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Abstract

In [5], we studied the degenerate q-tangent numbers and polynomials associated
with p-adic integral on Zp. In this paper, by using the symmetry of p-adic integral
on Zp, we give recurrence identities the degenerate q-tangent polynomials and the
generalized factorial sums.
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1. Introduction

L. Carlitz introduced the degenerate Bernoulli polynomials(see [1]). Feng Qi et al. [2]
studied the partially degenerate Bernoull polynomials of the first kind in p-adic field. T.
Kim studied the Barnes’ type multiple degenerate Bernoulli and Euler polynomials (see
[3]), Recently, Ryoo introduced the degenerate q-tangent numbers Tn,q(λ) and polyno-
mials Tn,q(x, λ) (see [5]). In this paper, by using these numbers and polynomials, we
give some interesting relations between the generalized factorial sums and the degenerate
q-tangent polynomials.

Let p be a fixed odd prime number. Throughout this paper we use the following
notations. By Zp we denote the ring of p-adic rational integers, Qp denotes the field of
rational numbers, N denotes the set of natural numbers, C denotes the complex number
field, Cp denotes the completion of algebraic closure of Qp, N denotes the set of natural
numbers and Z+ = N ∪ {0}, and C denotes the set of complex numbers.

Let νp be the normalized exponential valuation of Cp with |p|p = p−νp(p) = p−1.

When one talks of q-extension, q is considered in many ways such as an indeterminate, a
complex number q ∈ C, or p-adic number q ∈ Cp. If q ∈ C one normally assumes that
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|q| < 1. If q ∈ Cp, we normally assume that |q−1|p < p
− 1

p−1 so that qx = exp(x log q)

for |x|p ≤ 1. For

g ∈ UD(Zp) = {g|g : Zp → Cp is uniformly differentiable function},
the fermionic p-adic invariant integral on Zp is defined by Kim as follows:

I−1(g) =
∫

Zp

g(x)dµ−1(x) = lim
N→∞

pN−1∑
x=0

g(x)(−1)x, (see [2, 3]). (1.1)

If we take g1(x) = g(x + 1) in (1.1), then we see that

I−1(g1) + I−1(g) = 2g(0), (see [2, 3]). (1.2)

We recall that the classical Stirling numbers of the first kind S1(n, k) and S2(n, k) are
defined by the relations (see [7])

(x)n =
n∑

k=0

S1(n, k)xk and xn =
n∑

k=0

S2(n, k)(x)k,

respectively. Here (x)n = x(x−1) · · · (x−n+1) denotes the falling factorial polynomial
of order n. We also have

∞∑
n=m

S2(n, m)
tn

n! = (et − 1)m

m! and
∞∑

n=m

S1(n, m)
tn

n! = (log(1 + t))m

m! . (1.3)

The generalized falling factorial (x|λ)n with increment λ is defined by

(x|λ)n =
n−1∏
k=0

(x − λk) (1.4)

for positive integer n, with the convention (x|λ)0 = 1. We also need the binomial
theorem: for a variable x,

(1 + λt)x/λ =
∞∑

n=0

(x|λ)n
tn

n! . (1.5)

For t, λ ∈ Zp such that |λt |p < p
− 1

p−1 , if we take g(x) = qx(1 + λt)2x/λ in (1.2), then
we easily see that ∫

Zp

qx(1 + λt)2x/λdµ−1(x) = 2

q(1 + λt)2/λ + 1
.
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Let us define the degenerate q-tangent numbers Tn,q(λ) and polynomials Tn,q(x, λ) as
follows: ∫

Zp

qy(1 + λt)2y/λdµ−1(y) =
∞∑

n=0

Tn,q(λ)
tn

n! , (1.6)

∫
Zp

qy(1 + λt)(2y+x)/λdµ−1(y) =
∞∑

n=0

Tn,q(x, λ)
tn

n! . (1.7)

By (1.6) and (1.7), we obtain the following Witt’s formula.

Theorem 1.1. For n ≥ 0, we have

Tn,q(x, λ) =
n∑

l=0

(
n

l

)
Tl,q(λ)(x|λ)n−l .

Theorem 1.2. For n ∈ Z+, we have∫
Zp

qx(2x|λ)ndµ−1(x) = Tn,q(λ),∫
Zp

qy(x + 2y|λ)ndµ−1(y) = Tn,q(x, λ).

Recently, many mathematicians have studied in the area of the q-analogues of the
degenerate Bernoulli umbers and polynomials, Euler numbers and polynomials, tangent
numbers and polynomials (see [2, 3, 5, 7]). Our aim in this paper is to obtain symmetric
properties for the degenerate q-tangent numbers and polynomials. We investigate some
properties which are related to degenerate q-tangent polynomials Tn,q(x, λ) and the
generalized factorial sums.

2. The alternating generalized factorial sums and
q-tangent polynomials

In this section, we assume that q ∈ C with |q| < 1. By using (1.6), we give the alternating
generalized factorial sums as follows:

∞∑
n=0

Tn,q(λ)
tn

n! = 2

q(1 + λt)2/λ + 1
= 2

∞∑
n=0

(−1)nqn(1 + λt)2n/λ.

From the above, we obtain

−
∞∑

n=0

(−1)nqn(1 + λt)(2n+2k)/λ +
∞∑

n=0

(−1)n−kq(n−k)(1 + λt)2n/λ

=
k−1∑
n=0

(−1)n−kq(n−k)(1 + λt)2n/λ.
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By using (1.6) and (1.7), we obtain

− 1

2

∞∑
j=0

Tj,q(2k)
tj

j ! + 1

2
(−1)−kq−k

∞∑
j=0

Tj,q

tj

j !

=
∞∑

j=0

(
(−1)−kq−k

k−1∑
n=0

(−1)nqn(2n|λ)j

)
tj

j ! .

By comparing coefficients of
tj

j ! in the above equation, we obtain

k−1∑
n=0

(−1)nqn(2n|λ)j = (−1)k+1qkTj,q(2k) + Tj,q

2
.

By using the above equation we arrive at the following theorem:

Theorem 2.1. Let k be a positive integer and q ∈ C with |q| < 1. Then we obtain

Sj,q(k − 1, λ) =
k−1∑
n=0

(−1)nqn(2n|λ)j = (−1)k+1qkTj,q(2k) + Tj,q

2
. (2.1)

Remark 2.2. For the alternating generalized factorial sums, we have

lim
q→1

Sj,q(k − 1) =
k−1∑
n=0

(−1)n(2n|λ)j = (−1)k+1Tj (2k) + Tj

2
,

where Tj (x) and Tj denote the tangent polynomials and the tangent numbers, respectively
(see [6]).

3. Symmetry properties of the q-deformed fermionic integral on Zp

In this section, we assume that q ∈ Cp. In this section, we obtain recurrence identities
the degenerate q-tangent polynomials and the alternating generalized factorial sums. By
using (1.1), we have

I−1(gn) + (−1)n−1I−1(g) = 2
n−1∑
k=0

(−1)n−1−kg(k),

where n ∈ N, gn(x) = g(x + n). If n is odd from the above, we obtain

I−1(gn) + I−1(g) = 2
n−1∑
k=0

(−1)n−1−kg(k) (see [2], [3], [4], [5]). (3.1)



Symmetric properties for the degenerate q-tangent polynomials 2823

It will be more convenient to write (3.1) as the equivalent integral form

∫
Zp

g(x + n)dµ−1(x) +
∫

Zp

g(x)dµ−1(x) = 2
n−1∑
k=0

(−1)n−1−kg(k). (3.2)

Substituting g(x) = qx(1 + λt)2x/λ into the above, we obtain∫
Zp

q(x+n)(1 + λt)(2x+2n)/λdµ−1(x) +
∫

Zp

qx(1 + λt)2x/λdµ−1(x)

= 2
n−1∑
j=0

(−1)jqj (1 + λt)2j/λ.

(3.3)

After some calculations, we have∫
Zp

qx(1 + λt)2x/λdµ−1(x) = 2

q(1 + λt)2/λ + 1
,∫

Zp

q(x+n)(1 + λt)(2x+2n)/λdµ−1(x) = qn(1 + λt)2n/λ 2

q(1 + λt)2/λ + 1
.

(3.4)

By using (3.3) and (3.4), we have∫
Zp

q(x+n)(1 + λt)(2x+2n)/λdµ−1(x) +
∫

Zp

qx(1 + λt)2x/λdµ−1(x)

= 2(1 + qn(1 + λt)2n/λ)

q(1 + λt)2/λ + 1
.

From the above, we get∫
Zp

q(x+n)(1 + λt)(2x+2n)/λdµ−1(x) +
∫

Zp

qx(1 + λt)2x/λdµ−1(x)

=
2

∫
Zp

qx(1 + λt)2x/λdµ−1(x)∫
Zp

qnx(1 + λt)2nx/λdµ−1(x)
.

(3.5)

By (3.3), we obtain

∞∑
m=0

(∫
Zp

q(x+n)(2x + 2n|λ)mdµ−1(x) +
∫

Zp

qx(2x|λ)mdµ−1(x)

)
tm

m!

=
∞∑

m=0


2

n−1∑
j=0

(−1)jqj (2j |λ)m


 tm

m!



2824 C. S. Ryoo

By comparing coefficients
tm

m! in the above equation, we obtain

qn

m∑
k=0

(
m

k

)
(2n|λ)m−k

∫
Zp

qx(2x|λ)kdµ−1(x) +
∫

Zp

qx(2x|λ)mdµ−1(x)

= 2
n−1∑
j=0

(−1)jqj (2j |λ)m

By using (2.1), we have

qn

m∑
k=0

(
m

k

)
(2n)m−k

∫
Zp

qx(2x)kdµ−1(x) +
∫

Zp

qx(2x)mdµ−1(x)

= 2Sm,q(n − 1, λ).

(3.6)

By using (3.5) and (3.6), we arrive at the following theorem:

Theorem 3.1. Let n be odd positive integer. Then we obtain

2
∫

Zp
qx(1 + λt)2x/λdµ−1(x)∫

Zp
qnx(1 + λt)2nx/λdµ−1(x)

=
∞∑

m=0

(
2Sm,q(n − 1, λ)

) tm

m! . (3.7)

Let w1 and w2 be odd positive integers. By using (3.7), we have∫
Zp

∫
Zp

q(w1x1+w2x2)(1 + λt)(w12x1+w22x2+w1w2x)/λdµ−1(x1)dµ−1(x2)∫
Zp

qw1w2x(1 + λt)2w1w2x/λdµ−1(x)

= 2(1 + λt)w1w2x/λ
(
qw1w2(1 + λt)2w1w2/λ + 1

)
(qw1(1 + λt)2w1/λ + 1)(qw2(1 + λt)2w2/λ + 1)

(3.8)

By using (3.7) and (3.8), after elementary calculations, we obtain

a =
(

1

2

∫
Zp

qw1x1(1 + λt)(w12x1+w1w2x)/λdµ−1(x1)

)

×
(

2
∫

Zp
qw2x2(1 + λt)2x2w2/λdµ−1(x2)∫

Zp
qw1w2x(1 + λt)2w1w2x/λdµ−1(x)

)

=
(

1

2

∞∑
m=0

Tm,qw1

(
w2x,

λ

w1

)
wm

1
tm

m!

) (
2

∞∑
m=0

Sm,qw2

(
w1 − 1,

λ

w2

)
wm

2
tm

m!

)
.

(3.9)

By using Cauchy product in the above, we have

a =
∞∑

m=0


 m∑

j=0

(
m

j

)
Tj,qw1

(
w2x,

λ

w1

)
w

j
1Sm−j,qw2

(
w1 − 1,

λ

w2

)
w

m−j
2


 tm

m! .

(3.10)
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By using the symmetry in (3.9), we have

a =
(

1

2

∫
Zp

qw2x2(1 + λt)(w22x2+w1w2x)/λdµ−1(x2)

)

×
(

2
∫

Zp
qw1x1(1 + λt)2x1w1/λdµ−1(x1)∫

Zp
qw1w2x(1 + λt)2w1w2x/λdµ−1(x)

)

=
(

1

2

∞∑
m=0

Tm,qw2

(
w1x,

λ

w2

)
wm

2
tm

m!

) (
2

∞∑
m=0

Sm,qw1

(
w2 − 1,

λ

w1

)
wm

1
tm

m!

)
.

Thus we have

a =
∞∑

m=0


 m∑

j=0

(
m

j

)
Tj,qw2

(
w1x,

λ

w2

)
w

j
2Sm−j,qw1

(
w2 − 1,

λ

w1

)
w

m−j
1


 tm

m!
(3.11)

By comparing coefficients
tm

m! in the both sides of (3.10) and (3.11), we arrive at the

following theorem:

Theorem 3.2. Let w1 and w2 be odd positive integers. Then we obtain

m∑
j=0

(
m

j

)
Tj,qw2

(
w1x,

λ

w2

)
Sm−j,qw1

(
w2 − 1,

λ

w1

)
w

j
2w

m−j
1

=
m∑

j=0

(
m

j

)
Tj,qw1

(
w2x,

λ

w1

)
Sm−j,qw2

(
w1 − 1,

λ

w2

)
w

j
1w

m−j
2 ,

where Tk,q(x) and Tm,q(k) denote the degenerate q-tangent polynomials and the alter-
nating generalized factorial sums, respectively (see [5]).

By using Theorem 2, we have the following corollary:

Corollary 3.3. Let w1 and w2 be odd positive integers. Then we obtain

m∑
j=0

j∑
k=0

(
m

j

)(
j

k

)
w

m−j
1 w

j
2

(
w1x

∣∣ λ

w2

)
j−k

Tk,qw2

(
λ

w2

)
Sm−j,qw1 (w2 − 1)

=
m∑

j=0

j∑
k=0

(
m

j

)(
j

k

)
w

j
1w

m−j
2

(
w2x

∣∣ λ

w1

)
j−k

Tk,qw1

(
λ

w1

)
Sm−j,qw2 (w1 − 1).
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By using (3.8), we have

a =
(

1

2
(1 + λt)w1w2x/λ

∫
Zp

qw1x1(1 + λt)2x1w1/λdµ−1(x1)

)

×
(

2
∫

Zp
qw2x2(1 + λt)2x2w2/λdµ−1(x2)∫

Zp
qw1w2x(1 + λt)2w1w2x/λdµ−1(x)

)

=
(

1

2
(1 + λt)w1w2x/λ

∫
Zp

qw1x1(1 + λt)2x1w1/λdµ−1(x1)

)

×

2

w1−1∑
j=0

(−1)jqw2j (1 + λt)2jw2/λ




=
w1−1∑
j=0

(−1)jqw2j

∫
Zp

qw1x1(1 + λt)

(
2x1+w2x+

2jw2

w1

)
(w1)/λ

dµ−1(x1)

=
∞∑

n=0


w1−1∑

j=0

(−1)jqw2jTn,qw1

(
w2x + 2jw2

w1
,

λ

w1

)
wn

1


 tn

n! .

(3.12)

By using the symmetry property in (3.12), we also have

a =
(

1

2
(1 + λt)w1w2x/λ

∫
Zp

qw2x2(1 + λt)2x2w2/λdµ−1(x2)

)

×
(

2
∫

Zp
qw1x1(1 + λt)2x1w1/λdµ−1(x1)∫

Zp
qw1w2x(1 + λt)2w1w2x/λdµ−1(x)

)

=
(

1

2
(1 + λt)w1w2x/λ

∫
Zp

qw2x2(1 + λt)2x2w2/λdµ−1(x2)

)

×

2

w2−1∑
j=0

(−1)jqw1j (1 + λt)2jw1/λ




=
w2−1∑
j=0

(−1)jqw1j

∫
Zp

qw2x2(1 + λt)

(
2x2+w1x+

2jw1

w2

)
(w2)/λ

dµ−1(x1)

=
∞∑

n=0


w2−1∑

j=0

(−1)jqw1jTn,qw2

(
w1x + 2jw1

w2
,

λ

w2

)
wn

2


 tn

n! .

(3.13)

By comparing coefficients
tn

n! in the both sides of (3.12) and (3.13), we have the following

theorem.
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Theorem 3.4. Let w1 and w2 be odd positive integers. Then we obtain

w1−1∑
j=0

(−1)jqw2jTn,qw1

(
w2x + 2jw2

w1
,

λ

w1

)
wn

1

=
w2−1∑
j=0

(−1)jqw1jTn,qw2

(
w1x + 2jw1

w2
,

λ

w2

)
wn

2 .

Observe that if λ → 0, then Theorem 9 reduces to Theorem 3.4 in [4]. Substituting
w1 = 1 into Theorem 9, we have the following corollary.

Corollary 3.5. Let w2 be odd positive integer. Then we obtain

Tn,q(x) = wn
2

w2−1∑
j=0

(−1)jqjTn,qw2

(
x + 2j

w2
,

λ

w2

)
.
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