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Abstract

We apply the averaging theory of first and second order to a class of polynomial
differential systems of the form

x=y— fi)y, y=—x—gx)— falx,y)y,

where fi(x) = efii(x) + &2 fi2(x), fr(x,y) = efa(x,y) + & fr(x,y) and
g(x) = ega(x) + 82g22 (x) where fi;, fo; and go; have degree [, n and m respec-

tively for each i = 1, 2, and ¢ is a small parameter.
We study the maximum number of limit cycles that this class of systems can
have bifurcating from the periodic orbits of the linear center x = y, y = —x.

AMS subject classification: 34C25, 34C29, 37G15.
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1. Introduction

These years hundreds of papers have studied the limit cycles of planar polynomial dif-
ferential systems, their existence and their number. The second part of the 16" Hilbert’s
problem is related with the least upper bound on the number of limit cycles of polynomial
vector fields having a fixed degree. In this paper using the averaging theory we study
the maximum number of limit cycles that the following system

x=y— filx)y, 1
y=—x—g(x)— fo(x, )y,

can have bifurcating from the periodic orbits of the linear center x = y, y = —x, where
fix) = efi1(x) + 2 fio(x), folx,y) = efor(x,y) + & fa(x, ¥)

and g2(x) = eg21 (x)-l—s2 g22(x) where f1;, f2; and go; have degree [, n and m respectively
for each i = 1, 2, and ¢ is a small parameter. Note that when f(x) = O these systems
coincide with the generalized polynomial Liénard differential systems

X =y,

. 2

5= —g() — f)y. @)
where f(x) and g(x) are polynomials in the variable x of degrees n and m respectively.

In 1977 [11] studied the classical polynomial Liénard differential system (2) obtained
when g(x) = x and stated the following conjecture: If f(x) has degree n > 1 and
g(x) = x, then (2) has at most [g] limit cycles. They prove this conjecture forn = 1, 2.
The conjecture for n = 3 has been proved recently by Chengzi and Llibre in [12]. For
more information see [15].

Many of the results on the limit cycles of polynomial differential systems have been
obtained by considering limit cycles which bifurcate from a single degenerate singular
point, that are called small amplitude limit cycles, see for instance [16]. We denote by
H (m, n) the number of limit cycles that systems (2) can have (This number is usually
called the Hilbert number). we shall describe briefly the main results about the limit
cycles of system (2).

X
1. In 1928, Liénard [12] proved thatif m = 1 and F(x) = / f(s)ds is a continuous
0

odd function, which has a unique root at x = a and is monotone increasing for
X > a, then (2) has a unique limit cycle.

2. In 1973 Rychkov [18] proved that if m = 1 and F(x) is an odd polynomial of
degree five, then (2) has at most two limit cycles.

3. In 1977 Lins, de Melo and Pugh [11] proved that H(1,1) =0and H(1,2) = 1.
4. In 1998 Coppel [5] proved that H(2, 1) = 1.

5. Dumortier and Li in ([6], [8]) proved that H(3, 1) = 1.
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6. In 1997 Dumortier and Li [7] proved that H(2,2) = 1.
7. In 2011 Chengzi and Llibre [4] proved that H(1, 3) = 1.

The maximum number of small amplitude limit cycles for systems (2) is denoted

by H (m, n). Blows and Lloyd [2], Lloyd and Lynch [16] and Lynch [17] have used
inductive arguments in order to prove the following results.

1. If g is odd then H (m, n) = n/2.

2. If f is even then PAI(m, n) = n, whatever g is.

3. If f is odd then H(m, 2n + 1) = [(m — 2)/2] + n.

4. If g(x) = x + g.(x), where g, is even then fAI(2m, 2) = m.

In 1998 Gasull and Torregrosa [9] obtained upper bounds for H (7,6), H 6,7), H (7,7)
and H(4,20). In 2006, Yu and Han [21] proved that H(m,n) = H(n,m) for n =
4, m=10,11, 12, 13;
n=5 m=6,7,8,9;, n=6, m=235,6, see also [14] for a table with all the specific
values.

_ In 2010 Llibre and Mereu [14] compute the maximum number of limit cycles
Hi(m, n) of systems (2) which bifurcate from the periodic orbits of the linear center
X =y, y = —x, using the averaging theory of order k, for k = 1, 2, 3.

In 2013 Badi and Makhlouf [1] using the averaging theory studied the maximum
number of limit cycles H (I, m, n) which can bifurcate from the periodic orbits of a
linear center perturbed inside the class of generalized polynomial Liénard differential
system of the form

X=y+ Zskhf‘(x),
k>1

y=—x =) e )y + gh (),

k>1

3)

where for every k the polynomials hf‘(x), gﬁ (x) and f,f (x, y) have degree [, m and n
respectively and ¢ is a small parameter. More precisely the maximum number of medium
amplitude limit cycles which can bifurcate from the periodic orbits of the linear center
X =y, y= —x perturbed as in (3).

In [15] Llibre and Valls studied the polynomial differential systems

x=y— fikx)y,
§ = —x — () — HO)Y, ©®

where f1(x) = efi1(x)+&” fia(x)+&° fiz(x), g2(x) = ega1(x)+2g2a(x) +&g23(x)
and fo(x) = efo1(x) + 82f22(x) + 83f23(x), where f1;, f2i, g2 have degree !/, n and
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m respectively for each i = 1, 2, 3 and ¢ is a small parameter. They proved an accurate
upper bound of the maximum number of limit cycle that (4) can have bifurcating from
the periodic orbits of the linear center x = y, y = —x using the averaging theory of
third order.

In this work, we study the polynomial differential system

x=y— fix)y,
= —x = g0 — folx, )y, )

where f1(x) = ef11(x) + &* fi2(x), g2(x) = £g21(x) + £7g22(x) and fa(x,y) =
efar1(x,y) + 2 f22(x,y) where f1;, f2i, g2 have degree [, n and m respectively for
eachi = 1, 2 and ¢ is a small parameter. This system is more general than the one studied
in [15]. We find the maximum number of limit cycle that (5) can have bifurcating from
the periodic orbits of the linear center x = y, y = —x using the averaging theory of
first and second order. The main results of this paper is the following theorem:

Theorem 1.1. For ¢ sufficiently small the maximum number of limit cycles of the
generalized Liénard polynomial differential systems (1) bifurcating from the periodic
orbits of the linear center x = y, y = —x is

1. [%] using the averaging theory of first order.

2. %max {20(n) —2; Om)+ E(m)—1; Om)+ O() —2; E(n)} using the av-

eraging theory of second order, where O (i) is the largest odd integer less than or
equal to i, and E (i) is the largest even integer less than or equal to i.

The proof of statement (1) of Theorem 1.1 is given in section 3. The proof of statement
(2) of Theorem 1.1 is given in section 4. The results that we shall use from the averaging
theory of second order for computing limit cycles are presented in Section 2.

2. The Averaging Theory of first and Second Orders

We use the averaging theory of first and second order for studying specifically limit
cycles. It is summarized as follows.
Consider the differential system

X =eF(t,x) +&2Fy(t,x) + R(t, x, &), (6)

where Fi, Fo : RxD — R, R:RxD x(—¢y, er) —> Rare continuous functions,
T -periodic in the first variable, and D is an open subset of R". Assume that the following
conditions hold.

(i) Fi(t,.) C CZ(D), () C CI(D), forallt € R, Fy, F2, R, are locally Lipschitz
with respect to x, and R is twice differentiable with respect to €.
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We define Fro: D — Rfork =1, 2 as

1 T
Fio(z) = 7[ Fi(s, z)ds,
0

and

1 T
F(z) = 7/0 [D Fi(s,2)y1(s, 2) + Fa(s, 2)1ds,

where

o
yl(s,z)=/ Fi(t, 7)dt.
0

(i) For V C D, an open and bounded set and for each ¢ € (—¢¢, e¢) 0, there exists
as € V such that

Fio(as) + e Fx(a:) =0

and
dp(Fio + €Fy, V,a;) #0.

Then, for |¢| > 0 sufficiently small, there exists a 7T -periodic solution ¢ (., €) of the
system such that ¢ (0, a;) —> a. when ¢ — 0.

The expression dp(Fio + €Fy9, V, as) # 0 means that the Brouwer degree of the
function Fig 4+ ¢ F>o : V —> R, at the fixed point a, is not zero. A sufficient condition
in order that this inequality holds is that the Jacobian of the function Fyo 4 € F>q at a is
not zero.

If F 1s not identically zero, then the zeros of Fyo + ¢ F>o are mainly the zeros of Fig
for ¢ sufficiently small. In this case, the previous result provides the averaging theory
of first order.

If Fyo is identically zero and F» is not identically zero, then the zeros of Fio + € F>g
are mainly the zeros of F;g for ¢ sufficiently small. In this case, the previous result
provides the averaging theory of second order.

For more information about the averaging theory see ([19], [20]).

3. Proof of statement (1) of Theorem 1.1

In this proof, we use the first order averaging theory. In order to write system (1) in
the standard form (5) for applying the averaging method, we set x = rcosf,y =
rcos@,r > 0, with (r, 8) being the polar coordinates. If we write

) n

m
) =Y "anx', @y = Y ajax'yl. g =) biox',
i=0

i=0 i+j=0
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then system (1) becomes
n

m
Fo= —e| Y aijor ™t cos (0) sin/t2(0) + ) bior! cos' (0) sin(6)
i+j=0 i=0

[
+) aiirt cos™(9) sm(e)) ,
=0

o = —1-- > aijor™ it cos ™ @) sin/ TN ©0) + Y biorf cos™ (0)
i+j=0 i=0
l . .
= air " cos (0) sin2(9)> : (7)
i=0

Taking 6 as the new independent variable, system (7) becomes

I F.0)+ 0
- = r, )
40

where

n
F(r.0) = Y aijor't/* cos’ (9) sin/*2(0)
i+j=0

m [
+ Y " bior'cos' (@) sin(@) + > a7t cos' ! (0) sin(0).
i=0 i=0

Now to apply the theorem of section 2, we calculate

1 2
Fio(r) = E/ F(r,0)do,
0

since
2 P ..

/ cos' (@) sin/2(@ydo = | if i Isoddor j is odd,

0 Tajj, if i isevenand j iseven,
where «;; is a constant.

Finally, we obtain
1 n
i+j+1
Fio(r) = E.Z ajjp0r T ®)
i+j=0

where i and j are even.
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n
Since Fio(r) has at most [5] simple positive roots, according to the theorem of

section 2, we get that for |¢| sufficiently small, system (1) has at most [g] limit cycles

bifurcating from the periodic orbits of the linear centerx = y, y = —x.Hence statement
(1) of Theorem 1.1 is proved.

Example 3.1. We consider the system
i o= y—e(245xYy,
y = —x—8<1+x+<3+xy2—%y2>y), )
in polar coordinates (r, 8) where x = rcosf, y =rsinf, r > 0. System (8) becomes
F o= —esin(®) (1 F (W2 + 1) cos(8) + 3sin(0))r (10)
—% sin®(0)r® + cos(6) sin® (0)r* + 5 cos’ (9)r5> ,
6 = —1— ; (003(9) + (cos2(6) + 3 cos(0) sin(@) — v/2 sin2(@))r
—% cos(0)sin>(0)r’ + 5 cos?(6) sin®(0)r* — 5cos*(0) sin2(9)r5> , (1)
To look for limit cycles, we must solve the equation

F _i _é 3) =
10(r)_2n 3nr Snr = 0.

This equation has one positive root r = 24/2. According with Theorem 1.1, system (8)
has exactly one limit cycle bifurcating from the periodic orbits of the linear differential
system with ¢ = 0.

4. Proof of statement (2) of Theorem 1.1

In this section we use the second-order averaging theory. We take f11, f21 and go; as in
the section below and

l n m
f@) =) aixt, ol y) = ) cjox'y, gnk) =) diax'.
i=0 i+j=0 i=0
Then system (1) in polar coordinates (r, #) with r > 0 becomes
Fo= —I(r,0)e—11(r, 6)&,
6 = —1 —% [11(r, 0)e + 11, (r, 0)e], (12)
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where
n m
1(r,0) = Y aijor'/t cos'(0) sin/T2(0) + ) b or' cos' (0) sin(6)
i+j=0 i=0
l
+ Z a,-ﬁlr’.+1 cosi+1(9) sin(6),
i=0
n m
11 0) = Y cijor'™ T cos' @) sin/T2(0) + > d;or' cos’ (0) sin(0)
i+j=0 i=0
l
+> it cos™(9) sin(6),
i=0
and
ILi(r,0) = Z aij,zri+j+1 cosi+1(9) sin/*! 0) + Zbi,zri cosi+1(9)
i+j=0 i=0
l
= ai 1"t cos' (0) sin(6),
i =0
n m
IL(r0) = Y cijor™ T cos™ @) sin/™' (@) + > djor' cos’t! ()

i+j=0 i=0

!
— Z c,-,1r"Jrl cos’ ) sin2(9).
i=0
Taking 6 as the new independent variable in the system (10), it becomes

dr ’ 3
EZsFl(r39)+8 F2(r99)+0(8 )9

where

Fi(r,0) = I(r,0),
F(r,0) = II(r,G)—% I(r,0)I1(r,0).

We determine the corresponding function

1 [(7[d
F(r) = E/o [EFl (r, )y1(r, 0) + Fa(r, 9)] do,
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0
where y;(r, 0) = f Fi(r, s)ds. For this we need that F( be identically zero, which is

. O . .
equivalent to a;; » = 0 for i even and j even. Now we compute

n
%Fl(rﬁ) = > (i +j + Daijor'™cos' (6) sin/2(6)
i+j=1
i oddor j odd
m [
+ ) ibiori T cos'(0) sin(0) + Y (i + Daj 17’ cos't! (0) sin(®),
i=0 i=0

and

cte+1

Yi(r,0) = aio2r*(@1108in(0) + a2105in(30)) + -+ + e 27T (e sin(6)

Fapce Sin(30) + - - - + X cretditl g sin((c + e + 2)0))

+ao1.2r* (101 + a1 cos(0) 4 301 cos(36))
4+ 4+ a(p+q;2)+3pq cos((p+qg +2)9))

+ary2r3 (@111 + @211 c08(20) + a3y cos(46)) 4 - -
tacg 27 T (1o + @aeq €05(20) + a3y cOS(40) + - - -

m
1 . .
_ +1
+a(c+q;z>+ch cos((c+qg+2)0)) + 2(; i—l——lbl’zrl (1 —cos' ™ (8))
1=

)
1 . .
Lol i+2
+ ,E_o AL (I —cos™™(0)),

where c is the greatest odd number and e is the greatest even number so that ¢ 4 e is less
than or equal to n.

p is the greatest even number and ¢ is the greatest odd number so that p + g is less than
or equal to n.

6
;i are real constants exhibited during the computation of / cos’ (s) sin/ t2(s)ds for
0

all i and j.

We know from (8) that F is identically zero if and only if a;; = 0 for all i even and
j even.

d
From the products of d_F 1(r, 0)y1(r, 0), only the following integrals are not zero
r
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when we integrate them between 0 and 2.

o 0 if i isoddand j €N,
/ cos' (0) sinT2(9) sin((2h + 1)0)do = nAff“ if i isevenand j isodd,
0 h=0,1,...
o 0 if j isoddand i € N,
/ cos' (0) sin? 2(0) cos((2h + 1)0)ds = nBizth if i isoddand j is even,
0 h=0,1,...
2 . .. .
ikl i _ 0 if j isoddand i,k € N,
/0 cos (6) sin""*(9)d0 - wCijx if i isodd, j isevenand k iseven,
0 if j isoddand i,k e N,

2
k42 9y gin+2
/0 o8 (0 sin”""(0)d? wDjj if i isodd, j isevenand k is odd

0 if i isodd, h=0,1,---
7TEI‘2hJrl if i iseven, h=0,1,---

2
f cos' () sin(0) sin((2h + 1)0)d6
0

0 if i iseven, h=0,1, ---

nE}jzj‘ if i isodd, h=0,1,---

2
/ cos' 1) sin(®) sin((2h + 1)6)d6
0

where Aiz;l +1, Bl.zth, Cijk» Dijk, E?h“ and Elzﬁrl are non-zero constants. Hence, using
these integrals we obtain that

1 [ 1
— —Fi(r, 0 . 0)|d0 = —-rH , 13
2 )o |:dr 1(r, Dy (r )] 5" 1(r) (13)
where
n . .
Hi(r) = Z (i +j+ Dajjor' ™! [alo,2r2 <06110A,-1j +05210A?j) + -
i+j=1

i even, j odd

Face2r M (@ice Al + dace AT - a%ce‘q?eﬂ)]
n
+ Z i+Jj+ I)Clij,zri+j_1[a0172r2(0l201Bi1j
itji=1
i odd, j even

3 1 1 3

2
+Ol<p+q;-2)+3qui];+q+ )]
n m . .
i+j+1 ik
- > Y ————aijobear™ T iy
i+j=1 k=0
i odd, j even k even
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n l . .
1+ 7+ 1 i ik
- ) D Ty sk Dy
i+j=1 k=1
i odd, j even k odd

m
, i-2 2 1 3 ctetl 1 3
+ E ibjor' “laro2r (a110E; + a210E;) + -+ - + aceor (@1ceE; + azee E;
i=2
I even

!
CESTOI+ Y G+ Dagar T aw ar (o Ely
i=1

i odd

+ A O etet) 41
p)

3 c+e+1 1 3 cte+2
+05210Ei+1) + -+ dce 2t (alceEi_H + 052ceE,'_|_1 +--+ a(c+e'§2)+lceEi+1 )]

We have also

n m
Fy(r.0) = Y cijor ™t cos!(0) sin/t2(0) + Y di or' cos’ (9) sin(9)
i+j=0 i=0

l
+) et cos’ 1 (0) sin(9)
i=0

n n
_ Z Z aij,ZClkh,Zri+j+k+h+l
i+j=0 k+h=0

i oddor j odd k oddor h odd

% Cosi+k+1 (9) Sini+h+3 (9)

-2 Z Z a,-jsgbk,zr"“LHk cos! TA+1 9) sinj+2(9)
i+j=0 k0
i oddor j odd
n / o . .
+ Z Z aijparr TR cosi T (9) sin/ T4 (9)
i+j=0 =0
i oddor j odd
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m m m 1
= “bigbjartt T cos™ T @) sin@) + > D " bipajirtt cos™ (9) sin’(0)

i=0 j=0 i=0 j=0

n l
_ Z Z aij,Zak,lri+j+k+l Cosi+k+2(9) sinj+2(0)
i+j=0 K0
i oddor j odd

I m 1
— Z Z ai,lbj,zr"ﬂ' cosi+j+2(0) sin(6) + Z Zaiﬁlajvlr"ﬂ“ AR (0) sin3(6).
i=0 j=0 i=0 j=0

Again, we take only the non-zero integrals when we integrate F>(r, ) between 0 and
2.

/271 cosi () sin/2(0)d0 — { 0 If z 'is odd or j '%s .odd,
0 m Fjj If i isevenand j iseven,
0 if i +k isevenor j -+ h iseven,
o 7 Gijkn, if i isoddand j iseven,
/ cos' K@) sin/ T3 0)de = | k isevenand h isodd,
0 n(_?ijkh, if i isevenand j is odd,

k isodd and / is even,

0 if j isodd, i,k e N
wH;j, if i isodd, j isevenand k isodd,

27
/ cos' ™% (0) sin/ T4 (0)do =
0

where Fjj, Gjjkn, Gijkn and H;ji are non-zero constants and we get that

1 (2 1
—/ Fry(r,0)d0 = —rHy(r), (14)
27‘[ 0 2
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where
n
Hy(r) = Z cijor'tFy;
i+j=0
i even, j even
n n
- > > aijoan2r' G
i+j=1 k+h=1
i odd, j even k even, h odd
n n
- > > aij2akn2r G
i+j=1 k+h=1

i even, j odd k odd, h even
n m ) )
—2 > D aijobear™
i+j=1 k=0
i odd, j even k even
n l o
+ > > aijoarar™ T Hi
i+j=1 k=1
i odd, j even k odd

n [
- Z Z aijoar r' Dy
i+j=1 k=1
i odd, j even k odd

Now to find the positive roots of F»p we must find the zeros of the polynomial in P2

H(r) + Ha(r).
We conclude that F>( has at most

%max{ZO(n) -2, 0n)+Em)—1,0n)+0()—2,E(n)}

positive roots. Hence statement (b) of Theorem 1.1 follows.

Example 4.1. We consider the system

1
¥ = y—eix? —2x)y—82§x3y,
y = —x— e(4x® + (x — xy2 + 2x2y — xy3 + x3)y) —2(x?—x

—|—(—xy+2x2+3y—|-y4)y). (15)
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in polar coordinates (r, ) wherex = rcosf, y =rsinf, r > 0, system (14) becomes

Fo= —[e((2cos?(®)sin(8) + cos(0) sin®(0))r? + (cos* () sin(9) — cos(0) sin*(0)
+2 cos?(0) sin®(9) + cos’ () sin®(0))r* — cos(9) sin® (9)r°) + &2 (— cos(0) sin(0)r
+(cos2(0) sin(0) + 3 sin’(0))r% + (2 cos? () sin”(0) — cos(0) sin’(6))r>
—|—% cos4(9) sin(@)r4 + sin® r5)],

6 = —1—[e((4cos>(®) + cos(0) sin(0) + 2 cos(9) sin”(9))r + (cos*(9) sin(9)
— 0032(9) sin’ ) + cos’ () sin2(6))r3 — 0052(0) sin4(6)r4) + 82(— 0052(0)
+(cos>(8) + 3 cos(0) sin®(0))r + (2 cos>(9) sin(0) — cos(0) sin>(9))r>
—% cos>(9) sin?(0)r> + cos(9) sin® (0)rH)].

To look for the limit cycles, we must solve the equation

1 3 1
F = 3 —_— —_ 2 _— 4 = O
20(r) d ( 216" 64r>

This equation has two positive roots r; = —1 + V5andr, = 1+ /5. So system (14)
has exactly two limit cycles bifurcating from the periodic orbits of the linear differential
system with ¢ = 0.
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