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Abstract

The extension Weibull distribution is a new model generated from Weibull dis-
tribution to model the bathtub failure rate life time data. Characterized by three
parameters, this model has many advantages in applications. In this work, we pro-
pose the construction of a modified chi-squared goodness-of-fit test based on the
Nikulin-Rao-Robson (NRR) statistic for this distribution when the parameters are
unknown. This test is based on maximum likelihood estimators on non-grouped
data and follows chi-square distribution. Simulations and real data sets from reli-
ability and survival analysis are proposed to show the performances of the results
obtained through this study.

AMS subject classification: 62F03-62G05-62G10.
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1. Introduction

Weibull distribution still attracts a great deal of researchers and reliability engineers.
Depending on its shape parameter values, the failure rate can be decreasing describing
early failures, monotone indicative of useful life or increasing describing aging or wear-
out failures. Despite its flexibility, this distribution can not modelize the reliability
of some real systems, so many extended models have been discussed in the statistical
literature during recent years. Among these, we can mention the first generalization called
the exponentiated Weibull (EW) distribution, introduced by Mudholkar and Srivastava
(1993), for more details one can see Nadarajah et al. (2013), and the recent one, the
gamma exponentiated Weibull model proposed by Castellares and Lemonte (2015).

In this work we are mainly interested in the construction of a modified chi-squared
goodness-of-fit test for the extension Weibull model introduced by Xie et al. (2002).
This one is a new distribution generated from Weibull distribution to model the bath-
tub failure rate life time data. Characterized by three parameters, this model has many
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advantages in applications. It can be considered as generalizations of the model pro-
posed by Chen (2000) and the exponential power distribution studied by Smith and Bain
(1975). Statistical properties were detailed in Xie et al. (2004). Later and using Markov
chain Monte Carlo simulations, Gupta et al. (2008) provided bayesian analysis and
used graphical and numerical methods to fit real data to this distribution.They showed
that the extension Weibull distribution is more capable to model diverse problems than
the Weibull model does. Testing the validity of this model has not been investigated
yet what motivated us to propose a modified chi-squared goodness-of-fit test for this
distribution when the parameters are unknown. We shall adapt the Nikulin-Rao-Robson
(NRR) statistic proposed separately by Nikulin (1973) and Roa and Robson (1974). The
NRR statistic Y 2 based on maximum likelihood estimation on initial data, is a natural
modification of the wellknown Pearson statistic X2 and follows chi-square distribution.
When the parameters of the model are unknown, It was demonstrated that the Pearson
statistic X2 does not follow chi-square distribution and depends on the estimation method
used which makes the test inapplicable. So, different techniques were proposed to assess
the adequacy of models used in the analysis such as graphical methods, Hsuan–Robson–
Mirvaliev (HRM) statistic based on moment-type estimators, the Dzhaparidze–Nikulin
(DN) statistic (Dzhaparidze and Nikulin, 1974), the McCulloch test (McCulloch, 1985).

The paper is organized as follow. The extension Weibull distribution and the theory of
the NRR statistic are presented respectively in section 2 and 3. The section 4 is devoted to
the construction of a modified chi-squared goodness-of-fit test based on the NRR statistic
for the extension Weibull distribution and all the elements of the statistic Y 2 are given.
To evaluate our results, we conducted an intensive simulation study (10, 000 samples of
each size n = 30; n = 50; n = 100; n = 250; n = 500) and two examples of real data
from reliability and survival analysis are proposed in section 5. Anderson-Darling and
Kolmogorov-Smirnov statistics are also calculated.

2. Extension Weibull model

The cumulative density function of the extension Weibull model, characterized by α > 0
the scale parameter and β, λ > 0 shape parameters, is

F(t) = 1 − exp
{
−λα(e( t

α
)β − 1)

}
Its probability distribution function and hazard rate are defined by

f (t) = λβ

(
t

α
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The hazard rate h(t) can be increasing when β ≥ 1, and has a bathtub shape when
0 < β < 1, which enable it to be used in reliability applications and study and survival
analysis.
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3. Nikulin-Rao-Robson statistic test

Suppose that T1, T2, . . . , Tn is a n-sample from a parametric family F(t, θ) and consider
the problem of testing the hypothesis H0

H0 : P {Ti ≤ t \ H0} = F(t, θ), t ≥ 0,

where θ = (θ1, θ2, . . . , θ s)
T ∈ � ⊂ R

s represents the parameters vector.
The description of the Nikulin-Rao-Robson (NRR) test is given as follows.

sample data T1, T2, . . . , Tn are grouped in r sub-intervals I1, I2, . . . , Ir mutually disjoint
Ij =]aj−1, aj ], where j = 1, r.

The limit intervals aj are obtained such as

pj(θ) =
∫ aj

aj−1

f (t, θ)dt = 1

r
, j = 1, 2, . . . , r

So

aj = F−1
(

j

r

)
, j = 1, r − 1.

If ν = (ν1, ν2, . . . , νr)
T is the vector of the frequencies obtained by grouping data into

these intervals Ij

νj = card
{
i : Ti ∈ Ij , i = 1, 2, 3, . . . , n

}
the NRR statistic is defined by
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where

X2
n(θ) = XT

n (θ)Xn(θ)

with

Xn (θ) =
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, . . . ,
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)T

J (θ) is the information matrix for grouped data

J = J (θ) = B(θ)T B(θ)

with
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with

Lk

(
θ̂ n

)
=

r∑
j=1

νj

pj

∂pj

(
θ̂ n

)
∂θk

, k = 1, . . . , s

In(θ̂n) represents the Fisher information matrix and θ̂ n the maximum likelihood estimator
of the unknown parameter vector θ . The statistic Y 2

n follows asymptotically chi-squared
distribution χ2

r−1 with (r − 1) degrees of freedom. Based on maximum likelihood
estimators on non-grouped data, the NRR statistic Y 2 recover information lost while
grouping data. An overview on chi-squared tests applications is given in Voinov et al.
(2013).

4. Nikulin-Rao-Robson statistic for extension Weibull distribution

Consider a sample T = (T1, T2, . . . , Tn)
T . To verify if these data fit the extension

Weibull distribution, P(Ti ≤ t) = FEW(t, θ), with unknown parameters θ = (α, β, λ)T ,
we construct a modified chi-squared goodness-of-fit test by adapting the NRR statistic
developed in the previous section.

Data are grouped into Ij intervals with limits aj such as

âj = F−1
EW (j)

so,

âj =
αβ ln

1 −
ln

(
1 − j

r

)
λα


1
β

In order to provide the formula of the statistic Y 2

Y 2
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we calculate the statistic X2

n (θn) for the extension Weibull distribution which is deduced
from its reliabilty function S(t) because

pj = FEW

(
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therefore
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with υ = (υj )r is the frequencies of grouped data into the Ij intervals choosen.
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4.1. Calculation of the information matrix J (θ)

The components of the estimated symetric matrix
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Where the derivatives (ujk)r×s of the cumulative distribution function pj(θ) are given
in the simple form

uj1 = ∂pj (θ)
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uj2 = ∂pj (θ)
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)}
is the reliability function and h(aj ) the hazard rate function of the EW distribution.

4.2. Calculation of Fisher information matrix I (θ)

The elements of Fisher information matrix defined by

In(θ)i,j = −E

[
∂2 ln f (t, θ)

∂θ i∂θj

]
are necessary for the construction of Y 2 the NRR statistic. After several simplifications,
we obtain all the elements of I (θ):
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The statistic Y 2 does’nt depend on the parameters, so we can use the estimated

information matrix In

(
θ̂ n

)
.As all the components of Y 2 the NRR statistic for extension

Weibull model when the parameters are unknown, are provided, therefore Y 2 can be
deduced easily.

5. Simulations and application

To evaluate the results obtained in this work, we conducted an intensive simulation
study (10, 000 samples of different sizes). In order to show the effectiveness of the test
proposed in this work, we applied theses results to a real data set from reliability. In this
case, Anderson-Darling and Kolmogorov-Smirnov statistics are also calculated.

5.1. Maximum likelihood estimators

To demonstrate the performances of the maximum likelihood estimators, we generate
from extension Weibull distribution with the parameter values α = 0.8, β = 2.5, λ =
3.5, N = 10, 000 simulated samples (with sizes n = 30; n = 100; n = 250; n = 500).
Using the R software and Barzilai-Borwein algorithm (BB) (Ravi. V 2009), average
simulated values of the maximum likelihood estimators α̂, β̂, λ̂ parameters and their
mean square errors (MSE) are calculated and presented in Table 1.

Table 1: Maximum likelihood estimators of parameters and their mean square errors

N = 10, 000 n = 30 n = 50 n = 100 n = 250 n = 500
α̂ 0.8647 0.7731 0.8153 0.7939 0.7922

MSE 0.0041 0.0007 0.0002 3.60.e−05 6.03.e−05

β̂ 2.5697 2.4659 2.3876 2.4770 2.5510
MSE 0.0048 0.0011 0.0126 0.0005 0.0026

λ̂ 3.8013 3.7790 3.7300 3.5985 3.5018
MSE 0.0908 0.0778 0.0529 0.01214 3.25.e−06

The values of the MLEs are very close to the supposed values of the parameters.

5.2. NRR statistic Y 2
n

For testing the null hypothesis H0 that a sample belongs to extension Weibull distribution,
we calculate Y 2 the NRR statistic for 10, 000 simulated samples with sizes n = 30;
n = 100; n = 250; n = 500, respectively. For different theoretical level significance
(ε = 0.02, 0.05, 0.1), we compute means of the number of non-rejection of the null
hypothesis, when Y 2

n ≤ χ2
ε(r − 1) then, we report the results of empirical and the

corresponding theoretical values in Table 2.
As It can be seen, the values of the empirical level calculated are very close with
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Table 2: Empirical levels and corresponding theoretical levels (ε = 0.02, 0.05, 0.1)

N = 10, 000 ε = 0.02 ε = 0.05 ε = 0.1
n = 30 0.9870 0.9517 0.9258
n = 50 0.9854 0.9576 0.9054
n = 100 0.9803 0.9522 0.9028
n = 250 0.9789 0.9501 0.9002
n = 500 0.9756 0.9499 0.8898

those of their corresponding theoretical level. So, we conclude that the proposed test is
well suited to the extension Weibull distribution.

Table 3: Life times of 50 devices from Aarset (1987).

0.1 0.2 1 1 1 1 1 2 3 6
7 11 12 18 18 18 18 18 21 32
36 40 45 46 47 50 55 60 63 63
67 67 67 67 72 75 79 82 82 83
84 84 84 85 85 85 85 85 86 86

5.3. Application

We consider the lifetimes of 50 devices provided by Aarset (1987) and studied by other
authors. For testing the null hypothesis H0 that these data (given in Table 3) are fitted by
an extension Weibull distribution, we use the NRR statistic obtained in this work. Using
R software and Barzilai-Borwein algorithm (BB) (Ravi. V 2009), we firstly calculate
the maximum likelihood estimators α̂ = 101.0917, β̂ = 0.8402, λ̂ = 0.01388 of the
unknown parameters α, β, λ; and the estimated Fisher information matrix

I (θ̂) =
 0.0002546459 −0.0255712941 6.2368342619

−0.0255712941 −94.14084510 2220.92706251
6.2368342619 2220.92706251 −2.592642e + 05


The quantities W and X2

n(θ̂) are obtained

W = 1

n
LT (θn) (In

(
θ̂ n

)
−J

(
θ̂ n

)
)−1L

(
θ̂ n

)
= −0.001128842 ; X2

n(θ̂) = 8.8

We can then find the value of Y 2
n = 8.798871. For level of significance ε = 0.02,

the critical value is χ2
0.02(5 − 1) = 11.6678 and for ε = 0.05 the critical value is
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Table 4: Results of goodness-of-fit testing.

kolmogorov-Smirnov Test Anderson-Darling test
KS p-value AD p-value

Extension Weibull 0.1796 0.0794 3.0008 0.02752

χ2
0.05(5 − 1) = 9.4877. So, the NRR statistic Y 2

n is inferior to critical values, this allows
us to say that these data fit suitably an extension Weibull model.

On the other hand, we calculate the values of the Kolmogorov–Smirnov (KS) statistic
and the Anderson–Darling (AD) statistic. The results are provided below
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