Some properties of two dimensional q-tangent numbers and polynomials

Cheon Seoung Ryoo
Department of Mathematics, Hannam University, Daejeon 306-791, Korea.

Abstract

In this paper we introduce two dimensional q-tangent numbers and polynomials. We also give some properties, explicit formulas, several identities, a connection with two dimensional q-tangent numbers and polynomials, and some integral formulas.

AMS subject classification: 11B68, 11S40, 11S80.
Keywords: Tangent numbers and polynomials, q-tangent numbers and polynomials, two dimensional q-tangent numbers and polynomials.

1. Introduction

Recently, many mathematicians have studied in the area of the Bernoulli numbers, Euler numbers, Genocchi numbers, and tangent numbers (see [2, 3, 4, 6, 7, 8, 9]). In this paper, we study some properties of a new type of two dimensional q-tangent numbers and polynomials.

Throughout this paper, we always make use of the following notations: \mathbb{N} denotes the set of natural numbers, $\mathbb{Z}_{+}=\mathbb{N} \cup\{0\}, \mathbb{R}$ denotes the set of real numbers, and \mathbb{C} denotes the set of complex numbers. For a real number (or complex number) x, q-number is defined by

$$
[x]_{q}=\frac{1-q^{x}}{1-q} \text { if } q \neq 1, \quad[x]_{q}=x \text { if } q=1
$$

The q-binomial coefficients are defined for positive integer n, k as

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}=\frac{[n]_{q}[n-1]_{q} \cdots[n-k+1]_{q}}{[k]_{q}!},
$$

where $[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}, n=1,2,3, \ldots$ and $[0]_{q}!=1$, which is known as q-factorial(see [1]). Note that

$$
\lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\binom{n}{k}=\frac{n(n-1)(n-2) \cdots(n-k+1)}{k!}
$$

The q-analogue of the function $(x+y)^{n}$ is defined by

$$
(x+y)_{q}^{n}=\sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q} q^{\left(l_{2}^{l}\right)} x^{n-l} y^{l}, n \in \mathbb{Z}_{+} .
$$

For any $z \in \mathbb{C}$ with $|z|<1$, the two form of q-exponential functions are given by

$$
e_{q}(z)=\sum_{n=0}^{\infty} \frac{z^{n}}{[n]_{q}!} \text { and } E_{q}(z)=\sum_{n=0}^{\infty} q^{\binom{n}{2}} \frac{z^{n}}{[n]_{q}!},(\text { see }[2,5]) .
$$

From this form we easily see that $e_{q}(z) E_{q}(-z)=1$. The q-derivative operator of a any function f is defined by

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x}, x \neq 0 \tag{1.1}
\end{equation*}
$$

and $D_{q} f(0)=f^{\prime}(0)$, provided that f is differentiable at 0 . It happens clearly that $D_{q} x^{n}=[n]_{q} x^{n-1}$.

The definite q-integral is defined as

$$
\begin{equation*}
\int_{0}^{b} f(x) d_{q} x=(1-q) b \sum_{j=0}^{\infty} q^{j} f\left(q^{j} b\right) \tag{1.2}
\end{equation*}
$$

Clearly, if the function $f(x)$ is differentiable on the point x, the q-derivative in (1.1) tends to the ordinary derivative in the classical analysis when q tends to 1 . Identically, if the function $f(x)$ is Riemann integrable on the concerned intervals, the q-integral in (1.2) tends to the Riemann integrals of $f(x)$ on the corresponding intervals when q tends to 1 (see $[2,5]$). In the following section, we introduce the two dimensional q-tangent numbers and polynomials. After that we will investigate some their properties. Finally, we give some relationships both between these polynomials and q-derivative operator and between these polynomials and q-integral.

2. Two dimensional q-tangent polynomials

In this section, we introduce the two dimensional q-tangent numbers and polynomials and provide some of their relevant properties.

The q-tangent polynomials $\mathbf{T}_{n}(x)$ are defined by the generating function:

$$
\begin{equation*}
\left(\frac{2}{e_{q}(2 t)+1}\right) e_{q}(x t)=\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x) \frac{t^{n}}{[n]_{q}!} \quad(|2 t|<\pi) \tag{2.1}
\end{equation*}
$$

When $x=0, \mathbf{T}_{n, q}(0)=\mathbf{T}_{n, q}$ are called the q-tangent numbers. Upon setting $p=1$ in (2.1), we have

$$
\begin{equation*}
\left(\frac{2}{e^{2 t}+1}\right) e^{x t}=\sum_{n=0}^{\infty} T_{n}(x) \frac{t^{n}}{n!} \quad(|2 t|<\pi) \tag{2.2}
\end{equation*}
$$

where $T_{n}(x)$ are called familiar Tangent polynomials. Numerous properties of tangent numbers and polynomials are known. More studies and results in this subject we may see references [4], [5], [6], [7]. About extensions for the tangent numbers can be found in $[5,7,8]$.

The two dimensional q-tangent polynomials $\mathbf{T}_{n}(x, y)$ in x, y are defined by means of the generating function:

$$
\begin{equation*}
\left(\frac{2}{e_{q}(2 t)+1}\right) e_{q}(x t) e_{q}(y t)=\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!} \quad(|2 t|<\pi) . \tag{2.3}
\end{equation*}
$$

It is obvious that $\lim _{q \rightarrow 1} \mathbf{T}_{n, q}(x, y)=T_{n}(x+y)$ and $\mathbf{T}_{n, q}(x, 0)=\mathbf{T}_{n, q}(x)$.
By (2.1), we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x) \frac{t^{n}}{[n]_{q}!} & =\left(\frac{2}{e_{q}(2 t)+1}\right) e_{q}(x t) \\
& =\sum_{n=0}^{\infty} \mathbf{T}_{n, q} \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{[n]_{q}!} \tag{2.4}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q} y^{l}\right) \frac{t^{n}}{[n]_{q}!} .
\end{align*}
$$

By comparing the coefficients on both sides of (2.4), we have the following theorem.
Theorem 2.1. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathbf{T}_{n, q}(x)=\sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q} x^{l} .
$$

By using Definition of q-derivative operator and Theorem 2.1, we have the following theorem.

Theorem 2.2. For $n \in \mathbb{Z}_{+}$, we have

$$
D_{q} \mathbf{T}_{n, q}(x)=[n]_{q} \mathbf{T}_{n-1, q}(x)
$$

By Theorem 2.2 and Definition of the definite q-integral, we have

$$
\begin{equation*}
[n]_{q} \int_{0}^{1} D_{q} \mathbf{T}_{n-1, q}(x) d_{q} x=\mathbf{T}_{n, q}(1)-\mathbf{T}_{n, q}(0) \tag{2.5}
\end{equation*}
$$

Since $\mathbf{T}_{n, q}(0)=\mathbf{T}_{n, q}$, by (2.5), we have the following theorem.
Theorem 2.3. For $n \in \mathbb{Z}_{+}$, we have

$$
\int_{0}^{1} D_{q} \mathbf{T}_{n-1, q}(x) d_{q} x=\frac{\mathbf{T}_{n, q}(1)-\mathbf{T}_{n, q}}{[n]_{q}} .
$$

Using the following identity:

$$
\frac{2}{e_{q}(2 t)+1} e_{q}(x t) e_{q}(2 t)+\frac{2}{e_{q}(2 t)+1} e_{q}(x t)=2 e_{q}(x t),
$$

we have the following theorem.
Theorem 2.4. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathbf{T}_{n, q}(x, 2)+\mathbf{T}_{n, q}(x)=2 x^{n} .
$$

Substituting $x=0$ in Theorem 2.4, we have the following corollary.
Corollary 2.5. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathbf{T}_{n, q}=-\mathbf{T}_{n, q}(2) .
$$

By (2.3) and the rule of Cauchy product, we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!} & =\left(\frac{2}{e_{q}(2 t)+1}\right) e_{q}(x t) e_{q}(y t) \\
& =\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x) \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} y^{n} \frac{t^{n}}{[n]_{q}!} \tag{2.6}\\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q}(x) x^{l}\right) \frac{t^{n}}{[n]_{q}!} .
\end{align*}
$$

By comparing the coefficients on both sides of (2.6), we have the following theorem.
Theorem 2.6. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathbf{T}_{n, q}(x, y)=\sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q}(x) y^{l} .
$$

Using the following identity:

$$
\frac{2}{e_{q}(2 t)+1} e_{q}(2 t)+\frac{2}{e_{q}(2 t)+1}=2,
$$

we obtain the following theorem.
Theorem 2.7. For $n \in \mathbb{Z}_{+}$, we have

$$
\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} 2^{n-l} \mathbf{T}_{l, q}+\mathbf{T}_{n, q}= \begin{cases}2, & \text { if } n=0 \\
0, & \text { if } n \neq 0\end{cases}
$$

By using Definition of q-derivative operator, we have the following theorem.
Theorem 2.8. For $n \in \mathbb{Z}_{+}$, we have

$$
D_{q, y} \mathbf{T}_{n, q}(x, y)=[n]_{q} \mathbf{T}_{n-1, q}(x, y)
$$

3. Some identities involving q-tangent numbers and polynomials

In this section, we give some relationships both between these polynomials and q derivative operator and between these polynomials and q-integral. By (2.1) and by using Cauchy product, we get

$$
\begin{align*}
\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x) \frac{t^{n}}{[n]_{q}!} & =\left(\frac{2}{e_{q}(2 t)+1}\right) e_{q}(x t) \\
& =\left(\frac{2}{e_{q}(2 t)+e_{q}(2 t) e_{q^{-1}}(-2 t)}\right) e_{q}(x t) \\
& =\left(\frac{2 e_{q^{-1}}(-2 t)}{e_{q^{-1}}(-2 t)+1}\right) e_{q}(x t) \tag{3.1}\\
& =\sum_{n=0}^{\infty} \mathbf{T}_{n, q^{-1}}(2)(-1)^{n} \frac{t^{n}}{[n]_{q}!} \sum_{n=0}^{\infty} x^{n} \frac{t^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}(-1)^{l} \mathbf{T}_{l, q^{-1}}(2) x^{n-l}\right) \frac{t^{n}}{[n]_{q}!}
\end{align*}
$$

By comparing the coefficients on both sides of (3.1), we have the following theorem.
Theorem 3.1. For $n \in \mathbb{Z}_{+}$, we have

$$
\mathbf{T}_{n, q}(x)=\sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q}(-1)^{l} \mathbf{T}_{l, q^{-1}}(2) x^{n-l}
$$

By Definition of the definite q-integral and Theorem 2.1, we get

$$
\begin{align*}
\int_{0}^{1} \mathbf{T}_{n, q}(x) d_{q} x & =\int_{0}^{1} \sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q} x^{l} d_{q} x \tag{3.2}\\
& =\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q} \frac{1}{[l+1]_{q}}
\end{align*}
$$

We also get

$$
\begin{align*}
\int_{0}^{1} \mathbf{T}_{n, q}(x) d_{q} x & =\int_{0}^{1} \sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}(-1)^{l} \mathbf{T}_{l, q^{-1}}(2) x^{n-l} d_{q} x \tag{3.3}\\
& =\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}(-1)^{l} \mathbf{T}_{l, q^{-1}}(2) \frac{1}{[n-l+1]_{q}}
\end{align*}
$$

By (3.2) and (3.3), we have the following theorem.
Theorem 3.2. For $n \in \mathbb{Z}_{+}$, we have

$$
\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \frac{\mathbf{T}_{n-l, q}}{[l+1]_{q}}=\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q}(-1)^{l} \frac{\mathbf{T}_{l, q^{-1}}(2)}{[n-l+1]_{q}}
$$

Using the following identity:

$$
\frac{2}{e_{q}(2 t)+1} e_{q}(x t) e_{q}(y t)=\frac{2}{e_{q}(2 t)+1} e_{q}(x t) \frac{e_{q}\left(\frac{t}{m}\right)-1}{\frac{t}{m}} \frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1} e_{q}\left(\frac{t}{m} m y\right)
$$

we have

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!} \\
& =\frac{m}{t}\left(\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(x) \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} m^{-n} \frac{t^{n}}{[n]_{q}!}-1\right)\left(\frac{\frac{t}{m}}{e_{q}\left(\frac{t}{m}\right)-1} e_{q}\left(\frac{t}{m} m y\right)\right) \\
& =m \sum_{n=0}^{\infty}\left(\mathbf{T}_{n+1, q}\left(x, m^{-1}\right)-\mathbf{T}_{n+1, q}(x)\right) \frac{t^{n}}{[n+1]_{q}!} \sum_{n=0}^{\infty} \mathbf{B}_{n, q}(m y) m^{-n} \frac{t^{n}}{[n]_{q}!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \frac{\left(\mathbf{T}_{k+1, q}\left(x, m^{-1}\right)-\mathbf{T}_{n+1, q}(x)\right) m^{k-n+1}}{[k+1]_{q}} \mathbf{B}_{n-k, q}(m y)\right) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

Matching the coefficient of $\frac{t^{n}}{[n]_{q}!}$ of both sides gives the following theorem.

Theorem 3.3. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
\mathbf{T}_{n, q}(x, y) & =\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \frac{\left(\mathbf{T}_{k+1, q}\left(x, m^{-1}\right)-\mathbf{T}_{n+1, q}(x)\right) m^{k-n+1}}{[k+1]_{q}} \mathbf{B}_{n-k, q}(m y) \\
& =2^{n} \mathbf{E}_{n, q}\left(\frac{x}{2}, \frac{y}{2}\right) .
\end{aligned}
$$

Here $\mathbf{B}_{n, q}(x, y)$ and $\mathbf{E}_{n, q}(x, y)$ denote the q-Bernoulli and q-Euler polynomials in x, y which are defined by

$$
\mathbf{B}_{n, q}(x, y)=\frac{t}{e_{q}(t)-1} e_{q}(x t) e_{q}(y t) \text { and } \mathbf{E}_{n, q}(x, y)=\frac{2}{e_{q}(t)+1} e_{q}(x t) e_{q}(y t) .
$$

By Definition (2.1) and by using the following identity:

$$
\frac{t}{e_{q}(t)-1} e_{q}(x t) e_{q}(y t)=\frac{2}{e_{q}\left(2 \frac{t}{m}\right)+1} e_{q}\left(\frac{t}{m} m y\right) \frac{e_{q}\left(2 \frac{t}{m}\right)+1}{2} \frac{t}{e_{q}(t)-1} e_{q}(x t),
$$

we get

$$
\begin{aligned}
& \sum_{n=0}^{\infty} \mathbf{B}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!} \\
& =\frac{1}{2}\left(\sum_{n=0}^{\infty} \mathbf{T}_{n, q}(m y) m^{-n} \frac{t^{n}}{[n]_{q}!}\right)\left(\sum_{n=0}^{\infty} 2^{n} m^{-n} \frac{t^{n}}{[n]_{q}!}+1\right)\left(\sum_{n=0}^{\infty} \mathbf{B}_{n, q}(x, y) \frac{t^{n}}{[n]_{q}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathbf{B}_{k, q}(x) \sum_{l=0}^{n-k}\left[\begin{array}{c}
n-k \\
l
\end{array}\right]_{q} \mathbf{T}_{l, q}(m y) 2^{n-k-l-1} m^{k-n}\right) \frac{t^{n}}{[n]_{q}!} \\
& \quad \quad+\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} 2^{-1} m^{k-n} \mathbf{B}_{k, q}(x) \mathbf{T}_{n-k, q}(m y)\right) \frac{t^{n}}{[n]_{q}!} .
\end{aligned}
$$

By comparing coefficients of $\frac{t^{n}}{[n]_{q}!}$ in the above equation, we arrive at the following theorem.

Theorem 3.4. For $n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
& \mathbf{B}_{n, q}(x, y) \\
& =\frac{1}{2 m^{n}} \sum_{k=0}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \mathbf{B}_{k, q}(x)\left[\sum_{l=0}^{n-k}\left[\begin{array}{c}
n-k \\
l
\end{array}\right]_{q} 2^{n-k-l} m^{k} \mathbf{T}_{l, q}(m y)+m^{k} \mathbf{T}_{n-k, q}(m y)\right] .
\end{aligned}
$$

By Definition of the definite q-integral and Theorem 2.6, get

$$
\begin{align*}
\int_{0}^{1} y^{n} \mathbf{T}_{n, q}(x, y) d_{q} y & =\int_{0}^{1} \sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q}(x) y^{l+n} d_{q} y \\
& =\sum_{l=0}^{n}\left[\begin{array}{c}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q}(x) \frac{1}{[n+l+1]_{q}} . \tag{3.4}
\end{align*}
$$

By (1.2), we see that

$$
\begin{aligned}
& \int_{0}^{1} y^{n} \mathbf{T}_{n, q}(x, y) d_{q} y \\
& =\left.y^{n+1} \frac{\mathbf{T}_{n, q}(x, y)}{[n+1]_{q}}\right|_{0} ^{1}-\int_{0}^{1}[n]_{q} q^{n+1} y^{n+1} \frac{\mathbf{T}_{n-1, q}(x, y)}{[n+1]_{q}} d_{q} y \\
& =\frac{\mathbf{T}_{n, q}(x, 1)}{[n+1]_{q}}-\frac{q^{n+1}[n]_{q}}{[n+1]_{q}} \int_{0}^{1} y^{n+1} \mathbf{T}_{n-1, q}(x, y) d_{q} y \\
& =\frac{\mathbf{T}_{n, q}(x, 1)}{[n+1]_{q}}-\frac{q^{n+1}[n]_{q} \mathbf{T}_{n-1, q}(x, 1)}{[n+1]_{q}[n+2]_{q}} \\
& \quad \quad+(-1)^{2} \frac{q^{n+1} q^{n+2}[n]_{q}}{[n+1]_{q}} \frac{[n-1]_{q}}{[n+2]_{q}} \int_{0}^{1} y^{n+2} \mathbf{T}_{n-2, q}(x, y) d_{q} y \\
& =\frac{\mathbf{T}_{n, q}(x, 1)}{[n+1]_{q}}+(-1) \frac{q^{n+1}[n]_{q} \mathbf{T}_{n-1, q}(x, 1)}{[n+1]_{q}[n+2]_{q}} \\
& \quad+(-1)^{2} \frac{q^{n+1} q^{n+2}[n]_{q}}{[n-1]_{q}} \frac{[n+1]_{q}}{[n+2]_{q}} \frac{(x-2, q}{[n+3]_{q}} \\
& \quad+(-1)^{3} \frac{q^{n+1} q^{n+2} q^{n+3}[n]_{q}}{[n+1]_{q}} \frac{[n-1]_{q}}{[n+2]_{q}} \frac{[n-2]_{q}}{[n+3]_{q}} \int_{0}^{1} y^{n+3} \mathbf{T}_{n-3, q}(x, y) d_{q} y .
\end{aligned}
$$

Continuing this process, we obtain

$$
\begin{align*}
& \int_{0}^{1} y^{n} \mathbf{T}_{n, q}(x, y) d_{q} y=\frac{\mathbf{T}_{n, q}(x, 1)}{[n+1]_{q}} \\
& +\sum_{m=1}^{n-1} \frac{q^{n+1} \cdots q^{n+m}[n]_{q}[n-1]_{q} \cdots[n-m+1]_{q}(-1)^{m}}{[n+1]_{q}[n+2]_{q} \cdots[n+m+1]_{q}} \mathbf{T}_{n-m, q}(x, 1) \tag{3.5}\\
& +(-1)^{n} \frac{q^{n+1} \cdots q^{2 m}[n]_{q}!}{[n+1]_{q}[n+2]_{q} \cdots[2 n]_{q}} \int_{0}^{1} y^{2 n} \mathbf{T}_{0, q}(x, y) d_{q} y
\end{align*}
$$

Hence, by (3.4) and (3.5), we have the following theorem.

Theorem 3.5. For $n \in \mathbb{N}$, we have

$$
\begin{aligned}
& \sum_{l=0}^{n}\left[\begin{array}{l}
n \\
l
\end{array}\right]_{q} \mathbf{T}_{n-l, q}(x) \frac{1}{[n+l+1]_{q}}=\frac{\mathbf{T}_{n, q}(x, 1)}{[n+1]_{q}} \\
& \quad+\sum_{m=1}^{n-1} \frac{q^{n+1} \cdots q^{n+m}[n]_{q}[n-1]_{q} \cdots[n-m+1]_{q}(-1)^{m}}{[n+1]_{q}[n+2]_{q} \cdots[n+m+1]_{q}} \mathbf{T}_{n-m, q}(x, 1) \\
& \quad+(-1)^{n} \frac{q^{n+1} \cdots q^{2 m}[n]_{q}!}{[n+1]_{q}[n+2]_{q} \cdots[2 n]_{q}[2 n+1]_{q}}
\end{aligned}
$$

References

[1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Vol. 71, Combridge Press, Cambridge, UK 1999.
[2] R. Ayoub, Euler and zeta function, Amer. Math. Monthly, 81(1974), 1067-1086.
[3] L. Comtet, Advances Combinatorics, Riedel, Dordrecht, 1974.
[4] D. Kim, T. Kim, Some identities involving Genocchi polynomials and numbers, ARS Combinatoria, 121(2015), 403-412.
[5] N. I. Mahmudov, q-analogue of the Bernoulli and Genocchi polynomials and the Srivastava-Pintér addition theorems, Discrete Dynamicss in Nature and Society 2012(2012), ID 169348, 8 pages.
[6] C. S. Ryoo, A note on the tangent numbers and polynomials, Adv. Studies Theor. Phys. 7(9)(2013), 447-454.
[7] C. S. Ryoo, A numerical investigation on the zeros of the tangent polynomials, J. App. Math. \& Informatics, 32(3-4)(2014), 315-322.
[8] C. S. Ryoo, Modified degenerate tangent numbers and polynomials, Global Journal of Pure and Applied Mathematics, 12(2) (2016), 1567-1574.
[9] H. Shin, J. Zeng, The q-tangent and q-secant numbers via continued fractions, European J. Combin. 31(2010), 1689-1705.

