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Abstract 

 

On the basis of existing variational principles, an optical-mechanical analogy 

is carried out only at the level of geometrical optics. A local variational 

principle (LVP) is formulated. On the basis of this principle, new formulations 

of the direct and inverse problems are considered. An optical-mechanical 

analogy which has a new extension in comparison with the existing optical-

mechanical analogies is presented. According to the method of V-function, the 

trajectory motion of an object is connected with its wave motion. A linear 

harmonic oscillator is considered, and its energy levels are found. These 

results correlate with the energy levels of the real microscopic oscillators 

interacting with the light. While simulating the electron motion in the 

Coulomb field, the considered method allows setting a rule of energy 

quantization of a hydrogen-like atom, which completely coincides with the 

classical results of Schrödinger and Bohr. 

 

Keywords: local variational principle, trajectory motion, wave motion, wave 

function, optical-mechanical analogy, harmonic oscillator, hydrogen-like atom 

 

 

1. Introduction 

An optical-mechanical analogy is, first of all, a view on the nature of light, its 

corpuscular and wave properties. Hamilton [1] was the first, who turned attention to 

the analogy between the motion of mechanical conservative systems and the 

propagation of light beams in an optically inhomogeneous medium. So, from the 

Hamilton-Jacobi equation, written for a stationary system, 
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where W(q) is the characteristic Hamilton function, E is the total energy of the 

conservative system, H is the Hamiltonian function. 

From (02), written for a single particle: 
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where U(q) is the potential energy of the particle, Е is the total energy of the particle, 

m is the mass of the particle; and the eikonal equation, which describes the 

propagation of the light beam: 
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where ( )q  is the eikonal function (the light wave phase),   is the frequency of 

the monochromatic light wave, n is the refractive index of the medium, с is the 

velocity of light,   is the light wavelength, it follows that the equations are similar in 

appearance. That is, this analogy is based not on the real nature of phenomena, but on 

the similarity of the mathematical form of expression of the laws of these physical 

phenomena. 

Moreover, (04) is obtained from Fresnel’s scalar wave equation, 









2

2

2

2

2

2
1

3

0
 ( , ) ( , )q t

t

c

n

q t

q ii

 


     (05) 

when a monochromatic wave ( , ) ( ( ))q t e i t q 2  
 is considered for   0. 

The same analogy can be demonstrated on the basis of Fermat's principle of the light 

beam propagation, written in the form: 

 ( )nds  0 , (06) 

where n is the index of refraction, ds is the beam path element, 

and Maupertuis’ principle of least action: 

 ( )m ds  0
,
 (07) 

where m  is the particle momentum, ds is the particle trajectory element. 

In addition, if the refractive index varies according to the law 

n m m E U   2 ( ) , then the path of the light beam coincides with the 

trajectory of the particle. 
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Louis de Broglie shed new light into the optical-mechanical analogy [2, 3]. He 

considered a correspondence between wave and particle on the basis of equations (03) 

and (04), and on the basis of variational principles of Maupertuis and Fermat [4]. If, 

instead of the function W, we take W/h in the equation (03), where h is the Planck 

constant, and put  W h/ , then from (03) and (04) we have 
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h
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From this we obtain the famous Louis de Broglie's formula for determining the 

wavelength of the particle: 

 
h

p
 (09) 

The idea that a wave motion is hidden behind the motion of particles has become 

particularly productive for physics [1]. The studies of Louis de Broglie have served 

Schrödinger as a basis for the formulation of the wave equation [15] which is now one 

of the fundamentals of quantum mechanics. 

The recent experimental advances in the study of behavior of individual microscopic 

systems, in turn, are reviving sustained interest in the problem of the wave-particle 

dualism, in the role of information in the theoretical description of the behavior of 

micro-particles [5, 6]. The ongoing attempts to understand the paradoxical 

manifestations of wave-corpuscle dualism in the motion of an electron (and other 

microparticles) also stimulate the creation of new theories that somehow develop 

Louis de Broglie’s idea of a pilot-wave [7-9]. In this paper, we propose a new 

approach in this direction, based on the wave-corpuscle monism, in order to explain 

the nature of a particle (an object). Namely, the theory developed below uses the 

description of physical reality, which takes into account the presence of the particle’s 

trajectory, which is a reflection of the existence of the particle; at the same time, it is 

assumed that the motion of the particle is determined by a physical wave V(x,t). 

 

 

2. Local variational principle (LVP) 

Let us introduce 
T

nxxxtx ),...,,()( 21 , a vector of the phase coordinates, 

nRx , where 
nR  is n-dimensional Euclidean space and time Tt , where T is a 

time interval. Consider a system of differential equations: 

 ( )x f x  (1) 

We say that the equation (1), describing the motion of an object along a path, 

determines the state of the object being studied. 

Now, we introduce a function V=V(x,t) (
nRx , Tt ), which we call a wave 

function or V-function, and its rate (speed) of change 
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according to the system (1). 
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When the rate of change of the wave function is varied, the object goes from a certain 

state into a new state. Such a transition will be called a wave transition of the object to 

a new state. The quantity V  will be called a possible wave transition from the initial 

state into a new state. Moreover, x determines the trajectory variations. 

We now formulate a local variational principle (LVP) [10-11]: 

 

Among all possible transitions into a new state, a transition is realized, in which, 

at any given time, the rate of change of the wave function V(x,t) assumes a 

stationary value 
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Introduce the total variation of the rate of change of the wave function: 
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Let the wave function (V-function) be a finite, twice differentiable function of its 

arguments, satisfying the equation: 
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where )(xf i  are the components of n-dimensional vector-function of the right parts 

of the equations (1) of the object motion. 

 

Theorem I 

For the transition into a new state, it is necessary and sufficient the existence of 

V-function, satisfying the condition: 


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Theorem II. 

The motion of the object (1) occurs so that, at each time, the phase velocity 

vector is co-directional with the gradient of the wave function, i.e. 
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3. New formulation of the direct and inverse dynamics problem based on the 

method of V-function. 

A direct dynamics problem can be formulated in the following form: 

Let differential equations be given describing the trajectory of the object (1). 

It is required to determine a wave function V(x,t) satisfying the equation (5) 

The initial and boundary conditions (5) are determined from Theorems I, II and from 

the condition of connectedness of the wave function V(x,t) with the trajectory of the 

object motion (1). The conditions of connectedness provide the initial condition for 

the wave function: 
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we derive the equality: 
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From the condition of Theorem II, it follows: 
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For the case of x    (n=1), we obtain the solution of the equation (5) in view of 

(7)–(8), (13), (15) in the following form: 
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The inverse problem of dynamics on the basis of the V-function method is stated as 

follows: 

For a given wave function V(x,t) satisfying the equation (5) which we write in the 

following form: 
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it is required to determine the differential equations (1) of the object motion. 

For a given wave function, the solution of the inverse problem of dynamics 

immediately follows from (6a): 
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Using (10) and Theorem II, it can be shown that the following is true: 
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Solving the inverse problem, we not only have obtained the equation of motion (18), 

the right-hand sides of which depend on the way of defining the V-function, but also 

an access to the foundations of H. Hertz’s mechanics, which follows from (20). 

The principle of straightest path, as H. Herts [12] showed, is more general in the sense 

that there follow from it the integral energy principles, the principle of least curvature 

and the least time principle. Also, it follows from (20) and (10) that H. Hertz’s 

principle is contained in our principle. 
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Let the wave function be given in the form of the equation (16) of a plane wave which 

disseminates in the direction of the object motion. Then (16) will satisfy (21a), 

provided x  . 

In addition, from the equation (12) where the wave function is given in the form (16), 

it follows that 
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The constant in the right-hand side of (22) is a real number. Therefore, in order to 

satisfy the condition (22), the phase should assume the value: 
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i. e. in the solution (16), the natural frequencies may assume only certain discrete 

values. Then (22), in view of (23) and (24), will assume the form: 
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This means that, there are only discrete values in the equation (22), and the object 

motion will proceed along the direction of movement of the wave front. 

Moreover, from the equation (14), taking into consideration (16), it follows 
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The equality (27) is nothing more than the realization of (10) for n=1. 

 

 

4. Extension of the Optical-Mechanical Analogy 

Consider the trajectory motion of a particle satisfying the equation (14) 
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corresponds to the wave motion that satisfies the wave equation: 
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is the mass of the particle. Then the amplitude A  has the dimension of 

action. If we take 
2

h
A , where h is the Planck constant, then there follows 

from (25) the rule of energy quantization, which is the same as the one considered by 

Schrödinger in the case of Planck’s oscillator. Moreover, by considering (23) we 

obtain from (26) 
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Using these results, it is possible to indicate the following relations between wave and 

particle: 
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Moreover, the wave and trajectory measurements can be described by one and the 

same wave function: 
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In the relations (30), the basic fact is the equality between the phase velocity of wave 

and the particle velocity, while in quantum mechanics the particle velocity is equal to 

the group velocity of Louis de Broglie’s waves. The condition (25) of energy 

quantization is produced naturally as a result of solving the inverse problem. 

Consider now in what way the V-function method is related to the optical-mechanical 

analogy of N.H. Chetaev [13, 14]. To this end, we first show how the local variational 

principle is connected with the Hamilton principle. 
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Hence, the following equalities should hold separately: 
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As seen from (34), for the representation V e
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h the local principle contains the 

Hamiltonian principle. At the same time, the Hamiltonian action 
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In his work [13], N.H. Chetaev demonstrated how a stable motion of a holonomic 

conservative system relates to the wave equation, a mathematical theory of light 
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propagation due to Cauchy. He proceeded from the stability of the equations in 

variations for the reduced system: 
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Using this condition for the function Ф(Et+W), he obtained the wave equation: 
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where 

E is the constant of kinetic energy, 

U is the force function of the system. 

From the equation (33), we have: 
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Taking into account (35), and that S=Et+W, as well as 
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we have from (38), passing to the matrix representation ( )A AT : 
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 (39) 

The equation (39) holds provided that: 

Tr
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A
W

q q
A
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q
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
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
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
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
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

















  0 . (40) 

which coincides with the condition (36) for a stable motion of the system (35). 
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5. A Harmonic Oscillator 

Consider a linear harmonic oscillator. The equation of the trajectory motion of an 

object (particle) 

kxxm   (41) 

allows the first integral E
kxxm


22

22
. 

The square of the particle velocity assumes the form 

m

kxE
x

2
2 2 
 . (42) 

Substituting (42) into the equation (21) yields: 

0
2

2
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 
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m

kxE
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V
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





 (43) 

We look for a wave function V(x,t) in the form of   )()(, txtxV  . From the 

equation (43), the following stationary equation is obtained: 

0
2 2

2




 



kxE

m
 (44) 

The initial conditions (8), (15) for the function )(ψ x have the form: 

,0)0()(
0





x

x  ;)0()( 10
Cx

x



  (45) 

As it is seen from the equation (44), 0
2

















k

E
x . The fulfillment of this 

condition is only possible for the specific values of the natural frequencies of the 

equation (44). Let us reduce the equation (44) to the form 

0
1 2

2




 



 , (46) 

where 

k

E

x

2


 is a dimensionless quantity, 2

0

22
2




 

k

m
. 

Let us determine these frequencies numerically by solving the equation (46) with the 

initial conditions (45). To this end, we introduce the auxiliary functions 

 1 ; 

 2 . 

and solve the system 
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by the fourth-order Runge-Kutta method with the initial values 
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. We obtain 
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Taking into account the results of the optical-mechanical analogy ,2 E  we 

arrive at the quantization rule of the harmonic oscillator energy in the following form 
2

0

2222

1

2

2 22   nnnn EEEE  (47) 

Thus, in the case when the trajectory motion of the object is directly connected with 

the wave motion, the harmonic oscillator energy can assume only certain discrete 

values: 
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These values can be also obtained analytically using the Maple software complex 
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As is known, Schrödinger obtained a rule of energy quantization for the harmonic 

oscillator in the form 0
2

1









 nEn . If these results are substituted into the 

equation (47), we have 
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identity. 
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6. Motion of an electron in a hydrogen-like atom 

Consider the motion of an object (particle) in a 3-dimensional potential field of forces 

in the Cartesian coordinate system. Let the trajectory equations of the object (particle) 

(5) allow the first integral of motion in the form of the energy conservation law of the 

particle, i.e. 

EzyxU
zyxm




),,(
2

)( 222 
, (48) 

where m  is the particle mass, E  is the total energy of particle, U is the potential 

energy of the particle. Then the motion of the object (particle) is completely described 

by the following system of equations (48) and (21): 
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where 2

2

2

2

2

2
2
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


  is the Laplace operator, 

2222 zyx    is the 

square of the particle velocity. Hence, the second equation, taking into account the 

first, assumes the form: 
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We apply the method of separation of variables in the equation (50) 
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As a result, we obtain the following stationary equation 

0
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m
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It is known that the potential energy of a hydrogen-like atom is equal to 

rZerU 2)(    (53) 

In this case, the equation (52) takes the form ,0
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2
  . 
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In the equation (54), we pass to the spherical coordinate system: 
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operator in the spherical coordinate system. 

Applying again the method of separation of variables  RX  , we arrive at the 

following equation: 
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The solutions of the first two equations in (56) are known. It is the third equation that 

is of interest. If we make a change ruR  , then we get 
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The resulting solution of the direct problem of dynamics for the equation (57) must 

satisfy the natural condition 0)( 0  rru  (where EZeEZer /// 222

00   ), 

which corresponds to the fulfillment of the boundary condition (7), when the wave 

amplitude becomes zero for 0rr  , where, respectively, as a solution of the inverse 

problem, there arises a trajectory of the particle (electron). Taking into account 

asymptotic solution of the equation (57) ( r ), let us write its general solution in 

the form )()()()( 00

21 rferferucrucu
rkrk
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

  . Substituting it into (57), 

we obtain the following equation: 
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The solution of the equation (58) for 0l  will be looked for as the following power 

series  

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 
0 0

)()(
m
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m rrarf . The equation (58) after this substitution takes 

the form 
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The equation (59) is identically satisfied only when 0rr   or when all the coefficients 

of the obtained series are equal to zero, i.e. 02)1( )(

1
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 nnn anaknan  . It 

follows that 00 a , and the coefficients )(
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na  satisfy the recurrence relation 
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, (60) 

because on the basis of the inverse problem of dynamics, we seek the trajectory of a 

particle (an electron). Besides, we have to satisfy the relations (15) and (7), which 

hold under the condition 

nk01 2  (
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This condition is satisfied only when the series 
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m rrarf terminates, i.e. 0)( 
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the following solution 
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where С is a constant, 

)/(2 222

,0 en mZenr  , (63) 

is the radius of the n-th state of the particle (electron), which is obtained from (61) on 

the basis of the connection between frequency and energy ,2 E  which follows 

from the optical-mechanical analogy. Also, from the equation (61) which takes the 

form 
242

8
123 // nmeZE e , in view of  22 /E2  , we found the value of 

the energy of the n-th state of the particle (electron) 

22

42 1

2 n

meZ
E e

n


 . (64) 

Note that the energy of the n-th state is exactly the same as the solution obtained in 

Bohr's model [15] or on the basis of the stationary Schrödinger equation [16]. 

 

 

7. Discussion and conclusion 

The described research indicates that Louis de Broglie's desire to overcome the wave-

particle dualism by means of the concept of the pilot-wave finds a justification here 

through extension of the optical-mechanical analogy which is solved at the level of 

wave optics. Moreover, the wave function V(x,t) is not only somehow connected with 

the motion of the particle, but directly expresses the motion itself, which always has 
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the wave nature whether it be light or any other object. If the wave function (V-

function) has the dimension of action ([kg][m/s][m]), then the energy quantization of 

an object (particle) for the case of uniform rectilinear motion occurs according to the 

same rule as Schrödinger’s rule for the harmonic oscillator. At the same time, it 

becomes obvious that the resolution of the classical quantum physics is insufficient 

for the detection of energy quantization in the rectilinear motion with constant 

velocity. 

The V-function method for the harmonic oscillator allows establishing the appropriate 

picture of the energy quantization (64). As it is known, for the actual microscopic 

oscillators interacting with the light [17], the transitions can take place only between 

neighboring levels which is completely consistent with our results. 

In simulating the electron motion in the Coulomb field, the method of V-function 

allows establishing a rule of energy quantization of a hydrogen-like atom which fully 

agrees with the classical results of Schrödinger and Bohr. 
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