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Abstract

We apply the averaging theory of first and second order to a class of polynomial
differential systems of the form

ẋ = y − f1(x)y, ẏ = −x − g2(x) − f2(x, y)y,

where f1(x) = εf11(x) + ε2f12(x), f2(x, y) = εf21(x, y) + ε2f22(x, y) and
g2(x) = εg21(x) + ε2g22(x) where f1i , f2i and g2i have degree l, n and m respec-
tively for each i = 1, 2, and ε is a small parameter.

We study the maximum number of limit cycles that this class of systems can
have bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x.

AMS subject classification: 34C25, 34C29, 37G15.
Keywords: limit cycle, liénard differential equation, averaging theory.



2972 S. Badi, E. Bendib and A. Makhlouf

1. Introduction

These years hundreds of papers have studied the limit cycles of planar polynomial dif-
ferential systems, their existence and their number. The second part of the 16th Hilbert’s
problem is related with the least upper bound on the number of limit cycles of polynomial
vector fields having a fixed degree. In this paper using the averaging theory we study
the maximum number of limit cycles that the following system

ẋ = y − f1(x)y,

ẏ = −x − g2(x) − f2(x, y)y,
(1)

can have bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x, where
f1(x) = εf11(x) + ε2f12(x), f2(x, y) = εf21(x, y) + ε2f22(x, y)

and g2(x) = εg21(x)+ε2g22(x) where f1i , f2i and g2i have degree l, n and m respectively
for each i = 1, 2, and ε is a small parameter. Note that when f1(x) = 0 these systems
coincide with the generalized polynomial Liénard differential systems

ẋ = y,

ẏ = −g(x) − f (x)y,
(2)

where f (x) and g(x) are polynomials in the variable x of degrees n and m respectively.
In 1977 [11] studied the classical polynomial Liénard differential system (2) obtained

when g(x) = x and stated the following conjecture: If f (x) has degree n ≥ 1 and

g(x) = x, then (2) has at most
[n

2

]
limit cycles. They prove this conjecture for n = 1, 2.

The conjecture for n = 3 has been proved recently by Chengzi and Llibre in [12]. For
more information see [15].

Many of the results on the limit cycles of polynomial differential systems have been
obtained by considering limit cycles which bifurcate from a single degenerate singular
point, that are called small amplitude limit cycles, see for instance [16]. We denote by
H(m, n) the number of limit cycles that systems (2) can have (This number is usually
called the Hilbert number). we shall describe briefly the main results about the limit
cycles of system (2).

1. In 1928, Liénard [12] proved that if m = 1 and F(x) =
∫ x

0
f (s)ds is a continuous

odd function, which has a unique root at x = a and is monotone increasing for
x ≥ a, then (2) has a unique limit cycle.

2. In 1973 Rychkov [18] proved that if m = 1 and F(x) is an odd polynomial of
degree five, then (2) has at most two limit cycles.

3. In 1977 Lins, de Melo and Pugh [11] proved that H(1, 1) = 0 and H(1, 2) = 1.

4. In 1998 Coppel [5] proved that H(2, 1) = 1.

5. Dumortier and Li in ([6], [8]) proved that H(3, 1) = 1.
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6. In 1997 Dumortier and Li [7] proved that H(2, 2) = 1.

7. In 2011 Chengzi and Llibre [4] proved that H(1, 3) = 1.

The maximum number of small amplitude limit cycles for systems (2) is denoted
by Ĥ (m, n). Blows and Lloyd [2], Lloyd and Lynch [16] and Lynch [17] have used
inductive arguments in order to prove the following results.

1. If g is odd then Ĥ (m, n) = n/2.

2. If f is even then Ĥ (m, n) = n, whatever g is.

3. If f is odd then Ĥ (m, 2n + 1) = [(m − 2)/2] + n.

4. If g(x) = x + ge(x), where ge is even then Ĥ (2m, 2) = m.

In 1998 Gasull andTorregrosa [9] obtained upper bounds for Ĥ (7, 6), Ĥ (6, 7), Ĥ (7, 7)

and Ĥ (4, 20). In 2006, Yu and Han [21] proved that Ĥ (m, n) = Ĥ (n, m) for n =
4, m = 10, 11, 12, 13;
n = 5, m = 6, 7, 8, 9; n = 6, m = 5, 6, see also [14] for a table with all the specific
values.

In 2010 Llibre and Mereu [14] compute the maximum number of limit cycles
H̃k(m, n) of systems (2) which bifurcate from the periodic orbits of the linear center
ẋ = y, ẏ = −x, using the averaging theory of order k, for k = 1, 2, 3.

In 2013 Badi and Makhlouf [1] using the averaging theory studied the maximum
number of limit cycles H̃ (l, m, n) which can bifurcate from the periodic orbits of a
linear center perturbed inside the class of generalized polynomial Liénard differential
system of the form

ẋ = y +
∑
k≥1

εkhk
l (x),

ẏ = −x −
∑
k≥1

εk(f k
n (x, y)y + gk

m(x)),
(3)

where for every k the polynomials hk
l (x), gk

n(x) and f k
n (x, y) have degree l, m and n

respectively and ε is a small parameter. More precisely the maximum number of medium
amplitude limit cycles which can bifurcate from the periodic orbits of the linear center
ẋ = y, ẏ = −x perturbed as in (3).

In [15] Llibre and Valls studied the polynomial differential systems

ẋ = y − f1(x)y,

ẏ = −x − g2(x) − f2(x)y,
(4)

where f1(x) = εf11(x)+ε2f12(x)+ε3f13(x), g2(x) = εg21(x)+ε2g22(x)+ε3g23(x)

and f2(x) = εf21(x) + ε2f22(x) + ε3f23(x), where f1i , f2i , g2i have degree l, n and
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m respectively for each i = 1, 2, 3 and ε is a small parameter. They proved an accurate
upper bound of the maximum number of limit cycle that (4) can have bifurcating from
the periodic orbits of the linear center ẋ = y, ẏ = −x using the averaging theory of
third order.

In this work, we study the polynomial differential system

ẋ = y − f1(x)y,

ẏ = −x − g2(x) − f2(x, y)y,
(5)

where f1(x) = εf11(x) + ε2f12(x), g2(x) = εg21(x) + ε2g22(x) and f2(x, y) =
εf21(x, y) + ε2f22(x, y) where f1i , f2i , g2i have degree l, n and m respectively for
each i = 1, 2 and ε is a small parameter. This system is more general than the one studied
in [15]. We find the maximum number of limit cycle that (5) can have bifurcating from
the periodic orbits of the linear center ẋ = y, ẏ = −x using the averaging theory of
first and second order. The main results of this paper is the following theorem:

Theorem 1.1. For ε sufficiently small the maximum number of limit cycles of the
generalized Liénard polynomial differential systems (1) bifurcating from the periodic
orbits of the linear center ẋ = y, ẏ = −x is

1.
[n

2

]
using the averaging theory of first order.

2.
1

2
max {2O(n) − 2; O(n) + E(m) − 1; O(n) + O(l) − 2; E(n)} using the av-

eraging theory of second order, where O(i) is the largest odd integer less than or
equal to i, and E(i) is the largest even integer less than or equal to i.

The proof of statement (1) of Theorem 1.1 is given in section 3. The proof of statement
(2) of Theorem 1.1 is given in section 4. The results that we shall use from the averaging
theory of second order for computing limit cycles are presented in Section 2.

2. The Averaging Theory of first and Second Orders

We use the averaging theory of first and second order for studying specifically limit
cycles. It is summarized as follows.

Consider the differential system

ẋ = εF1(t, x) + ε2F2(t, x) + ε3R(t, x, ε), (6)

where F1, F2 : R×D −→ R, R : R×D×(−εf , εf ) −→ R are continuous functions,
T -periodic in the first variable, and D is an open subset of R

n.Assume that the following
conditions hold.

(i) F1(t, .) ⊂ C2(D), F2(t, .) ⊂ C1(D), for all t ∈ R, F1, F2, R, are locally Lipschitz
with respect to x, and R is twice differentiable with respect to ε.
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We define Fk0 : D −→ R for k = 1, 2 as

F10(z) = 1

T

∫ T

0
F1(s, z)ds,

and

F20(z) = 1

T

∫ T

0
[DzF1(s, z)y1(s, z) + F2(s, z)]ds,

where

y1(s, z) =
∫ θ

0
F1(t, z)dt.

(ii) For V ⊂ D, an open and bounded set and for each ε ∈ (−εf , εf ) 0, there exists
aε ∈ V such that

F10(aε) + εF20(aε) = 0

and

dB(F10 + εF20, V , aε) �= 0.

Then, for |ε| > 0 sufficiently small, there exists a T -periodic solution φ(., ε) of the
system such that φ(0, aε) −→ aε when ε −→ 0.

The expression dB(F10 + εF20, V , aε) �= 0 means that the Brouwer degree of the
function F10 + εF20 : V −→ Rn at the fixed point aε is not zero. A sufficient condition
in order that this inequality holds is that the Jacobian of the function F10 + εF20 at aε is
not zero.

If F10 is not identically zero, then the zeros of F10 +εF20 are mainly the zeros of F10
for ε sufficiently small. In this case, the previous result provides the averaging theory
of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of F10 + εF20
are mainly the zeros of F20 for ε sufficiently small. In this case, the previous result
provides the averaging theory of second order.

For more information about the averaging theory see ([19], [20]).

3. Proof of statement (1) of Theorem 1.1

In this proof, we use the first order averaging theory. In order to write system (1) in
the standard form (5) for applying the averaging method, we set x = r cos θ, y =
r cos θ, r > 0, with (r, θ) being the polar coordinates. If we write

f11(x) =
l∑

i=0

ai,1x
i, f21(x, y) =

n∑
i+j=0

aij,2x
iyj , g21 =

m∑
i=0

bi,2x
i,
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then system (1) becomes

ṙ = −ε


 n∑

i+j=0

aij,2r
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bi,2r
i cosi(θ) sin(θ)

+
l∑

i=0

ai,1r
i+1 cosi+1(θ) sin(θ)

)
,

θ̇ = −1 − ε

r


 n∑

i+j=0

aij,2r
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

bi,2r
i cosi+1(θ)

−
l∑

i=0

ai,1r
i+1 cosi(θ) sin2(θ)

)
. (7)

Taking θ as the new independent variable, system (7) becomes

dr

dθ
= εF (r, θ) + O(ε2),

where

F(r, θ) =
n∑

i+j=0

aij,2r
i+j+1 cosi(θ) sinj+2(θ)

+
m∑

i=0

bi,2r
i cosi(θ) sin(θ) +

l∑
i=0

ai,1r
i+1 cosi+1(θ) sin(θ).

Now to apply the theorem of section 2, we calculate

F10(r) = 1

2π

∫ 2π

0
F(r, θ)dθ,

since ∫ 2π

0
cosi(θ) sinj+2(θ)dθ =

{
0, if i is odd or j is odd,

παij , if i is even and j is even,

where αij is a constant.
Finally, we obtain

F10(r) = 1

2

n∑
i+j=0

aij,2αij r
i+j+1, (8)

where i and j are even.
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Since F10(r) has at most
[n

2

]
simple positive roots, according to the theorem of

section 2, we get that for |ε| sufficiently small, system (1) has at most
[n

2

]
limit cycles

bifurcating from the periodic orbits of the linear center ẋ = y, ẏ = −x. Hence statement
(1) of Theorem 1.1 is proved.

Example 3.1. We consider the system

ẋ = y − ε(
√

2 + 5x4)y,

ẏ = −x − ε

(
1 + x +

(
3 + xy2 − 1

2
y2

)
y

)
, (9)

in polar coordinates (r, θ) where x = r cos θ, y = r sin θ, r > 0. System (8) becomes

ṙ = −ε sin(θ)
(

1 + ((
√

2 + 1) cos(θ) + 3 sin(θ))r (10)

−1

2
sin3(θ)r3 + cos(θ) sin3(θ)r4 + 5 cos5(θ)r5

)
,

θ̇ = −1 − ε

r

(
cos(θ) + (cos2(θ) + 3 cos(θ) sin(θ) − √

2 sin2(θ))r

−1

2
cos(θ)sin3(θ)r3 + 5 cos2(θ) sin3(θ)r4 − 5 cos4(θ) sin2(θ)r5

)
, (11)

To look for limit cycles, we must solve the equation

F10(r) = 1

2π

(
3πr − 3

8
πr3

)
= 0.

This equation has one positive root r = 2
√

2. According with Theorem 1.1, system (8)
has exactly one limit cycle bifurcating from the periodic orbits of the linear differential
system with ε = 0.

4. Proof of statement (2) of Theorem 1.1

In this section we use the second-order averaging theory. We take f11, f21 and g21 as in
the section below and

f12(x) =
l∑

i=0

ci,1x
i, f22(x, y) =

n∑
i+j=0

cij,2x
iyj , g22(x) =

m∑
i=0

di,2x
i.

Then system (1) in polar coordinates (r, θ) with r > 0 becomes

ṙ = −I (r, θ)ε − II (r, θ)ε2,

θ̇ = −1 − 1

r
[I1(r, θ)ε + II1(r, θ)ε2], (12)
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where

I (r, θ) =
n∑

i+j=0

aij,2r
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

bi,2r
i cosi(θ) sin(θ)

+
l∑

i=0

ai,1r
i+1 cosi+1(θ) sin(θ),

II (r, θ) =
n∑

i+j=0

cij,2r
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

di,2r
i cosi(θ) sin(θ)

+
l∑

i=0

ci,1r
i+1 cosi+1(θ) sin(θ),

and

I1(r, θ) =
n∑

i+j=0

aij,2r
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

bi,2r
i cosi+1(θ)

−
l∑

i=0

ai,1r
i+1 cosi(θ) sin2(θ),

II1(r, θ) =
n∑

i+j=0

cij,2r
i+j+1 cosi+1(θ) sinj+1(θ) +

m∑
i=0

di,2r
i cosi+1(θ)

−
l∑

i=0

ci,1r
i+1 cosi(θ) sin2(θ).

Taking θ as the new independent variable in the system (10), it becomes

dr

dθ
= εF1(r, θ) + ε2F2(r, θ) + O(ε3),

where

F1(r, θ) = I (r, θ),

F2(r, θ) = II (r, θ) − 1

r
I (r, θ)I1(r, θ).

We determine the corresponding function

F20(r) = 1

2π

∫ 2π

0

[
d

dr
F1(r, θ)y1(r, θ) + F2(r, θ)

]
dθ,
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where y1(r, θ) =
∫ θ

0
F1(r, s)ds. For this we need that F10 be identically zero, which is

equivalent to aij,2 = 0 for i even and j even. Now we compute

d

dr
F1(r, θ) =

n∑
i + j = 1

i odd or j odd

(i + j + 1)aij,2r
i+j cosi(θ) sinj+2(θ)

+
m∑

i=0

ibi,2r
i−1 cosi(θ) sin(θ) +

l∑
i=0

(i + 1)ai,1r
i cosi+1(θ) sin(θ),

and

y1(r, θ) = a10,2r
2(α110 sin(θ) + α210 sin(3θ)) + · · · + ace,2r

c+e+1(α1ce sin(θ)

+α2ce sin(3θ) + · · · + α(c+e+2)+1
2 ce

sin((c + e + 2)θ))

+a01,2r
2(α101 + α201 cos(θ) + α301 cos(3θ))

+ · · · + apq,2r
p+q+1(α1pq + α2pq cos(θ) + α3pq cos(3θ)

+ · · · + α(p+q+2)+3
2 pq

cos((p + q + 2)θ))

+a11,2r
3(α111 + α211 cos(2θ) + α311 cos(4θ)) + · · ·

+acq,2r
c+q+1(α1cq + α2cq cos(2θ) + α3cq cos(4θ) + · · ·

+α(c+q+2)+2
2 cq

cos((c + q + 2)θ)) +
m∑

i=0

1

i + 1
bi,2r

i(1 − cosi+1(θ))

+
l∑

i=0

1

i + 2
ai,1r

i+1(1 − cosi+2(θ)),

where c is the greatest odd number and e is the greatest even number so that c + e is less
than or equal to n.
p is the greatest even number and q is the greatest odd number so that p + q is less than
or equal to n.

αijk are real constants exhibited during the computation of
∫ θ

0
cosi(s) sinj+2(s)ds for

all i and j .

We know from (8) that F10 is identically zero if and only if aij = 0 for all i even and
j even.

From the products of
d

dr
F1(r, θ)y1(r, θ), only the following integrals are not zero
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when we integrate them between 0 and 2π .

∫ 2π

0
cosi (θ) sinj+2(θ) sin((2h + 1)θ)dθ =




0 if i is odd and j ∈ N,

πA2h+1
ij if i is even and j is odd,

h = 0, 1, . . .

∫ 2π

0
cosi (θ) sinj+2(θ) cos((2h + 1)θ)dθ =




0 if j is odd and i ∈ N,

πB2h+1
ij if i is odd and j is even,

h = 0, 1, . . .∫ 2π

0
cosi+k+1(θ) sinj+2(θ)dθ =

{
0 if j is odd and i, k ∈ N,

πCijk if i is odd, j is even and k is even,∫ 2π

0
cosi+k+2(θ) sinj+2(θ)dθ =

{
0 if j is odd and i, k ∈ N,

πDijk if i is odd, j is even and k is odd∫ 2π

0
cosi (θ) sin(θ) sin((2h + 1)θ)dθ =

{
0 if i is odd, h = 0, 1, · · ·

πE2h+1
i if i is even, h = 0, 1, · · ·∫ 2π

0
cosi+1(θ) sin(θ) sin((2h + 1)θ)dθ =

{
0 if i is even, h = 0, 1, · · ·

πE2h+1
i+1 if i is odd, h = 0, 1, · · ·

where A2h+1
ij , B2h+1

ij , Cijk, Dijk, E
2h+1
i and E2h+1

i+1 are non-zero constants. Hence, using
these integrals we obtain that

1

2π

∫ 2π

0

[
d

dr
F1(r, θ)y1(r, θ)

]
dθ = 1

2
rH1(r), (13)

where

H1(r) =
n∑

i + j = 1
i even, j odd

(i + j + 1)aij,2r
i+j−1

[
a10,2r

2
(
α110A

1
ij + α210A

3
ij

)
+ · · ·

+ace,2r
c+e+1(α1ceA

1
ij + α2ceA

3
ij + · · · + α(c+e+2)+1

2 ce
Ac+e+2

ij )
]

+
n∑

i + j = 1
i odd, j even

(i + j + 1)aij,2r
i+j−1[a01,2r

2(α201B
1
ij

+α301B
3
ij ) + · · · + apq,2r

p+q+1(α2pqB
1
ij + α3pqB

3
ij + · · ·

+α(p+q+2)+3
2 pq

B
p+q+2
ij )]

−
n∑

i + j = 1
i odd, j even

m∑
k = 0
k even

i + j + 1

k + 1
aij,2bk,2r

i+j+k−1Cijk
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−
n∑

i + j = 1
i odd, j even

l∑
k = 1
k odd

i + j + 1

k + 2
aij,2ak,1r

i+j+kDijk

+
m∑

i = 2
i even

ibi,2r
i−2[a10,2r

2(α110E
1
i + α210E

3
i ) + · · · + ace,2r

c+e+1(α1ceE
1
i + α2ceE

3
i

+ · · · + α(c+e+2)+1
2 ce

Ec+e+2
i )] +

l∑
i = 1
i odd

(i + 1)ai,1r
i−1[a10,2r

2(α110E
1
i+1

+α210E
3
i+1) + · · · + ace,2r

c+e+1(α1ceE
1
i+1 + α2ceE

3
i+1 + · · · + α(c+e+2)+1

2 ce
Ec+e+2

i+1 )].

We have also

F2(r, θ) =
n∑

i+j=0

cij,2r
i+j+1 cosi(θ) sinj+2(θ) +

m∑
i=0

di,2r
i cosi(θ) sin(θ)

+
l∑

i=0

ci,1r
i+1 cosi+1(θ) sin(θ)

−
n∑

i + j = 0
i odd or j odd

n∑
k + h = 0

k odd or h odd

aij,2akh,2r
i+j+k+h+1

× cosi+k+1(θ) sini+h+3(θ)

−2
n∑

i + j = 0
i odd or j odd

m∑
k=0

aij,2bk,2r
i+j+k cosi+k+1(θ) sinj+2(θ)

+
n∑

i + j = 0
i odd or j odd

l∑
k=0

aij,2ak,1r
i+j+k+1 cosi+k(θ) sinj+4(θ)
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−
m∑

i=0

m∑
j=0

bi,2bj,2r
i+j−1 cosi+j+1(θ) sin(θ) +

m∑
i=0

l∑
j=0

bi,2aj,1r
i+j cosi+j (θ) sin3(θ)

−
n∑

i + j = 0
i odd or j odd

l∑
k=0

aij,2ak,1r
i+j+k+1 cosi+k+2(θ) sinj+2(θ)

−
l∑

i=0

m∑
j=0

ai,1bj,2r
i+j cosi+j+2(θ) sin(θ) +

l∑
i=0

l∑
j=0

ai,1aj,1r
i+j+1 cosi+j+1(θ) sin3(θ).

Again, we take only the non-zero integrals when we integrate F2(r, θ) between 0 and
2π .

∫ 2π

0
cosi(θ) sinj+2(θ)dθ =

{
0 If i is odd or j is odd,

πFij If i is even and j is even,

∫ 2π

0
cosi+k+1(θ) sinj+h+3(θ)dθ =




0 if i + k is even or j + h is even,

πGijkh, if i is odd and j is even,
k is even and h is odd,

πḠijkh, if i is even and j is odd,
k is odd and h is even,∫ 2π

0
cosi+k(θ) sinj+4(θ)dθ =

{
0 if j is odd, i, k ∈ N

πHijk if i is odd, j is even and k is odd,

where Fij , Gijkh, Ḡijkh and Hijk are non-zero constants and we get that

1

2π

∫ 2π

0
F2(r, θ)dθ = 1

2
rH2(r), (14)
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where

H2(r) =
n∑

i + j = 0
i even, j even

cij,2r
i+jFij

−
n∑

i + j = 1
i odd, j even

n∑
k + h = 1

k even, h odd

aij,2akh,2r
i+j+k+hGijkh

−
n∑

i + j = 1
i even, j odd

n∑
k + h = 1

k odd, h even

aij,2akh,2r
i+j+k+hḠijkh

−2
n∑

i + j = 1
i odd, j even

m∑
k = 0
k even

aij,2bk,2r
i+j+k−1Cijk

+
n∑

i + j = 1
i odd, j even

l∑
k = 1
k odd

aij,2ak,1r
i+j+kHijk

−
n∑

i + j = 1
i odd, j even

l∑
k = 1
k odd

aij,2ak,1r
i+j+kDijk.

Now to find the positive roots of F20 we must find the zeros of the polynomial in r2 :
H1(r) + H2(r).

We conclude that F20 has at most

1

2
max{2O(n) − 2, O(n) + E(m) − 1, O(n) + O(l) − 2, E(n)}

positive roots. Hence statement (b) of Theorem 1.1 follows.

Example 4.1. We consider the system

ẋ = y − ε(x3 − 2x)y − ε2 1

2
x3y,

ẏ = −x − ε(4x2 + (x − xy2 + 2x2y − xy3 + x3)y) − ε2(x2 − x

+(−xy + 2x2 + 3y + y4)y). (15)
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in polar coordinates (r, θ) where x = r cos θ, y = r sin θ, r > 0, system (14) becomes

ṙ = −[ε((2 cos2(θ) sin(θ) + cos(θ) sin2(θ))r2 + (cos4(θ) sin(θ) − cos(θ) sin4(θ)

+2 cos2(θ) sin3(θ) + cos3(θ) sin2(θ))r4 − cos(θ) sin5(θ)r5) + ε2(− cos(θ) sin(θ)r

+(cos2(θ) sin(θ) + 3 sin3(θ))r2 + (2 cos2(θ) sin2(θ) − cos(θ) sin3(θ))r3

+1

2
cos4(θ) sin(θ)r4 + sin6 r5)],

θ̇ = −1 − [ε((4 cos3(θ) + cos2(θ) sin(θ) + 2 cos(θ) sin2(θ))r + (cos4(θ) sin(θ)

− cos2(θ) sin3(θ) + cos3(θ) sin2(θ))r3 − cos2(θ) sin4(θ)r4) + ε2(− cos2(θ)

+(cos3(θ) + 3 cos(θ) sin2(θ))r + (2 cos3(θ) sin(θ) − cos2(θ) sin2(θ))r2

−1

2
cos3(θ) sin2(θ)r3 + cos(θ) sin5(θ)r4)].

To look for the limit cycles, we must solve the equation

F20(r) = r3
(

−1

4
+ 3

16
r2 − 1

64
r4

)
= 0.

This equation has two positive roots r1 = −1 + √
5 and r2 = 1 + √

5. So system (14)
has exactly two limit cycles bifurcating from the periodic orbits of the linear differential
system with ε = 0.
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