x-y)(x+y) \leq(x-y)-\frac{1}{5}(x-y)^{2} \\
& =d(x, y)-\frac{1}{5}(d(x, y))^{2} \\
& =\alpha(d(x, y))-\beta(d(x, y)) .
\end{aligned}
$$

Case 2. $(x \in\{12,13, \ldots\})$. Then

$$
\begin{aligned}
d(g x, g y) & =d\left(x-10, y-\frac{1}{5} y^{2}\right), \text { if } y \in[0,10] \\
\text { or, } d(g x, g y) & =x-10+y-\frac{1}{5} y^{2} \leq x+y-10
\end{aligned}
$$

and

$$
\begin{aligned}
d(g x, g y) & =d(x-10, y-10), \text { if } y \in\{11,12,13, \ldots\}, \\
\text { or, } d(g x, g y) & =x-10+y-10<x+y-10 .
\end{aligned}
$$

Consequently, we have

$$
\begin{aligned}
\psi(d(g x, g y)) & =(d(g x, g y))^{2} \leq(x+y-10)^{2}<(x+y-10)(x+y+10) \\
& =(x+y)^{2}-100<(x+y)^{2}-\frac{1}{5} \\
& =\alpha(d(x, y))-\beta(d(x, y))
\end{aligned}
$$

Case 3. $(x=11)$. Then $y \in[0,10], g x=1$ and $d(g x, g y)=1-\left(y-\frac{1}{5} y^{2}\right) \leq 1$.
So, we have $\psi(d(g x, g y)) \leq \psi(1)=1$. Again $d(x, y)=11+y$. So,

$$
\begin{aligned}
\alpha(d(x, y))-\beta(d(x, y)) & =(11+y)^{2}-\frac{1}{5} \\
& =121+y^{2}+22 y-\frac{1}{5} \\
& =\frac{604}{5}+22 y+y^{2}>1=\psi(d(g x, g y)) .
\end{aligned}
$$

Considering all the above cases, we conclude that the inequality (2.23) remains valid for ψ, α, and β constructed as above and consequently, g has a unique fixed point.

Clearly, it is seen that 0 is the unique fixed point of g.

3. Weakly compatible and E.A. property

Theorem 3.1. Let f and g be self mappings of a Hausdorff g.m.s (X, d) satisfying (2.3), (2.5) and the following:

$$
\begin{align*}
& f \text { and } g \text { are weakly compatible, } \tag{3.25}\\
& f \text { and } g \text { satisfy the E.A. property. } \tag{3.26}
\end{align*}
$$

If the range of f or g is a complete subspace of X, then f and g have a unique common fixed point in X.

Proof. Since f and g satisfy the E.A. property, there exists a sequence $\left\{x_{n}\right\}$ in X such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=z, \text { for some } z \text { in } X \tag{3.27}
\end{equation*}
$$

Since $g X \subseteq f X$, there exists a sequence $\left\{y_{n}\right\}$ in X such that $g x_{n}=f y_{n}$. Hence $\lim _{n \rightarrow \infty} f x_{n}=z$. Now, we shall show that $\lim _{n \rightarrow \infty} g y_{n}=z$. Let us suppose that $\lim _{n \rightarrow \infty} g y_{n}=t$. From (2.5), we have

$$
\psi\left(d\left(g x_{n}, g y_{n}\right)\right) \leq \alpha\left(N\left(f x_{n}, f y_{n}\right)\right) \beta\left(N\left(f x_{n}, f y_{n}\right)\right)
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{equation*}
\psi(d(z, t)) \leq \alpha\left(\lim _{n \rightarrow \infty} N\left(f x_{n}, f y_{n}\right)\right) \beta\left(\lim _{n \rightarrow \infty} N\left(f x_{n}, f y_{n}\right)\right) \tag{3.28}
\end{equation*}
$$

where,

$$
\begin{aligned}
N\left(f x_{n}, f y_{n}\right)= & \max \left\{d\left(f x_{n}, f y_{n}\right), d\left(f x_{n}, g x_{n}\right), d\left(f y_{n}, g y_{n}\right),\right. \\
& \left.\frac{d\left(f x_{n}, g x_{n}\right) d\left(f y_{n}, g y_{n}\right)}{1+d\left(f x_{n}, f y_{n}\right)}, \frac{d\left(f x_{n}, g x_{n}\right) d\left(f y_{n}, g y_{n}\right)}{1+d\left(g x_{n}, g y_{n}\right)}\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} N\left(f x_{n}, f y_{n}\right) & =\max \left\{d(z, z), d(z, z), d(z, t), \frac{d(z, z) d(z, t)}{1+d(z, z)}, \frac{d(z, z) d(z, t)}{1+d(z, t)}\right\} \\
& =d(z, t) \tag{3.29}
\end{align*}
$$

Thus, from (3.4) and (3.5), we get

$$
\psi(d(z, t)) \leq \alpha(d(z, t)) \beta(d(z, t))
$$

which implies that $d(z, t)=0$, that is, $z=t$. Hence, $\lim _{n \rightarrow \hat{\mathrm{a}} ; \infty} g y_{n}=z$. Now, suppose that $f X$ is complete subspace of X. Then, there exists u in X such that $z=f u$. Subsequently, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} f x_{n} & =\lim _{n \rightarrow \infty} g x_{n}
\end{aligned}=\lim _{n \rightarrow \infty} .
$$

Now, we show that $f u=g u$. From (2.5), we have

$$
\psi\left(d\left(g x_{n}, g u\right)\right) \leq \alpha\left(N\left(f x_{n}, f u\right)\right) \beta\left(N\left(f x_{n}, f u\right)\right) .
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{equation*}
\psi(d(z, g u)) \leq\left(\lim _{n \rightarrow \infty} N\left(f x_{n}, f u\right)\right)\left(\lim _{n \rightarrow \infty} N\left(f x_{n}, f u\right)\right) \tag{3.30}
\end{equation*}
$$

where,

$$
\begin{aligned}
N\left(f x_{n}, f u\right)= & \max \left\{d\left(f x_{n}, f u\right), d\left(f x_{n}, g x_{n}\right),\right. \\
& \left.\frac{d(f u, g u), d\left(f x_{n}, g x_{n}\right) d(f u, g u)}{1+d\left(f x_{n}, f u\right)}, \frac{d\left(f x_{n}, g x_{n}\right) d(f u, g u)}{1+d\left(g x_{n}, g u\right)}\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} N\left(f x_{n}, f u\right)= & \max \{d(z, z), d(z, z), d(z, g u), \\
& \left.\frac{d(z, z) d(z, g u)}{1+d(z, f u)}, \frac{d(z, z) d(z, g u)}{1+d(z, g u)}\right\}=d(z, g u) . \tag{3.31}
\end{align*}
$$

Thus, from (3.6) and (3.7), we get

$$
\psi(d(z, g u)) \leq \alpha(d(z, g u)) \beta(d(z, g u)),
$$

which implies that, $d(z, g u)=0$, that is, $z=g u=f u$. Since f and g are weakly compatible, therefore, $g f u=f g u$, implies that, $f f u=f g u=g f u=g g u$. Now, we claim that $g u$ is the common fixed point of f and g. From (2.5), we have

$$
\begin{aligned}
\psi(d(g u, g g u)) & \leq \alpha(N(f u, f f u)) \beta(N(f u, f f u)) \\
& =\alpha(d(f u, f f u)) \beta(d(f u, f f u)) \\
& =\alpha(d(g u, g g u)) \beta(d(g u, g g u)),
\end{aligned}
$$

which implies that, $g u=g g u=f f u$.

Therefore, $g u$ is the common fixed point of f and g. For the uniqueness, let z and w be two common fixed points of f and g. From (2.5), we have

$$
\begin{align*}
\psi(d(z, w)) & =\psi(d(g z, g w)) \\
& \leq \alpha(N(f z, f w)) \beta(N(f z, f w)) \tag{3.32}
\end{align*}
$$

where,

$$
\begin{align*}
N(f z, f w)= & \max \{d(f z, f w), d(f z, g z), d(f w, g w), \\
& \left.\frac{d(f z, g z) d(f w, g w)}{1+d(f z, f w)}, \frac{d(f z, g z) d(f w, g w)}{1+d(g z, g w)}\right\} \\
= & \max \{d(z, w), 0,0,0,0\}=d(z, w) \tag{3.33}
\end{align*}
$$

From (3.8) and (3.9), we get

$$
\psi(d(z, w)) \leq \alpha(d(z, w)) \beta(d(z, w))
$$

which implies that, $d(z, w)=0$, that is, $z=w$. Therefore, f and g have a unique common fixed point in X.

4. Weakly compatible and $\left(C L R_{f}\right)$ property

Theorem 4.1. Let f and g be self mappings of a Hausdorff g.m.s (X, d) satisfying (2.3), (2.5), (3.1) and the following:

$$
\begin{equation*}
f \text { and } g \text { satisfy }\left(C L R_{f}\right) \text { property. } \tag{4.34}
\end{equation*}
$$

Then f and g have a unique common fixed point in X.
Proof. Since f and g satisfy the $\left(C L R_{f}\right)$ property, there exists a sequence $\left\{x_{n}\right\}$ in X such that

$$
\lim _{n \rightarrow \infty} f x_{n}=\lim _{n \rightarrow \infty} g x_{n}=f x, \text { for some } x \in X
$$

From (2.5), we have

$$
\psi\left(d\left(g x_{n}, g x\right)\right) \leq \alpha\left(N\left(f x_{n}, f x\right)\right) \beta\left(N\left(f x_{n}, f x\right)\right) .
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{equation*}
\psi(d(f x, g x)) \leq \alpha\left(\lim _{n \rightarrow \infty} N\left(f x_{n}, f x\right)\right) \beta\left(\lim _{n \rightarrow \infty} N\left(f x_{n}, f x\right)\right), \tag{4.35}
\end{equation*}
$$

where,

$$
\begin{aligned}
N\left(f x_{n}, f x\right)= & \max \left\{d\left(f x_{n}, f x\right), d\left(f x_{n}, g x_{n}\right), d(f x, g x),\right. \\
& \left.\frac{d\left(f x_{n}, g x_{n}\right) d(f x, g x)}{1+d\left(f x_{n}, f x\right)}, \frac{d\left(f x_{n}, g x_{n}\right) d(f x, g x)}{1+d\left(g x_{n}, g x\right)}\right\} .
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty} N\left(f x_{n}, f x\right)= & \max \{d(f x, f x), d(f x, f x), d(f x, g x) \\
& \left.\frac{d(f x, f x) d(f x, g x)}{1+d(f x, f x)}, \frac{d(f x, f x) d(f x, g x)}{1+d(f x, g x)}\right\} \\
= & d(f x, g x) \tag{4.36}
\end{align*}
$$

Thus, from (4.3) and (4.4), we get

$$
\psi(d(f x, g x)) \leq \alpha(d(f x, g x)) \beta(d(f x, g x)),
$$

which implies that $d(f x, g x)=0$, that is, $g x=f x$. Now, let $z=f x=g x$. Since f and g are weakly compatible, therefore, $f g x=g f x$, implies that, $f z=f g x=g f x=g z$. Now, we claim that $g z=z$. From (2.5), we have

$$
\begin{align*}
\psi(d(g z, z)) & =\psi(d(g z, g x)) \\
& \leq \alpha(N(f z, f x)) \beta(N(f z, f x)) . \tag{4.37}
\end{align*}
$$

where,

$$
\begin{align*}
N(f z, f x)= & \max \{d(f z, f x), d(f z, g z), d(f x, g x), \\
& \left.\frac{d(f z, g z) d(f x, g x)}{1+d(f z, f x)}, \frac{d(f z, g z) d(f x, g x)}{1+d(g z, g x)}\right\} \\
= & \max \{d(g z, z), 0,0,0,0\}=d(g z, z) . \tag{4.38}
\end{align*}
$$

From (4.5) and (4.6), we get

$$
\psi(d(g z, z)) \leq \alpha(d(g z, z)) \beta(d(g z, z))
$$

which implies that, $d(g z, z)=0$, that is, $g z=z$. Hence, $g z=z=f z$. So, z is the common fixed point of f and g. For the uniqueness, let w be another common fixed point of f and g. From (2.5), we have

$$
\begin{align*}
\psi(d(z, w)) & =\psi(d(g z, g w)) \\
& \leq \alpha(N(f z, f w)) \beta(N(f z, f w)) \tag{4.39}
\end{align*}
$$

where,

$$
\begin{align*}
N(f z, f w)= & \max \{d(f z, f w), d(f z, g z), d(f w, g w), \\
& \left.\frac{d(f z, g z) d(f w, g w)}{1+d(f z, f w)}, \frac{d(f z, g z) d(f w, g w)}{1+d(g z, g w)}\right\} \\
= & \max \{d(z, w), 0,0,0,0,0\}=d(z, w) . \tag{4.40}
\end{align*}
$$

From (4.7) and (4.8), we get

$$
\psi(d(z, w)) \leq \alpha(d(z, w)) \beta(d(z, w))
$$

which implies that, $d(z, w)=0$, that is, $z=w$. Therefore, f and g have a unique common fixed point in X.

References

[1] Aamri, M., Moutawakil, D. El., 2002, "Some new common fixed point theorems under strict contractive conditions", J. Math. Anal. Appl. 27(1), 181-188.
[2] Branciari A., 2000, "A fixed point theorem of Banach-Cacciopoli type on a class of generalized metric spaces", Publ. Math. (Debr.) 57, 31-37.
[3] Isik H. and Turkoglu D., 2013, "Common fixed points for (ψ, α, β)-weakly contractive mappings in generalized metric spaces", Fixed point theory and applications 2013:131.
[4] Jungck G., 1996, "Common fixed points for non-continuous non-self mappings on non-metric spaces", Far East J. Math. Sci. 4(2), 199-212.
[5] Sintunavarat W. and Kumam P., 2011, "Common fixed point theorems for a pair of weakly compatible mappings in fuzzy metric spaces", Journal of Applied mathematics, Article ID 637958, 14 pages.

[^0]: ${ }^{1}$ Corresponding Author: manojantil18@gmail.com

