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Abstract

In this paper, we present a family of modified Chebyshev-Halley method without
second derivative for solving nonlinear equation. Based on the convergence analy-
sis, it is obtained that the proposed method has eighth-order convergence for θ = 1
and β = 3/2. This new method requires evaluation of three functions and one of
first derivative per iteration with efficiency index 81/4 ≈ 1, 6281. The numerical
simulation is given to illustrate the method and to compare with other method so
that one can see the efficiency and performance of the proposed method.
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1. Introduction

The non-linear equations is one of the most important problems in science and engi-
neering. There are many the nonlinear equation can not be solved analytically, so the
numerical technique is an alternative to solve it using the iterative computation.

The Newton method is one of a widely iterative method used to find a root α of
nonlinear equation f (x) = 0 by using algorithm

xn+1 = xn − f (xn)

f ′(xn)
(1.1)

that converges quadratically in a neighborhood of α.
To improve a local convergence order, some modifications have been proposed by

many researhers. One of the developed iterative method is a classical Chebyshev-Halley
method[1, 2]:

xn+1 = xn −
(

1 + f ′′(xn)f (xn)

2
[
f ′(xn)2 − βf ′′(xn)f (xn)

]
)

f (xn)

f ′(xn)
. (1.2)

This method is known to converges cubically which requires three evaluation of functions
with efficiency index 31/3 ≈ 1, 4224 by including some famous iterative method depend
on β as particular cases, namely, the classical Chebyshev’s method (β = 0), Halley’s
method (β = 1/2), and Super-Halley method (β = 1)[8, 9].

In some cases, second derivative in (1.2) became to be a serious problem. So, many
variant of Chebyshev-Halley method without second derivative have been studied using
various approaches in some literature, see[3, 4, 5, 7, 11, 10, 14, 15, 16, 17, 20].

In order to improve order-convergence, the Chebyshev-Halley method has been expe-
rience various modification. This modification is done by adding the third step in Newton
form in which f ′ is approximated by Taylor series [13]. Moreover, Cordero, et al. [6]
and Sharma [18] added the third step in Newton form in which f ′ is approximated by a
third order polynomial interpolation.

In this paper we study the Chebyshev-Halley’s method with avoid second derivative
by using equality of Potra-Ptak and Halley method [16] in which f ′ in third step is
approximated by Gauss’ quadrature. A numerical simulation is given to compare the
efficiency of the proposed method with other methods.

2. Modification of Chebyshev-Halley’s Method

To derive an approximation to f ′′(xn), let us consider Potra-Ptak and Halley method
[16],

xn+1 = xn − f (xn) + f (yn)

f ′(xn)
(2.3)

and

xn+1 = xn − 2f ′(xn)f (xn)

2f ′(xn)2 − θf ′′(xn)f (xn)
. (2.4)
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In order to improve efficiency index, we approximate f ′′(xn) by arranging again two
equations of (2.3) and (2.4) into the form of the following equality:

f (xn) + f (yn)

f ′(xn)
= 2f ′(xn)f (xn)

2f ′(xn)2 − θf ′′(xn)f (xn)
(2.5)

such that an explicit form of f ′′(xn) is given by

f ′′(xn) = 2f (yn)f
′(xn)

2

θf (xn)(f (xn) + f (yn))
. (2.6)

By substituting (2.6) into (1.2), we obtain a variant of Chebyshev-Halley method without
second derivative as follows:

xn+1 = xn −

1 +

2f (yn)f
′(xn)

2

θf (xn)(f (xn)+f (yn))

2
[
f ′(xn)2 − β

(
2f (yn)f ′(xn)2

θf (xn)(f (xn)+f (yn))

)
f (xn)

]

 f (xn)

f ′(xn)
, (2.7)

and henceforth we find

xn+1 = xn −
(

1 + f (yn)

θf (xn) + (θ − 2β)f (yn)

)
f (xn)

f ′(xn)
, (2.8)

where yn is given by (1.1).
The family iterative method in (2.8) is variant of second steps Chebyshev-Halley

method which involving evaluation of three functions, i.e. f (xn), f (yn) and f ′(xn).
Furthermore, to improve the order of convergence of (2.8), we add the third step Newton,

xn+1 = zn − f (zn)

f ′(zn)
(2.9)

in which zn is given by (2.8). One can see that (2.9) involving three functions evaluation.
Since the three steps iterative method use at least four function evaluation [19], we must
reduce f ′(zn) using Gauss’ quadrature approximation [12].

In order to derive Gauss’ quadrature approximation, let us consider the following
Newton’s formula:

f ′(zn) = f ′(xn) +
∫ zn

xn

f ′′(t)dt, (2.10)

where second derivative in (2.10) is approximated by weight function:∫ zn

xn

f ′′(t)dt = a1f (xn) + a2f (yn) + a3f (zn) + a4f
′(xn). (2.11)

In order to find parameters a1, a2, a3 and a4, we use four functions f (t) = 1, f (t) = t ,
f (t) = t2 and f (t) = t3 such that we obtained the following four equations:

a1 + a2 + a3 = 0
a1xn + a2yn + a3zn + a4 = 0

a1x
2
n + a2y

2
n + a3z

2
n + 2a4xn = 2(zn − xn)

a1x
3
n + a2y

3
n + a3z

3
n + 3a4x

2
n = 3(z2

n − x2
n)


 (2.12)
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The solution of the system (2.12) gives four constants a1, a2, a3 and a4, and henceforth
by substituting it into (2.11), one obtain for f ′(zn) as follows:

f ′(zn) = −(yn − zn)(3xn − 2yn − zn)

(xn − zn)(xn − yn)2
f (xn) + (xn − zn)

2

(yn − zn)(xn − yn)2
f (yn)

− xn + 2yn − 3zn

(xn − zn)(yn − zn)
f (zn) +

(
1 − −xn − 2yn + zn

xn − yn

)
f ′(xn)

(2.13)
Simplifying of (2.13) and substitute into (2.9), we obtained:

xn+1 = zn − f (zn)
(xn − zn)(xn − yn)

2(yn − zn)

Af (xn) + Bf (yn) + Cf (zn) + Df ′(xn)
, (2.14)

where

A = −(yn − zn)
2(3xn − 2yn − zn), (2.15)

B = (xn − zn)
3, (2.16)

C = −(xn − yn)
2(xn + 2yn − 3zn), (2.17)

D = (yn − zn)
2(xn − zn)(xn − yn). (2.18)

Therefore, the completely three steps of Chebyshev-Halley iterative method can be writ-
ten in the following form:

yn = xn − f (xn)

f ′(xn)
, (2.19)

zn = xn −
(

1 + f (yn)

θf (xn) + (θ − 2β)f (yn)

)
f (xn)

f ′(xn)
, (2.20)

xn+1 = zn − f (zn)
(xn − zn)(xn − yn)

2(yn − zn)

Af (xn) + Bf (yn) + Cf (zn) + Df ′(xn)
. (2.21)

The family of (2.19)–(2.21) is known as iterative method without second derivative with
evaluation of four functions, i.e. f (xn), f (yn), f (zn) and f ′(xn).

3. Order of Convergence

The following Theorem assert that convergence order of the method defined by (2.19)–
(2.21) is eight.

Theorem 3.1. Let D ⊂ R is an open interval and the function f : D → R has a simple
root α ∈ D. Let θ = 1, β = 3/2 and f (x) is sufficiently smooth in the neighborhood of
the root α, then the order of convergence of the proposed method defined by (2.19)–(2.21)
is eight, with error:

en+1 = −c3
2(c

2
2 − c3)

2e8
n + O(e9

n). (3.22)
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Proof. Let en = xn − α and cj = 1

j

f (j)(α)

f ′(α)
. Expanding f near α using Taylor series,

we find
f (xn) = f ′(α)

(
en + c2e

2
n + c3e

3
n + c4e

4
n + O(e5

n)
)

(3.23)

and
f ′(xn) = f ′(α)

(
1 + 2c2en + 3c3e

2
n + 4c4e

3
n + O(e4

n)
)
. (3.24)

From (3.23)–(3.24), we obtain

f (xn)

f ′(xn)
= en − c2e

2
n + 2(c2

2 − c3)e
3
n + (7c2c3 + 4c2

2 − 3c4)e
4
n + O(e5

n), (3.25)

and henceforth substituting (3.25) into (2.19), we find

yn = α + c2e
2
n − 2(c2

2 − c3)e
3
n − (7c2c3 + 4c2

2 − 3c4)e
4
n + O(e5

n). (3.26)

Hence, Taylor expansion of f (yn) around α is given by

f (yn) = f ′(α)(c2e
2
n − 2(c2

2 − c3)e
3
n − (7c2c3 + 4c2

2 − 3c4)e
4
n + O(e5

n)). (3.27)

Furthermore, we find from (3.23) and (3.27)

f (yn)

θf (xn) + (θ − 2β)f (yn)
= c2

θ
en +

(
2c3 − 4c2

2

θ
+ 2c2

2β

θ2

)
e2
n

+
(

7c3
2 − 14c2c3 + 3c4

θ
+ 8β(c2c3 − 2c3

2)

θ2

)
e3
n

+O(e4
n),

(3.28)
and henceforth by using (3.25) and (3.28) we get

f (yn)

θf (xn) + (θ − 2β)f (yn)

f (xn)

f ′(xn)
=

(c2

θ

)
e2
n +

(
−5c2

2 + 2c3

θ

2c2
2β

θ2

)
e3
n

+13c3
2 − 18c2c3 + 3c4

θ
+ (8c2c3 − 18c3

2)β

θ2

+4c3
2β

θ3 e4
n + O(e5

n). (3.29)

Substituting (3.29) into (2.20) and by using xn = α + en, then it is found

zn = α +
(
c2 − c2

θ

)
e2
n +

(
2c3 − 2c2

2 + 5c2
2 − 2c3

θ
− 2c2

2β

θ2

)
e3
n

+
(

−4c3
2 − 7c2c3 + 3c4 + −13c3

2 + 18c2c3 − 3c4

θ

+(18c3
2 − 8c2c3)β

θ2 − 4c3
2β

2

θ3

)
e4
n + O(e5

n). (3.30)
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Likewise, the Taylor expansion of f (x) around α for x = zn is given

f (zn) = 1

θ
(θ − 1)c2e

2
n +

(
1

θ2 (−2θ2 + 5θ − 2β)c2
2 + 1

θ
(2θ − 2)c3

)
e3
n(

1

θ3 (−15θ2 + θ(18β + 1) − 4β2)c3
2 − 3c2

2 + 1

θ2 (−7θ2 + θ − 8β)c3c2

+1

θ
(3θ − 3)c4

)
e4
n + O(e5

n) (3.31)

By using (3.23), (3.24), (3.26), (3.27), (3.30), (3.31), then it is obtained

(xn − yn)
2(yn − zn)(xn − zn) =

(c2

θ

)
e5
n +

(
(−8θ + 2θβ + 1)c2

2 + 2c3θ

θ2

)
e6
n

+O(e7
n) (3.32)

and

Af (xn) = 1

θ2 (−3c2
2)e

6
n + O(e7

n), (3.33)

Bf (yn) = c2e
5
n + 1

θ

(
(5θ − 3)c2

2 − 2c3θ
)
e6
n + O(e7

n), (3.34)

Cf (zn) = 1

θ
(θ − 1)c2e

5
n + 1

θ2

(
(2θ − 5 + 2β)c2

2 + 3(θ − 1)c2 − 2(θ − 1)c3

)
e6
n

+O(e7
n), (3.35)

Df ′(xn) =
(

c2
2

θ2

)
e6
n + O(e7

n), (3.36)

where A, B, C and D are given by (2.15)–(2.18), respectively. Furthermore, by using
(3.32)–(3.36) we find the approximation of f ′(zn) as follows:

1

f ′(zn)
= 1+ 2

θ
(1− θ)c2

2e
2
n + 1

θ2

(
(−10θ +4θ2 +4β)c3

2 + (4θ −4θ2)c3c2

)
e3
n +O(e4

n),

(3.37)
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and henceforth from (2.21) this implies

xn+1 = α + 1

θ2 (θ − 1)2c3
2e

4
n

+ 1

θ3

(
2c2

2(θ − 1)
(
2c3θ(θ − 1) + c2

2(2θ2 − 5θ + 2β)
) )

e5
n

+ 1

θ4

((
10θ4 + 62θ3 + (−80β − 83)θ2 + (16β2 + 92β + 2)θ − 20β2

)
c5

2(
35θ4 − 125θ3 + (40β + 89)θ2 + (−40β + 1)θ

)
c3c

3
2 − 12θ2(θ − 1)2c4c

2
2

−4θ2(θ2 − 1)c2
3c2

)
e6
n

+O(e7
n) (3.38)

The coefficients of e4
n and e5

n in equation (3.38) contain a factor of (θ − 1), consequently
the order of convergence of (3.38) is at least six for θ = 1, and given by

xn+1 = −c5
2(2β − 3)2e6

n − 2(2β − 3)
(
(4β2 − 18β + 17)c2

2 + (8β − 11)c3

)
c4

2e
7
n

+O(e8
n). (3.39)

Ultimately, by taking β = 3

2
, we have

xn+1 = −c3
2(−c3 + c2

2)
2e8

n + O(e9
n) (3.40)

that shows the order of convergence is eight. �

The proposed method require evaluation of three functions and one first derivative per
iteration. Based on definition of efficiency index, i.e. IE = p1/m [19], where p is the
order of the method and m is the number of function evaluations per iteration, we have
the efficiency index equals to 81/4 ≈ 1.6818, which is better than the Newton’s method
21/2 ≈ 1.1442, classical Chebyshev-Halley (β = 1/2) 31/3 ≈ 1.4422 and variant of
Chebyshev-Halley 61/4 ≈ 1.5784 [20].

4. Numerical Simulation

In this section we present some numerical simulations by using several functions to
show the performance of the proposed method (M-8) in (2.21), and compare it with
Newton’s method (N2), classical Chebyshev-Halley method with β = 1/2 (CH3) [9],
variant of Chebyshev-Halley with fourth order of convergence (VCH4) [20] and variant
of Chebyshev-Halley with sixth order of convergence (VCH6) [13]. We used several
following test functions and displayed the computed approximate zeros α round up to
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20th decimal places.

f1(x) = ex2+7x−30 − 1, α = 3.00000000000000000000

f2(x) = ex − 4x2, α = 4.30658472822069929833

f3(x) = cos(x) − 1, α = 0.73908513321516064165

f4(x) = (x − 1)3 − 1, α = 2.00000000000000000000

f5(x) = x3 + 4x2 − 10, α = 1.36523003414096845760

f6(x) = e−x2+x+2 − cos(x + 1) + x3 + 1, α = −1.00000000000000000000

All computations are performed by using Maple 13.0 with 850 digits floating point
arithmetics.

Table 1 shows the number of iteration (IT) required such that |xn+1 − xn| < ε where
ε = 10−95 and the computational order of convergence (COC) in the parentheses by
using as following formula

ρ ≈ ln |(xn+2 − α)/(xn+1 − α)|
ln |(xn+1 − α)/(xn − α)| . (4.41)

Table 1: The number of iteration and COC

f (x) x0 N2 CH3 VCH4 VCH6 M-8
β = 1/2 β = 1/2 β = 1 θ = 1, β = 3/2

f1(x) 2.9 10 (1.9999) 6 (2.9999) 5 (3.9999) 4 (5.9999) 3 (7.9995)
3.2 10 (1.9999) 6 (3.0000) 5 (3.9999) 4 (5.9998) 4 (7.9999)

f2(x) 4.0 8 (1.9999) 5 (3.0000) 4 (3.9999) 3 (5.9999) 3 (7.9999)
4.5 7 (1.9999) 5 (2.9999) 4 (3.9999) 3 (5.9999) 3 (7.9999)

f3(x) −0.5 8 (1.9999) 6 (3.0000) 5 (3.9999) 4 (5.9999) 3 (7.9997)
1.5 7 (1.9999) 5 (2.9999) 4 (3.9999) 3 (5.9999) 3 (7.9999)

f4(x) 1.5 10 (1.9999) 6 (3.0000) 5 (3.9999) 4 (6.0000) 3 (7.9971)
3.0 9 (1.9999) 6 (2.9999) 5 (3.9999) 4 (5.9999) 3 (7.9989)

f5(x) 1.0 8 (1.9999) 5 (3.0000) 4 (3.9999) 3 (6.0000) 3 (7.9999)
2.0 8 (1.9999) 5 (2.9999) 4 (3.9999) 3 (6.0000) 3 (7.9999)

f6(x) −1.5 7 (1.9999) 5 (2.9999) 4 (3.9999) 3 (5.9999) 3 (8.0000)
0.0 7 (1.9999) 5 (2.9999) 4 (3.9999) 3 (6.0001) 2 (7.9999)

Based on the Table 1 one can see that order of convergence of the proposed method
is eight.

The accuration of the proposed method and several other mehods as a comparison
are shown at Table 2.
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Table 2: The absolute value of function |f (xn+1)| under same total number of functional
evaluation with TNFE = 12

f x0 N2 CH3 VCH4 VCH6 M-8
β = 1/2 β = 1/2 β = 1 θ = 1, β = 3/2

f1 2.9 4.2424e−09 9.6848e−37 1.7832e−77 1.7729e−62 1.6121e−123
3.2 4.4796e−07 3.2665e−16 1.8752e−43 8.9121e−18 1.0792e−55

f2 4.0 5.0253e−33 2.1103e−53 3.5672e−158 7.2789e−175 1.1120e−305
4.5 3.1919e−52 5.2464e−76 1.4627e−232 5.5174e−196 1.1003e−451

f3 −0.5 3.4884e−30 7.4037e−22 1.7116e−66 1.8429e−93 6.4582e−196
1.5 3.7607e−64 1.1496e−51 4.9514e−202 5.1172e−160 3.3226e−442

f4 1.5 1.8093e−11 6.3909e−24 9.7201e−60 3.8776e−62 1.2330e−115
3.0 4.6449e−16 6.3909e−24 1.1038e−71 2.0932e−52 2.6533e−139

f5 1.0 3.9823e−43 2.2349e−60 2.4510e−186 1.0457e−198 1.8792e−370
2.0 1.2361e−37 4.6600e−52 3.6662e−162 1.5953e−148 4.1631e−322

f6 −1.5 5.7389e−66 1.5261e−43 1.3689e−167 6.1185e−120 1.7304e−366
0.0 1.9261e−65 6.3918e−26 1.1346e−153 8.9317e−108 5.5821e−275

5. Conclusion

We have developed a new eight-order convergence method for solving nonlinear equation
that require evaluation of three function and one first derivative each iterative step with
efficiency index equal to 81/4 ≈ 1, 8167. The computation results show that the proposed
method has better performance as compared with the other methods.

Acknowledgements

The author would like to thank to some colleagues for comments which improved the
quality of this paper.

References

[1] S. Amat, S. Buquier and J. M. Gutierrez, 2013, Geometric constructions of itera-
tive functions to solve nonlinear equations, Journal of Computational and Applied
Mathematics, 157, 197–205.

[2] R. Behl dan K. Kanwar, 2013, Variant of Chebyshev’s method with optimal orde of
convergence, Tamsui Oxford Journal of Information and Mathematical Sciences,
29(1), 59–63.

[3] C. Chun, 2007, Certain improvements of Chebyshev-Halley methods with acceler-
ated fourth-order convergence, Applied Mathematics and Computation, 189, 597–
601.



2996 Wartono, M. Soleh, I. Suryani, Muhafzan

[4] C. Chun, 2007, Some varian of Chebyshev-Halley methods free from second deriva-
tive, Applied Mathematics and Computation, 191, 193–198.

[5] C. Chun, 2007, Some second-derivative-free variants of Chebyshev-Halley method,
Applied Mathematics and Computation, 191, 410–414.

[6] A. Cordero, M. Kansal, V. Kanwar and J. R. Torregrosa, 2015, A stable class
of improved second-derivative free Chebyshev-Halley type methods with optimal
eighth orde convergence, Numerical Algorithm, 191, 410–414.

[7] M. Grau-Sanchez and J. M. Gutierrez, 2010, Some variants of Chebyshev-Halley
family of methods with fifth order of convergence, International Journal of Com-
puter Mathematics, 87(4), 818–833.

[8] J. M. Gutierrez and M. A. Hernandez, 1997, A family of Chebyshev-Halley
type method in Banach space, Bulletin Australia Mathematics Society, 55,
113–130.

[9] M. A. Hernandez dan M. A. Salanova, 1993, A family of Chebyshev-Halley type
method, Int. J. Computer. Math., 47, 59–63.

[10] J. Kou, Y. Li and X. Wang, 2007, Fourth-order iterative methods free from second
derivative, Applied Mathematics and Computation, 184, 880–885.

[11] V. Kanwar and S. K. Tomar, 2007, Modified families of multi-point iterative meth-
ods for solving nonlinear equations, Numerical Algorithm, 44, 381–389.

[12] S. K. Kattri, 2012, Quadrature based optimal iterative methods with application
in high-precision computing, Numerical Mathematics and Theoritical Methods
Application, 5, 592–601.

[13] D. Li, P. Liu and J. Kou, 2014, An improvment of Chebyshev-Halley meth-
ods free from second derivative, Applied Mathematics and Computation, 235,
221–225.

[14] Y. Li, P. Zhang and Y. Li, 2010, Some new variants of Chebyshev-Halley methods
free from second derivative, International Journal of Nonlinear Science, 9(2), 201–
206.

[15] G. H. Nedzhibow, V. I Hasanov and M. G. Petkov, 2006, On some families of mult-
point iterative methods for solving nonlinear equation, Numerical Algorithms, 42,
127–136.

[16] M. Rostami and H. Esmaeili, 2014, A modification of Chebyshev-Halley method
free from second derivative for nonlinear equation, Caspian Journal of Mathemat-
ical Sciences, 3(1), 133–140.

[17] J. R. Sharma and R. Sharma, 2012, Modified Chebyshev-Halley method and its
variants for computing multiple roots, Numerical Algorithm, 61, 567–578.

[18] J. R. Sharma, 2015, Improved Chebyshev-Halley methods with sixth and eigth orde
convergence, Applied Mathematics and Computation, 256, 119–124.



Chebyshev-Halley’s Method without Second Derivative 2997

[19] J. F. Traub, 1964, Iterative methods for the solution of equations, Prentice-Hall,
Inc., New York.

[20] Z. Xiaojian, 2008, Modified Chebyshev-Halley methods free from second deriva-
tive, Applied Mathematics and Computation, 203, 824–827.



 

 


