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Abstract

In [5], we studied the degenerate g-tangent numbers and polynomials associated
with p-adic integral on Z,,. In this paper, by using the symmetry of p-adic integral
on Z,, we give recurrence identities the degenerate g-tangent polynomials and the
generalized factorial sums.
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1. Introduction

L. Carlitz introduced the degenerate Bernoulli polynomials(see [1]). Feng Qi et al. [2]
studied the partially degenerate Bernoull polynomials of the first kind in p-adic field. T.
Kim studied the Barnes’ type multiple degenerate Bernoulli and Euler polynomials (see
[3]), Recently, Ryoo introduced the degenerate g-tangent numbers 7, , (1) and polyno-
mials 7, 4(x, A) (see [5]). In this paper, by using these numbers and polynomials, we
give some interesting relations between the generalized factorial sums and the degenerate
q-tangent polynomials.

Let p be a fixed odd prime number. Throughout this paper we use the following
notations. By Z, we denote the ring of p-adic rational integers, @, denotes the field of
rational numbers, N denotes the set of natural numbers, C denotes the complex number
field, C,, denotes the completion of algebraic closure of Q,,, N denotes the set of natural
numbers and Z; = N U {0}, and C denotes the set of complex numbers.

Let v, be the normalized exponential valuation of C, with |p|, = p~r?) = p~1.
When one talks of g-extension, g is considered in many ways such as an indeterminate, a
complex number g € C, or p-adic number g € C,. If g € C one normally assumes that
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1
lgl < 1.Ifq € C,, we normally assume that|g—1|, < p~ 7T sothatg™ = exp(x logq)
for |x|, < 1. For

g € UD(Z,) = {glg : Z, — C, is uniformly differentiable function},
the fermionic p-adic invariant integral on Z, is defined by Kim as follows:

pN—1

L4@)=/Qg@MM4Q0=AEgDE:gQX—Dﬁ (see [2, 3]). (1.1)
x=0

P

If we take g1(x) = g(x + 1) in (1.1), then we see that

I-1(g1) + 1-1(g) = 2g(0), (see [2, 3]). (1.2)

We recall that the classical Stirling numbers of the first kind Sy (n, k) and S>(n, k) are
defined by the relations (see [7])

(W = ) S, ) and x" = 3 S, k)W),
k=0 k=0

respectively. Here (x), = x(x—1) - - - (x —n+1) denotes the falling factorial polynomial
of order n. We also have

o0 n r_1ym o n m
E S»(n, m)t — u and 2 Si(n, m)t_ — M_ (1.3)
= m! n!

E - m!
n=m

The generalized falling factorial (x|1), with increment A is defined by

n—1
@l =[x = 2k) (1.4)
k=0
for positive integer n, with the convention (x|A)g = 1. We also need the binomial
theorem: for a variable x,
o0 t”
(1A= (xlha—. (1.5)
S n!
n=

1
For t, A € Z, such that [At], < p 77T, if we take g(x) = ¢ (1 + )Lt)z"/A in (1.2), then
we easily see that

2
g+  +1°

/ g A+ > du_y(x) =
Z

P
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Let us define the degenerate g-tangent numbers 7, ,(A) and polynomials 7, ,(x, 1) as

follows:
0 n

/ g (L + 2> dpu () = Tn,qm%, (1.6)
Zl’ n=0 :

/ ¢+ AT dp (3 =Y Tog(x, A)%. (1.7)
Zp n=0 ’

By (1.6) and (1.7), we obtain the following Witt’s formula.

Theorem 1.1. For n > 0, we have

n

Tog@ ) =Y (’Z)ﬁ,q@)(xM)n_z.

=0

Theorem 1.2. Forn € Z,, we have

/% g 2x|Mpdp—1(x) = 771,(]00»

)4

/Z qy(x + 2y|)")nd/fb—l(y) = 7;1,q(x» A).

P

Recently, many mathematicians have studied in the area of the g-analogues of the
degenerate Bernoulli umbers and polynomials, Euler numbers and polynomials, tangent
numbers and polynomials (see [2, 3, 5, 7]). Our aim in this paper is to obtain symmetric
properties for the degenerate g-tangent numbers and polynomials. We investigate some
properties which are related to degenerate g-tangent polynomials 7, ,(x, A) and the
generalized factorial sums.

2. The alternating generalized factorial sums and
g-tangent polynomials

In this section, we assume thatg € C with |¢| < 1. By using (1.6), we give the alternating
generalized factorial sums as follows:

> " 2 > o/
> Tng()— = =23 (=1"g" (1 + a0,

From the above, we obtain

(,¢] oo
=Y (=D (14 AT LN 1y g (1 4wy
n=0 n=0

k—1
n=0
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By using (1.6) and (1.7), we obtain
_EZTj,q(zk)ﬁJrz(—l) q ZTMﬁ
Jj=0 j=0

o0 k—1 j
=> ((—D‘kq‘k > (=1)"q"2nlr) j) %

j=0 n=0
i
By comparing coefficients of 5 in the above equation, we obtain

J!

k-1 k+1,k
-1 Tiq(2k) +T;

S 1y @nly,; = ’2"1( )+ Tia,
n=0

By using the above equation we arrive at the following theorem:

Theorem 2.1. Let k be a positive integer and ¢ € C with |¢g| < 1. Then we obtain

k—1 k+1,k
~1 T (2k) +T;
Sj,q(k—1,A)=Z(—1)"q"(2n|x)j=( "4 12"’( )+ 754 2.1)
n=0

Remark 2.2. For the alternating generalized factorial sums, we have

k—1 k+1
, ) (—D*IT k) + T
Jim Stk = 1) = 3 @l = I

where 7; (x) and 7; denote the tangent polynomials and the tangent numbers, respectively
(see [6]).

3. Symmetry properties of the g-deformed fermionic integral on Z,

In this section, we assume that g € C p- In this section, we obtain recurrence identities
the degenerate g-tangent polynomials and the alternating generalized factorial sums. By
using (1.1), we have

n—1

Ii(gn) + (D" (@) =2) (=1 e,
k=0

where n € N, g,(x) = g(x 4+ n). If n is odd from the above, we obtain

n—1

I1(gn) + 1-1(8) =2 (="' g (k) (see [21, [3], [4], [5)). (3.1)

k=0



Symmetric properties for the degenerate q-tangent polynomials 2823

It will be more convenient to write (3.1) as the equivalent integral form

n—1
/ g(x +mdp—1 () + fZ gdu_i () =23 (=" e (32)
p k=0

Zp

Substituting g(x) = ¢* (1 4+ Ar)**/* into the above, we obtain

/ q(x+n)(l —|—)\t)(2x+2n)/)hdl£—l(x) —I—/ qx(l +)Lt)2x/kdﬂ—l(x)
Z, Zp

- (3.3)
=2 (=g’ (1 + r)¥"*.
=0

After some calculations, we have

2
g1+ )2+ 1°

/ g (142> dp_y(x) =
7

’ ) (3.4)
(x+n) 1 At (2x+2n)/kd B —a"(1 At 2n /X1 )
prq (14 Ar) pot () = g" (L
By using (3.3) and (3.4), we have
/ g (1 + A @ dp_ (x) + f " (L + ) dp_y (x)
Zp ZP
201+ ¢" (1 +an)*/%)
gL+ 1
From the above, we get
/ q(X'H’l)(l +)\‘t)(2x+2n)/)»du_l(x)+‘/\ QX(l _{_)Lt)zx/)»du/_l(x)
ZP ZP
2 [y, (1 + 20> dp i (x) -)

Lo @ (AP ()

By (3.3), we obtain

o0
2. ( / g x + 2nmd o1 (x) + f
m=0 Zp Z

n— m

00 1
S t
= 2ZO<—1>qu<2J|A>m —
j:

m=0

m

m!

qx(2xlk)mdu—1(x))

P
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m

t
By comparing coefficients — in the above equation, we obtain
m!
=\ (m
"> |, )M / q* Qx| Mdp_1(x) + / 7" Qx| V)md -1 (x)
k z z
k=0 p P
n—1
=2) (-1)/q’2j1Mm
j=0

By using (2.1), we have

~ m
qn ( )(zn)m—k /

=28u,4(n—1,1).
By using (3.5) and (3.6), we arrive at the following theorem:

gF2okdp_(x) + f ¢ (20" dp_ (x)

p ZP

(3.6)

Theorem 3.1. Let n be odd positive integer. Then we obtain

2 [y " A+ Prdpg () & o
nx (1] 4 ap)2nx/rg = Z (ZSm,q(” -1, )&)) —- (3.7)
fZ,, g™ (1 + A1) p-1(x) = m!

Let w; and w; be odd positive integers. By using (3.7), we have
pr pr q(w1X1+w2X2)(1 + M)(wﬂxl+w22X2+w1w2X)//\dM_l(xl)du_l(xz)
Sz, 4" (L AP (1)
2(1 4 Arywrwax/> (guiwz(] 4 pp)2wiwa/r 4 1)
C(@Ur (L AP+ 1) (g (1 + AR/ )

By using (3.7) and (3.8), after elementary calculations, we obtain

(1/
a=|—-
2z
2 [z, q" (L4 A2 dp (x)
x X 2wiwax /A
Jz, @ (L A2 idp (x)

1 — A " > A t"
= (5 Z 77“’61‘”1 (U)Qx, w_1> w'ln%) (Zmz_%Sm,qwz (U)] — 1, w_2> W?%> .

m=0

(3.8)

14

qW1X1 (a1 + kt)(w12x1+w‘w2x)/’\du_1 (M))

By using Cauchy product in the above, we have

(& (m A : A ~
a:E E Tigom [ wax, — w!Sp_igm (w; =1, — Jwy 7 | —.
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By using the symmetry in (3.9), we have

qngz(l + At)(ll)gzxz-f—wlwzx)/)»du/—l(XZ))

2/, qw‘x1(1+ll)2x‘w1/kdu 1(x1)
f qwlwzx(1+kt)2w1w2x/KdM ](x)

_ T A mt" S | A mt"
—\2 2) m.g"2 | WX, u)_2 L) ! 2) mqv1 | w2 — 1, w_l wi i
m= m=

Thus we have

00 m m A j A m—j tm
a= Z Z . 7}#“)2 wl'xv w_2 wZSm_J’qwl w2 — 1, - wl -

!
m=0 \ j=0 J] w1 n:
(3.11)
tm
By comparing coefficients — in the both sides of (3.10) and (3.11), we arrive at the
m:

following theorem:

Theorem 3.2. Let w; and w; be odd positive integers. Then we obtain

" /m A A :
)T (wlx,—)S —j.q™ (wz—l >ij -/
g(:)(]) J-q wy ) I W 2 Wy
m
m A A ;
= Tigm { wax, — ) Sy i gw2 | w; — 1, w! w)' ],
Z(]) 1411(2 wl>m17q2(1 wz) 1 W

where Ty 4(x) and 7, 4 (k) denote the degenerate g-tangent polynomials and the alter-
nating generalized factorial sums, respectively (see [5]).

By using Theorem 2, we have the following corollary:

Corollary 3.3. Let w; and w; be odd positive integers. Then we obtain

LI ' o A A
3 (1) ()t ot (melys) s () st
=0 k=0 W2/ j—k w2
m T\ : A A
= Z ( ) <k> w{ wgl_] (wpc‘—) Tj gm <—> Sm—j.qu2(wy —1).
j=0k=0 / WL j—k o

~.
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By using (3.8), we have

1
a= (5(1 + M)“”W/kfZ g""" (1 + M)Z’”wl/kd“_l(x}))
P

2 [, 4" (L4 a2 dpy (x2)
x 2wiwax /A
Sz, amreE (L4 a2 idp_ (x)

1
— (5(1 +)Lt)w1w2x/A/ qwlxl(l +)\.f)2xlwl/kdﬂ_l(X1))
ZP

w-l . (3.12)
x |2 (=1)7g™I (14 an)>v/
j=0
Y
wi—1 <2x1+w2x+ ]wz)(wl)/k
Wi dp—1(x1)

= > (~1)g" f g" 1 (1 + )
j=0 Zr

o0 w1—1 .
Lo 2jwy A t"
= E E (—l)]qwu'ﬁ,,qvﬂ (wzx + , —) w’f —.

w w n!
n=0 \ j=0 ! 1

By using the symmetry property in (3.12), we also have

a=(Lta +At)wlw2x“/
2 z,

2[5, @ (L4 D™ A d oy (x)
X 2wiwax /A
Sz, @ (L4 An2eesidp_ (x)

q" (1 + Ar)zn’”“du_l(xz))

1
= (5(1 + )t f g" (1 + )\f)zxzwzmdlfv—l(xz))

Zp

wzz—l . — (3.13)
x [2 3 (=1)7g"I 1 + an?
Jj=0

2
wor—1 . ' (2x2+w1x+
=Y (=1ig™ / "> (1 + t) w2 dp—1(x1)
—0 Z,

00 wor—1 .
S 2jw; A "
= E E (=1 g™ Ty g (wlx + 22 —) wy | —.

w w
n=0 \ j—=0 2 "2

n

t
By comparing coefficients - in the both sides of (3.12) and (3.13), we have the following
n!

theorem.
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Theorem 3.4. Let w; and w, be odd positive integers. Then we obtain

wy;—1

. . 2jwy A
Z (=17 q"* Ty g <w2x + =22 —) w!

w w
ot 1 1

vl 2jw; A
= Z (—I)quljn,qwz <w1x + J 1, —) wg
j=0

w2 w2

Observe that if A — 0, then Theorem 9 reduces to Theorem 3.4 in [4]. Substituting
w; = 1 into Theorem 9, we have the following corollary.

Corollary 3.5. Let w; be odd positive integer. Then we obtain

wy—1 .
.o x+2j X
7‘ — n —1 J ]7' w ,— .
n,q(x) Wy ;:O( ) q n,q"2 ( ws w2>
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