Global Journal of Pure and Applied Mathematics. ISSN 0973-1768 Volume 12, Number 4 (2016), pp. 2923-2933 © Research India Publications http://www.ripublication.com/gjpam.htm

A Criterion for (m_k) -hypercyclic Operators and Weighted Shifts¹

Eunsang Kim

Department of Applied Mathematics, Hanyang University, Ansan Kyunggi-do, Korea.

Tae Ryong Park²

Department of Computer Engineering, Seokyeong University, Seoul, Korea.

Abstract

In this paper, we give a sufficient condition for (m_k) -hypercyclic operators on a separable F-space and we show that the criterion is equivalent to (m_k) -hypercyclicity for the weighted backward shifts.

AMS subject classification: 47A16.

Keywords: Operator algebras, strong operator topology, frequently hypercyclicity.

1. Introduction

A continuous linear operator T on a separable F-space X is said to be hypercyclic if the T-orbit of some vector is dense in X and thus the orbit intersects with each non-empty open subset of X. A question is that how frequently can such an orbit visit each non-empty open set and this leads to a notion of the frequent hypercyclicity guided by the Birkhoff ergodic theorem, [1]. General criterions for hypercyclicity and frequent hypercyclicity have been developed in [10, 6] and [1, 5], respectively. In [3], F. Bayart and É. Matheron introduced a notion of (m_k) -hypercyclicity by controlling the frequency of the orbit visiting each non-empty open set, where $(m_k)_{k\in\mathbb{N}}$ is an increasing sequence of positive integers. It provides us various examples of linear operators between hypercyclicity and frequent hypercyclicity. In this paper, we give a sufficient condition for (m_k) -hypercyclicity following the ideas given in [4] and [8]. As an application, we show that the criterion is equivalent to the (m_k) -hypercyclicity for the case of weighted shifts.

¹This work was supported by Seokyeong University in 2014.

²Corresponding author.

2. (m_k) -hypercyclic operators

Let X be a separable F-space and let $\mathcal{L}(X)$ be the space of all continuous linear operators on X. An operator $T \in \mathcal{L}(X)$ is *hypercyclic* if there exists a vector $x \in X$ such that the T-orbit $O(T, x) = \{T^n x \mid n = 0, 1, 2, \cdots\}$ is dense in X. Such a vector $x \in X$ is called a *hypercyclic vector* for T. If T is hypercyclic, then for any non-empty open subset U of X, the set

$$\mathbf{N}(x, U) = \{ n \in \mathbb{N} \mid T^n x \in U \}$$

is non-empty, where \mathbb{N} is the set of all positive integers. For a subset A of \mathbb{N} , the lower density of A is defined by

$$\underline{\mathrm{dens}}(A) = \liminf_{N \to \infty} \frac{|A \cap [1, N]|}{N}$$

where $|A \cap [1, N]|$ denotes the cardinality of the set $A \cap [1, N]$. An operator T is said to be *frequently hypercyclic* if there is a vector $x \in X$ such that for every non-empty open set U, $\mathbf{N}(x, U)$ has positive lower density. Such a vector x is called frequently hypercyclic for T. Let A be an infinite subset of \mathbb{N} and let $(n_k)_{k \in \mathbb{N}}$ be an increasing enumeration of A. It is easy to see that A has positive lower density if and only if there is a constant C such that

$$n_k \le Ck$$
 for all $k \ge 1$. (2.1)

Thus, a vector $x \in X$ is frequently hypercyclic for T if and only if for each non-empty open subset U of X, there is a strictly increasing sequence $(n_k)_{k\geq 1}$ and some constant C such that

$$T^{n_k}x \in U$$
 and $n_k \le Ck$

for all $k \in \mathbb{N}$.

We introduce a lower density of a subset of positive integers which depends on a sequence of positive integers.

Definition 2.1. Let $(m_k)_{k \in \mathbb{N}}$ be an increasing sequence of positive integers and let $A \subseteq \mathbb{N}$. The *lower* (m_k) -*density* of A is defined as

$$(m_k)-\underline{\operatorname{dens}}(A) = \liminf_{k \to \infty} \frac{|\mathbf{N}(x, U) \cap [0, m_k]|}{k}.$$
 (2.2)

Let $(n_k)_{k\in\mathbb{N}}$ be an enumeration of A and (m_k) - $\underline{\text{dens}}(A) > 0$ if and only if, for some constant C > 0,

$$n_k < Cm_k \quad \text{ for all } k > 1. \tag{2.3}$$

Definition 2.2. Let $(m_k)_{k \in \mathbb{N}}$ be an increasing sequence of positive integers. An operator T on a separable F-space X is said to be (m_k) -hypercyclic if there is a vector $x \in X$ such that for each non-empty open set U in X, the lower (m_k) -density of the set $\mathbf{N}(x, U)$ is positive. In that case, the vector x is said to be (m_k) -hypercyclic for T.

A vector $x \in X$ is (m_k) -hypercyclic for T if and only if for each non-empty open subset U of X, there is a strictly increasing sequence (n_k) and some constant C such that

$$T^{n_k}x \in U$$
 and $n_k \le Cm_k$

for all $k \in \mathbb{N}$. For example, the frequently hypercyclic operators are the (k)-hypercyclic ones. Also, q-frequently hypercyclic operators given in [8] are (k^q) -hypercyclic.

Let $\|\cdot\|$ be an F-norm defining the topology of X and let $(x_l)_{l\in\mathbb{N}}$ be a dense sequence in X. Then a vector $x \in X$ is (m_k) -hypercyclic for T if there exist subsets J_l of \mathbb{N} , $l \ge 1$ of positive lower (m_k) -density such that, for any $n \in J_l$ and $\epsilon > 0$

$$||T^n x - x_l|| < \epsilon.$$

In order to show that an operator is (m_k) -hypercyclic, one may need the following lemma which is modified from the Lemma 2.5 in [5].

Lemma 2.3. There exist pairwise disjoint sequence $(J_n)_{n\geq 1}$ of subsets of \mathbb{N} such that

- (a) for each $n \ge 1$, (m_k) - $\underline{\text{dens}}(J_n) > 0$;
- (b) if $l \in J_n$, then $l \ge n$;
- (c) $|p-q| \ge \max\{n, m\}$, for $(p, q) \in J_n \times J_m$.

Proof. Let $I_n = 2^n \mathbb{N} \setminus 2^{n+1} \mathbb{N} = 2^n (\mathbb{N} \setminus 2\mathbb{N})$. Since $\underline{\text{dens}}(\mathbb{N} \setminus 2\mathbb{N}) = \frac{1}{2}$, $\underline{\text{dens}}(I_n) > 0$ for all $n \ge 1$. For $i \ge 1$, define

$$r_i = n$$
 if $i \in I_n$

and

$$n_i = 2\sum_{\nu=1}^{i-1} r_{\nu} + r_i. \tag{2.4}$$

For each $n \ge 1$, let

$$A_n = \{n_i \mid i \in I_n\}$$

Then, as shown in [5], each set A_n has positive lower density and satisfies the condition (b) and (c), for all $n \ge 1$. Let $I_n = \{i_k \mid k \ge 1\}$. Since $\underline{\text{dens}}(I_n) > 0$, by (2.1), there exists C > 0 such that

$$i_k \le Ck$$
 for all $k \ge 1$

Since $A_n = \{n_i \mid i \in I_n\} = \{n_{i_k} \mid k \ge 1\}$, by (2.1), there exist M > 0 and C > 0 such that

$$n_{i_k} \le M i_k \le M C k. \tag{2.5}$$

Let $I'_n = \{i_{m_k} \in I_n \mid f \ge 1\}$ and let

$$J_n = \{a_k \in A_n \mid a_k = n_{i_{m_k}}, i_{m_k} \in I'_n, k \ge 1\}.$$

Then, as in (2.5), it is easy to see that

$$a_k < Mm_k$$
 for some $M > 0$.

In other words, (m_k) -dens $(J_n) > 0$ for all $n \ge 1$.

Let us recall that a series $\sum x_n$ in a normed space is said to be *unconditionally* convergent if for every permutation σ of \mathbb{N} , $\sum x_{\sigma(n)}$ is convergent, see [9] for details.

As given in [5], a collection of series $\sum_{n=1}^{\infty} x_{n,k}, k \in J$, is called *unconditionally convergent*, uniformly in $k \in J$ if for any $\varepsilon > 0$ there is some $N \in \mathbb{N}$ such that for any finite set $F \subset [N, \infty) \cap \mathbb{N}$ and every $k \in J$ we have

$$\left\| \sum_{n \in F} x_{n,k} \right\| < \varepsilon.$$

We now have a sufficient condition for an operator to be (m_k) -hypercyclic and it will be referred as (m_k) -hypercyclicity criterion. For simplicity, a sequence $(J_n)_{n\geq 1}$, given in Lemma 2.3, will be referred as an (m_k) -hypercyclicity sequence. The proof of the following theorem is essentially the same as the proofs given in [5] and [4], and we simply sketch the proof.

Theorem 2.4. Let X be a separable F-space and let $T \in \mathcal{L}(X)$. For an increasing sequence $(m_k)_{k\geq 1}$ of positive integers, let $(J_n)_{n\geq 1}$ be an (m_k) -hypercyclicity sequence and let $J = \bigcup_{n\geq 1} J_n$. Suppose that there exist a dense subset Y_0 of X and a map $S: Y_0 \longrightarrow Y_0$ such that for all $y \in Y_0$,

- 1. $\sum_{n \in J_l} S^n y$ is unconditionally convergent, uniformly in $l \in \mathbb{N}$,
- 2. for any $i \ge 1$, there exists $l \ge i$ such that $\sum_{n \in J_l} T^k S^n y$ is unconditionally convergent, uniformly in $k \in J$,
- 3. there is an $l_0 \ge 1$ such that $\sum_{n \in J_l} T^k S^n y$ is unconditionally convergent, uniformly in $k \in \bigcup_{l \ge l_0} J_l$
- 4. TS = I, the identity on Y_0 .

Then the operator T is (m_k) -hypercyclic.

Proof. Since *X* is separable, we may assume that $Y_0 = \{y_l \mid l \ge 1\}$. Let $\epsilon_l > 0$ be a real number such that $\sum_l \epsilon_l < \infty$. Then for each $\epsilon_l > 0$, there exists $N_l \in \mathbb{N}$ such that

$$\left\| \sum_{n \in J_l \cap F} S^n y_l \right\| < \epsilon_l \tag{2.6}$$

for any finite set $F \subset [N_l, \infty) \cap \mathbb{N}$. Define

$$x = \sum_{l=1}^{\infty} \sum_{n \in J_l} S^n y_l. \tag{2.7}$$

Then by assumption 1, we have

$$\sum_{l=1}^{\infty} \left\| \sum_{n \in J_l \cap F} S^n y_l \right\| < \sum_{l=1}^{\infty} \epsilon_l < \infty.$$
 (2.8)

and hence $x \in X$.

Fix $l_0 \ge 1$ and $k \in J_{l_0}$, then

$$T^{k}x = \sum_{l=1}^{\infty} \sum_{n \in J_{l}} T^{k} S^{n} y_{l}$$

$$= \sum_{l=1}^{\infty} \sum_{n \leq k, \atop n \in J_{l}} T^{k} S^{n} y_{l} + \sum_{l=1}^{\infty} \sum_{n > k, \atop n \in J_{l}} T^{k} S^{n} y_{l} + y_{l_{0}}$$

$$= \sum_{l=1}^{\infty} \sum_{n \in J_{l}} T^{k-n} y_{l} + \sum_{l=1}^{\infty} \sum_{n \in J_{l}} S^{n-k} y_{l} + y_{l_{0}}$$

The last equality follows from the hypothesis 4. Now by the assumption 2 and 3, we have

 $\left\| T^k x - y_{l_0} \right\| \le \epsilon_n$

and x is a (m_k) -hypercyclic vector.

3. (m_k) -hypercyclic weighted shifts

Let $X = \ell^p(\mathbb{Z}_+)$ or $X = c_0(\mathbb{Z}_+)$ and let $\mathbf{w} = (w_n)_{n \ge 1}$ be a bounded sequence of positive real numbers. The weighted shifts on X is given by $B_{\mathbf{w}}(x) = (w_1x_1, w_2x_2, \cdots)$, where $x = (x_0, x_1, \cdots) \in X$. Let e_n be the canonical basis for $X, n \ge 0$. Then

$$B_{\mathbf{w}}^{n}x = \sum_{r=0}^{\infty} w_{r+1} \cdots w_{r+n} x_{r+n} e_{r}.$$

or

$$B_{\mathbf{w}}e_0 = 0, \quad B_{\mathbf{w}}e_r = w_r e_{r-1}$$

Suppose that the operator $B_{\mathbf{w}}$ is (m_k) -hypercyclic and let $x = (x_n)_{n \geq 0}$ be an (m_k) -hypercyclic vector for $B_{\mathbf{w}}$. Then for any $n \geq 1$ and $c_n > 0$, there exists a sequence (R_n) of subsets of \mathbb{N} , which is of positive lower (m_k) -density, such that for any $j \in R_n$,

$$\left\| B_{\mathbf{w}}^{j} x - c_{n} \sum_{r=0}^{n} e_{r} \right\| < \frac{1}{n}$$
 (3.9)

or

$$\left\| \sum_{r=0}^{\infty} w_{r+1} \cdots w_{r+j} x_{r+j} e_r - c_n \sum_{r=0}^{n} e_r \right\| < \frac{1}{n}$$

Thus, for $0 \le r \le n$, we have

$$|w_{r+1}\cdots w_{r+j}x_{r+j}-c_n|<\frac{1}{n}$$

or

$$c_n - \frac{1}{n} < |w_{r+1} \cdots w_{r+j} x_{r+j}| < c_n + \frac{1}{n}$$
 (3.10)

and for r > n,

$$|w_{r+1}\cdots w_{r+j}x_{r+j}| < \frac{1}{n}.$$
 (3.11)

Lemma 3.1. If the weighted shift $B_{\mathbf{w}}$ on X is (m_k) -hypercyclic, then there exists a sequence $(R_n)_{n\geq 1}$ of disjoint subsets of $\mathbb N$ such that for any $j\in R_n$ and any $l\in R_m$, $j\neq l$, we have

$$|j-l| \ge \max\{m, n\}. \tag{3.12}$$

Proof. For any $j \in R_n$, suppose that $j + r \in R_m$, where $0 \le r \le n$ and $1 \le m < n$. Then, for $0 \le l \le m$,

$$c_m - \frac{1}{m} < |w_{l+1} \cdots w_{l+j+r} x_{l+j+r}| < c_m + \frac{1}{m}$$

and for l > m,

$$|w_{l+1}\cdots w_{l+j+r}x_{l+j+r}| < \frac{1}{m} < c_m + \frac{1}{m}$$

Thus for any $l \geq 0$, we have

$$|w_{l+1}\cdots w_{l+j+r}x_{l+j+r}| < c_m + \frac{1}{m}$$

Let l = n - r. Then

$$|w_{n-r+1}\cdots w_{n+j}x_{n+j}| < c_m + \frac{1}{m}$$

and

$$|w_{n-r+1}\cdots w_n|\cdot |w_{n+1}\cdots w_{n+j}x_{n+j}| < c_m + \frac{1}{m}.$$

Since the weight sequence $(w_n)_{n\geq 1}$ is bounded, there is a number M>0 such that $|w_n|\leq M$ for all $n\geq 1$. By applying (3.10) to the above inequality, we get

$$\left(c_n - \frac{1}{n}\right) \cdot M^r < c_m + \frac{1}{m}.\tag{3.13}$$

Similarly, if $j - r \in R_m$, we get

$$c_n - \frac{1}{n} < M^r \cdot \left(c_m + \frac{1}{m}\right). \tag{3.14}$$

Also, for the case when n = m, we have

$$c_n - \frac{1}{n} < \frac{1}{n} \cdot M^r \tag{3.15}$$

for $j - r \in R_n$. Thus, if we choose the sequence $(c_n)_{n > 1}$ to satisfy the condition

$$c_n - \frac{1}{n} \ge \max \left\{ \frac{1}{M^r} \left(c_m + \frac{1}{m} \right), M^r \left(c_m + \frac{1}{m} \right), \frac{M^r}{n} \right\},$$

then the sequence $(R_n)_{n\geq 1}$ satisfies the separation property (3.12).

Let $R = \bigcup_{n \ge 1} R_n$ and let $(r_n)_{n \ge 1}$ be the enumeration of R. For each $n \ge 1$, let $(n_i)_{i \ge 1}$

be the subsequence of $(r_n)_{n\geq 1}$, which is the enumeration of R_n . Then the separation property (3.12) can be given as follows

$$|n_i - m_i| > \max\{m, n\}$$
 for all $i, j > 1$.

We also may assume that the sequence $(c_n)_{n\geq 1}$ is increasing and $\lim_{n\to\infty} c_n = \infty$.

Theorem 3.2. Let $B_{\mathbf{w}}$ be the backward shift associated to the weight sequence $\mathbf{w} = (w_n)_{n\geq 1}$. If $B_{\mathbf{w}}$ is (m_k) -hypercyclic, then there exists a set $\{(n_i)_{i\geq 1}\mid n\geq 1\}$ of pairwise disjoint sequences of positive integers such that

1. for any $j \ge 0$, any n > j

$$\sum_{i=1}^{\infty} \frac{e_{n_i+j}}{w_1 \cdots w_{n_i+j}}$$

converges unconditionally;

2. for any $j \ge 0$, any n > j, any $l \ge 1$

$$\left\| \sum_{\nu=1}^{\infty} \frac{e_{n_{\nu}-l_i+j}}{w_{1+j}\cdots w_{n_{\nu}-l_i+j}} \right\| \leq \frac{1}{l} M_n$$

where $M_n \to 0$ as $n \to \infty$.

Proof. (a) Let $0 \le j \le n$ and let x be a (m_k) -hypercyclic vector for $B_{\mathbf{w}}$. Then by (3.10),

$$c_n - \frac{1}{n} < |w_{j+1} \cdots w_{j+n_i} x_{j+n_i}| < c_n + \frac{1}{n}$$

and so

$$\frac{c_n - \frac{1}{n}}{|w_{j+1} \cdots w_{j+n_i}|} < |x_{j+n_i}| \tag{3.16}$$

Now, we have

$$\left\| \sum_{i=1}^{\infty} \frac{e_{j+n_i}}{w_1 \cdots w_{j+n_i}} \right\|$$

$$= \left\| \sum_{i=1}^{\infty} \frac{1}{w_1 \cdots w_j} \cdot \frac{e_{j+n_i}}{w_{j+1} \cdots w_{j+n_i}} \right\|$$

$$\leq \left\| \sum_{i=1}^{\infty} \frac{x_{j+n_i} e_{j+n_i}}{w_1 \cdots w_j} \right\| \cdot \frac{1}{c_n - \frac{1}{n}} \quad \text{by (3.16)}$$

$$\left\| \sum_{i=1}^{\infty} \frac{e_{j+n_i}}{w_1 \cdots w_{j+n_i}} \right\| \leq \frac{1}{|w_1 \cdots w_j|} \frac{\|x\|}{c_n - \frac{1}{n}}$$

$$\to 0 \quad \text{as } n \to \infty$$

Thus $\sum_{i=1}^{\infty} \frac{e_{n_i+j}}{w_1 \cdots w_{n_i+j}}$ converges unconditionally.

(b) Let $n > j \ge 0, l \ge 1$. Then by the definition of the sequence $(l_i)_{i \ge 1}$, we have

$$\frac{1}{l} > \left\| B_{\mathbf{w}}^{l_i} x - c_l \sum_{\nu=0}^{l} e_{\nu} \right\|
= \left\| \sum_{\nu=1}^{\infty} w_{\nu+1} \cdots w_{\nu+l_i} x_{\nu+l_i} e_{\nu} - c_l \sum_{\nu=0}^{l} e_{\nu} \right\|
= \left\| \sum_{\nu=l+1}^{\infty} w_{\nu+1} \cdots w_{\nu+l_i} x_{\nu+l_i} e_{\nu} \right\|
+ \sum_{\nu=0}^{l} \{ w_{\nu+1} \cdots w_{\nu+l_i} - c_l \} e_{\nu} \right\|$$

$$\geq \left\| \sum_{v=l+1}^{\infty} w_{v+1} \cdots w_{v+l_i} x_{v+l_i} e_v \right\|$$

$$\geq \left\| \sum_{v=l+1}^{\infty} w_{v+1+j} \cdots w_{v+l_i+j} x_{v+l_i+j} e_{v+j} \right\|$$

$$\geq \left\| \sum_{v=1}^{\infty} w_{n_v-l_i+1+j} \cdots w_{n_v+j} x_{n_v+j} e_{n_v-l_i+j} \right\|$$

$$= \left\| \sum_{v=1}^{\infty} \frac{w_{j+1} \cdots w_{n_v+j}}{w_{j+1} \cdots w_{n_v-l_i+j}} x_{n_v+j} e_{n_v-l_i+j} \right\|$$

Thus we have

$$\frac{1}{l} \ge (c_n - \frac{1}{n}) \left\| \sum_{v=1}^{\infty} \frac{e_{n_v - l_i + j}}{w_{j+1} \cdots w_{n_v - l_i + j}} \right\|$$

or

$$\left\| \sum_{\nu=1}^{\infty} \frac{e_{n_{\nu} - l_{i} + j}}{w_{j+1} \cdots w_{n_{\nu} - l_{i} + j}} \right\| \leq \frac{1}{l} \cdot \frac{1}{c_{n} - \frac{1}{n}}.$$

Theorem 3.3. Let $B_{\mathbf{w}}$ be a weighted shift on X. Then $B_{\mathbf{w}}$ is (m_k) -hypercyclic if and only if $B_{\mathbf{w}}$ satisfies the (m_k) -hypercyclicity criterion.

Proof. By Theorem 2.4, we have only to show that if $B_{\mathbf{w}}$ is (m_k) -hypercyclic, $B_{\mathbf{w}}$ satisfies the (m_k) -hypercyclicity criterion.

Let $B_{\mathbf{w}}$ be (m_k) -hypercyclic, then there is a set $\{(n_i)_{i\geq 1}\mid n\geq 1\}$ of disjoint sequences satisfying the conditions given in Theorem 3.2. Let $S(x_0,x_1,\cdots)=(0,\frac{x_0}{w_1},\frac{x_1}{w_2},\cdots)$ and let $Y_0=\operatorname{span}\{e_{\nu}\mid \nu\geq 1\}$. First note that

$$B_{\mathbf{w}}^{n} S^{i} x = \begin{cases} B_{\mathbf{w}}^{n-i} x, & \text{if } n > i, \\ S^{i-n} x, & \text{if } n < i, \\ x, & \text{if } n = i \end{cases}$$

Let $j \ge 0$. For any n > j, we have

$$\sum_{\nu=1}^{\infty} S^{n_{\nu}} e_{j} = \sum_{\nu=1}^{\infty} \frac{e_{n_{\nu}+j}}{w_{1+j} \cdots w_{n_{\nu}+j}}$$
$$= w_{1} \cdots w_{j} \cdot \sum_{\nu=1}^{\infty} \frac{e_{n_{\nu}+j}}{w_{1} \cdots w_{n_{\nu}+j}}.$$

By Theorem 3.2, the sum converges unconditionally, for all n > j and this shows the condition 1 in Theorem 2.4.

Let $j \ge 0$. For any n > j, we have $l_i - n_v \ge \max\{l, n\} > j$. Thus

$$\sum_{\nu=1}^{\infty} B_{\mathbf{w}}^{l_i - n_{\nu}} e_j = 0,$$

which proves the condition 3.

Since

$$S^{n_v-l_i}e_j = \frac{e_{n_v-l_i+j}}{w_{1+j}\cdots w_{n_v-l_i+j}},$$

by Theorem 3.2,

$$\left\| \sum_{\nu=1}^{\infty} S^{n_{\nu} - l_{i}} e_{j} \right\| = \left\| \sum_{\nu=1}^{\infty} \frac{e_{n_{\nu} - l_{i} + j}}{w_{1+j} \cdots w_{n_{\nu} - l_{i} + j}} \right\|$$

$$\leq \frac{1}{l} \cdot \frac{1}{c_{n} - \frac{1}{n}}$$

If $n \to \infty$, then $\|\sum_{\nu=1}^{\infty} S^{n_{\nu}-l_i} e_j\| \to 0$. Thus for any $\epsilon >$ and $l \ge 1$, we have

$$\left\| \sum_{\nu=1}^{\infty} S^{n_{\nu} - l_{i}} e_{j} \right\| < \epsilon \text{ and this shows the condition 2.}$$

References

- [1] F. Bayart and S. Grivaux, Frequently hypercyclic operators, Trans. Amer. Math. Soc. **358** (2006), 5083–5117.
- [2] F. Bayart and E. Matheron, *Dynamics of Linear Operators*, Camb. Univ. Press. **179** (2009).
- [3] F. Bayart and E. Matheron, (Non)-weakly mixing operators and hypercyclicity sets, Ann. Inst. Fourier (Grenoble) **59** (2009), no. 1, 1–35.
- [4] J. Bés, Q. Menet, A. Peris and Y. Puig, Recurrence properties of hypercyclic operators, Math. Ann. arXiv:1410.1349[math.FA]
- [5] A. Bonilla and K.-G. Grosse-Erdmann, Frequently hypercyclic operators and vectors, Ergodic Theory Dynamical Systems 27 (2007), 383–404. Erratum: Ergodic Theory Dynamical Systems 29 (2009), 1993–1994.
- [6] R.M. Gethner and J.H. Shapiro Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. **100**(1987), 281–288.
- [7] K.-G. Grosse-Erdmann and A. Peris, *Linear Chaos*, Springer Universitext, (2011).

- [8] M. Gupta and A. Mundayadan, q-frequently hypercyclic operators, Banach J. Math. Anal. **9** (2015), 114–126.
- [9] C. Heil, A Basis Theory Primer: Expanded Edition, Birkhäuser-Basel, (2011).
- [10] C. Kitai, Invariant closed sets for linear operators, Ph.D. Dissertation, Univ. of Toronto, Toronoto 1982.