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Abstract

In this paper we introduce two dimensional q-tangent numbers and polynomials.
We also give some properties, explicit formulas, several identities, a connection
with two dimensional q-tangent numbers and polynomials, and some integral for-
mulas.
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1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler
numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, 7, 8, 9]). In this
paper, we study some properties of a new type of two dimensional q-tangent numbers
and polynomials.

Throughout this paper, we always make use of the following notations: N denotes the
set of natural numbers, Z+ = N ∪ {0}, R denotes the set of real numbers, and C denotes
the set of complex numbers. For a real number (or complex number) x, q-number is
defined by

[x]q = 1 − qx

1 − q
if q �= 1, [x]q = x if q = 1.

The q-binomial coefficients are defined for positive integer n, k as[
n

k

]
q

= [n]q !
[k]q ![n − k]q ! = [n]q[n − 1]q · · · [n − k + 1]q

[k]q ! ,
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where [n]q ! = [n]q[n − 1]q · · · [1]q, n = 1, 2, 3, . . . and [0]q ! = 1, which is known as
q-factorial(see [1]). Note that

lim
q→1

[
n

k

]
q

=
(

n

k

)
= n(n − 1)(n − 2) · · · (n − k + 1)

k! .

The q-analogue of the function (x + y)n is defined by

(x + y)nq =
n∑

l=0

[
n

l

]
q

q(l
2)xn−lyl, n ∈ Z+.

For any z ∈ C with |z| < 1, the two form of q-exponential functions are given by

eq(z) =
∞∑

n=0

zn

[n]q ! and Eq(z) =
∞∑

n=0

q(n
2)

zn

[n]q ! , (see [2, 5]).

From this form we easily see that eq(z)Eq(−z) = 1. The q-derivative operator of a any
function f is defined by

Dqf (x) = f (x) − f (qx)

(1 − q)x
, x �= 0, (1.1)

and Dqf (0) = f ′(0), provided that f is differentiable at 0. It happens clearly that
Dqx

n = [n]qxn−1.
The definite q-integral is defined as

∫ b

0
f (x)dqx = (1 − q)b

∞∑
j=0

qjf (qjb). (1.2)

Clearly, if the function f (x) is differentiable on the point x, the q-derivative in (1.1)
tends to the ordinary derivative in the classical analysis when q tends to 1. Identically,
if the function f (x) is Riemann integrable on the concerned intervals, the q-integral in
(1.2) tends to the Riemann integrals of f (x) on the corresponding intervals when q tends
to 1(see [2, 5]). In the following section, we introduce the two dimensional q-tangent
numbers and polynomials. After that we will investigate some their properties. Finally,
we give some relationships both between these polynomials and q-derivative operator
and between these polynomials and q-integral.

2. Two dimensional q-tangent polynomials

In this section, we introduce the two dimensional q-tangent numbers and polynomials
and provide some of their relevant properties.
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The q-tangent polynomials Tn(x) are defined by the generating function:(
2

eq(2t) + 1

)
eq(xt) =

∞∑
n=0

Tn,q(x)
tn

[n]q ! (|2t | < π). (2.1)

When x = 0, Tn,q(0) = Tn,q are called the q-tangent numbers. Upon setting p = 1 in
(2.1), we have (

2

e2t + 1

)
ext =

∞∑
n=0

Tn(x)
tn

n! (|2t | < π), (2.2)

where Tn(x) are called familiar Tangent polynomials. Numerous properties of tangent
numbers and polynomials are known. More studies and results in this subject we may
see references [4], [5], [6], [7]. About extensions for the tangent numbers can be found
in [5, 7, 8].

The two dimensional q-tangent polynomials Tn(x, y) in x, y are defined by means
of the generating function:(

2

eq(2t) + 1

)
eq(xt)eq(yt) =

∞∑
n=0

Tn,q(x, y)
tn

[n]q ! (|2t | < π). (2.3)

It is obvious that lim
q→1

Tn,q(x, y) = Tn(x + y) and Tn,q(x, 0) = Tn,q(x).

By (2.1), we get

∞∑
n=0

Tn,q(x)
tn

[n]q ! =
(

2

eq(2t) + 1

)
eq(xt)

=
∞∑

n=0

Tn,q

tn

[n]q !
∞∑

n=0

xn tn

[n]q !

=
∞∑

n=0

(
n∑

l=0

[
n

l

]
q

Tn−l,qy
l

)
tn

[n]q ! .

(2.4)

By comparing the coefficients on both sides of (2.4), we have the following theorem.

Theorem 2.1. For n ∈ Z+, we have

Tn,q(x) =
n∑

l=0

[
n

l

]
q

Tn−l,qx
l.

By using Definition of q-derivative operator and Theorem 2.1, we have the following
theorem.

Theorem 2.2. For n ∈ Z+, we have

DqTn,q(x) = [n]qTn−1,q(x)
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By Theorem 2.2 and Definition of the definite q-integral, we have

[n]q
∫ 1

0
DqTn−1,q(x)dqx = Tn,q(1) − Tn,q(0). (2.5)

Since Tn,q(0) = Tn,q , by (2.5), we have the following theorem.

Theorem 2.3. For n ∈ Z+, we have∫ 1

0
DqTn−1,q(x)dqx = Tn,q(1) − Tn,q

[n]q .

Using the following identity:

2

eq(2t) + 1
eq(xt)eq(2t) + 2

eq(2t) + 1
eq(xt) = 2eq(xt),

we have the following theorem.

Theorem 2.4. For n ∈ Z+, we have

Tn,q(x, 2) + Tn,q(x) = 2xn.

Substituting x = 0 in Theorem 2.4, we have the following corollary.

Corollary 2.5. For n ∈ Z+, we have

Tn,q = −Tn,q(2).

By (2.3) and the rule of Cauchy product, we get

∞∑
n=0

Tn,q(x, y)
tn

[n]q ! =
(

2

eq(2t) + 1

)
eq(xt)eq(yt)

=
∞∑

n=0

Tn,q(x)
tn

[n]q !
∞∑

n=0

yn tn

[n]q !

=
∞∑

n=0

(
n∑

l=0

[
n

l

]
q

Tn−l,q(x)xl

)
tn

[n]q ! .

(2.6)

By comparing the coefficients on both sides of (2.6), we have the following theorem.

Theorem 2.6. For n ∈ Z+, we have

Tn,q(x, y) =
n∑

l=0

[
n

l

]
q

Tn−l,q(x)yl.
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Using the following identity:

2

eq(2t) + 1
eq(2t) + 2

eq(2t) + 1
= 2,

we obtain the following theorem.

Theorem 2.7. For n ∈ Z+, we have

n∑
l=0

[
n

l

]
q

2n−lTl,q + Tn,q =
{

2, if n = 0,

0, if n �= 0.

By using Definition of q-derivative operator, we have the following theorem.

Theorem 2.8. For n ∈ Z+, we have

Dq,yTn,q(x, y) = [n]qTn−1,q(x, y)

3. Some identities involving q-tangent numbers and polynomials

In this section, we give some relationships both between these polynomials and q-
derivative operator and between these polynomials and q-integral. By (2.1) and by
using Cauchy product, we get

∞∑
n=0

Tn,q(x)
tn

[n]q ! =
(

2

eq(2t) + 1

)
eq(xt)

=
(

2

eq(2t) + eq(2t)eq−1(−2t)

)
eq(xt)

=
(

2eq−1(−2t)

eq−1(−2t) + 1

)
eq(xt)

=
∞∑

n=0

Tn,q−1(2)(−1)n
tn

[n]q !
∞∑

n=0

xn tn

[n]q !

=
∞∑

n=0

(
n∑

l=0

[
n

l

]
q

(−1)lTl,q−1(2)xn−l

)
tn

[n]q ! .

(3.1)

By comparing the coefficients on both sides of (3.1), we have the following theorem.

Theorem 3.1. For n ∈ Z+, we have

Tn,q(x) =
n∑

l=0

[
n

l

]
q

(−1)lTl,q−1(2)xn−l .
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By Definition of the definite q-integral and Theorem 2.1, we get

∫ 1

0
Tn,q(x)dqx =

∫ 1

0

n∑
l=0

[
n

l

]
q

Tn−l,qx
ldqx

=
n∑

l=0

[
n

l

]
q

Tn−l,q

1

[l + 1]q .

(3.2)

We also get

∫ 1

0
Tn,q(x)dqx =

∫ 1

0

n∑
l=0

[
n

l

]
q

(−1)lTl,q−1(2)xn−ldqx

=
[
n

l

]
q

(−1)lTl,q−1(2)
1

[n − l + 1]q .

(3.3)

By (3.2) and (3.3), we have the following theorem.

Theorem 3.2. For n ∈ Z+, we have

n∑
l=0

[
n

l

]
q

Tn−l,q

[l + 1]q =
n∑

l=0

[
n

l

]
q

(−1)l
Tl,q−1(2)

[n − l + 1]q
Using the following identity:

2

eq(2t) + 1
eq(xt)eq(yt) = 2

eq(2t) + 1
eq(xt)

eq(
t
m

) − 1
t
m

t
m

eq(
t
m

) − 1
eq

(
t

m
my

)
,

we have

∞∑
n=0

Tn,q(x, y)
tn

[n]q !

= m

t

( ∞∑
n=0

Tn,q(x)
tn

[n]q !

) ( ∞∑
n=0

m−n tn

[n]q ! − 1

) (
t
m

eq(
t
m

) − 1
eq

(
t

m
my

))

= m

∞∑
n=0

(
Tn+1,q(x, m−1) − Tn+1,q(x)

) tn

[n + 1]q !
∞∑

n=0

Bn,q(my)m−n tn

[n]q !

=
∞∑

n=0

(
n∑

l=0

[
n

l

]
q

(
Tk+1,q(x, m−1) − Tn+1,q(x)

)
mk−n+1

[k + 1]q Bn−k,q(my)

)
tn

[n]q ! .

Matching the coefficient of
tn

[n]q ! of both sides gives the following theorem.
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Theorem 3.3. For n ∈ Z+, we have

Tn,q(x, y) =
n∑

l=0

[
n

l

]
q

(
Tk+1,q(x, m−1) − Tn+1,q(x)

)
mk−n+1

[k + 1]q Bn−k,q(my)

= 2nEn,q

(x

2
,
y

2

)
.

Here Bn,q(x, y) and En,q(x, y) denote the q-Bernoulli and q-Euler polynomials in x, y

which are defined by

Bn,q(x, y) = t

eq(t) − 1
eq(xt)eq(yt) and En,q(x, y) = 2

eq(t) + 1
eq(xt)eq(yt).

By Definition (2.1) and by using the following identity:

t

eq(t) − 1
eq(xt)eq(yt) = 2

eq

(
2 t

m

) + 1
eq

(
t

m
my

)
eq

(
2 t

m

) + 1

2

t

eq(t) − 1
eq(xt),

we get

∞∑
n=0

Bn,q(x, y)
tn

[n]q !

= 1

2

( ∞∑
n=0

Tn,q(my)m−n tn

[n]q !

) ( ∞∑
n=0

2nm−n tn

[n]q ! + 1

) ( ∞∑
n=0

Bn,q(x, y)
tn

[n]q !

)

=
∞∑

n=0

(
n∑

k=0

[
n

k

]
q

Bk,q(x)

n−k∑
l=0

[
n − k

l

]
q

Tl,q(my)2n−k−l−1mk−n

)
tn

[n]q !

+
∞∑

n=0

(
n∑

k=0

[
n

k

]
q

2−1mk−nBk,q(x)Tn−k,q(my)

)
tn

[n]q ! .

By comparing coefficients of
tn

[n]q ! in the above equation, we arrive at the following

theorem.

Theorem 3.4. For n ∈ Z+, we have

Bn,q(x, y)

= 1

2mn

n∑
k=0

[
n

k

]
q

Bk,q(x)

[
n−k∑
l=0

[
n − k

l

]
q

2n−k−lmkTl,q(my) + mkTn−k,q(my)

]
.
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By Definition of the definite q-integral and Theorem 2.6, get

∫ 1

0
ynTn,q(x, y)dqy =

∫ 1

0

n∑
l=0

[
n

l

]
q

Tn−l,q(x)yl+ndqy

=
n∑

l=0

[
n

l

]
q

Tn−l,q(x)
1

[n + l + 1]q .

(3.4)

By (1.2), we see that

∫ 1

0
ynTn,q(x, y)dqy

= yn+1 Tn,q(x, y)

[n + 1]q
∣∣∣∣
1

0

−
∫ 1

0
[n]qqn+1yn+1 Tn−1,q(x, y)

[n + 1]q dqy

= Tn,q(x, 1)

[n + 1]q − qn+1[n]q
[n + 1]q

∫ 1

0
yn+1Tn−1,q(x, y)dqy

= Tn,q(x, 1)

[n + 1]q − qn+1[n]qTn−1,q(x, 1)

[n + 1]q[n + 2]q
+ (−1)2 qn+1qn+2[n]q

[n + 1]q
[n − 1]q
[n + 2]q

∫ 1

0
yn+2Tn−2,q(x, y)dqy

= Tn,q(x, 1)

[n + 1]q + (−1)
qn+1[n]qTn−1,q(x, 1)

[n + 1]q[n + 2]q
+ (−1)2 qn+1qn+2[n]q

[n + 1]q
[n − 1]q
[n + 2]q

Tn−2,q(x, 1)

[n + 3]q
+ (−1)3 qn+1qn+2qn+3[n]q

[n + 1]q
[n − 1]q
[n + 2]q

[n − 2]q
[n + 3]q

∫ 1

0
yn+3Tn−3,q(x, y)dqy.

Continuing this process, we obtain

∫ 1

0
ynTn,q(x, y)dqy = Tn,q(x, 1)

[n + 1]q

+
n−1∑
m=1

qn+1 · · · qn+m[n]q[n − 1]q · · · [n − m + 1]q(−1)m

[n + 1]q[n + 2]q · · · [n + m + 1]q Tn−m,q(x, 1)

+ (−1)n
qn+1 · · · q2m[n]q !

[n + 1]q[n + 2]q · · · [2n]q
∫ 1

0
y2nT0,q(x, y)dqy

(3.5)

Hence, by (3.4) and (3.5), we have the following theorem.
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Theorem 3.5. For n ∈ N, we have

n∑
l=0

[
n

l

]
q

Tn−l,q(x)
1

[n + l + 1]q = Tn,q(x, 1)

[n + 1]q

+
n−1∑
m=1

qn+1 · · · qn+m[n]q[n − 1]q · · · [n − m + 1]q(−1)m

[n + 1]q[n + 2]q · · · [n + m + 1]q Tn−m,q(x, 1)

+ (−1)n
qn+1 · · · q2m[n]q !

[n + 1]q[n + 2]q · · · [2n]q[2n + 1]q .
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