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Abstract

We study a Euler-Bernoulli beam using a special boundary feedback at the free and.
The closed-loop system is shown to be non dissipative. This gives rise to difficulties
in analyzing the well-posedness and the stability of the considered system using
the traditional dissipativity based-method. The major difficulty in answering this
question comes from its special boundary conditions: the physical variables and
their conjugate variables are assigned simultaneously at the same boundary point.
Despite the lack of the dissipativity we obtain the Riesz basis property. As conse-
quences, both the spectrum-determined growth conditions and exponential stability
are concluded.
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1. Introduction

Let us consider the following Euler-Bernoulli beam subject to the boundary bending
moment feedback:

ytt + yxxxx = 0, 0 < x < 1, t ≥ 0,

y(0, t) = yx(0, t) = 0, t ≥ 0,

yxxx(1, t) = 0, t ≥ 0,

− yxx(1, t) = αyxt (1, t) + βyx(1, t), t ≥ 0.

(S)

It has been proved when β = 0 in [13] and when β > 0 in [17] that the above system
is Riesz spectral, and is exponentially stable in the energy state-pace. Formally, let
u(x, t) = yx(x, t). Then u satisfies the following set of equations

utt + uxxxx = 0, 0 < x < 1, t ≥ 0, (1)

u(0, t) = uxxx(0, t) = 0, t ≥ 0, (2)

uxx(1, t) = 0, t ≥ 0, (3)

−ux(1, t) = αut(1, t) + βu(1, t), t ≥ 0. (4)

A question was proposed in [6]. What can we say about the well posedness of system
(1)–(4)

Let us recall the physical meanings of the variables (the reader can be referred to [6]
and the references therein):

y(x, t) = displacement yt (x, t) = velocity;

yx(x, t) = rotation yxt (x, t) = angular velocity;

−yxx(x, t) = bending moment yxxx(x, t) = shear force.

at point x and time t; and the mutual conjugacy of the physical variables is indicated as
follows:

y(or yt ) ←→ yxxx(or yxxxt )

yx(or yxt ) ←→ yxx(or yxxt ).

The general applied mathematics principle for assigning boundary conditions is that the
physical variable and its conjugate variable cannot be imposed simultaneously at the
same boundary point. The major difficulty in answering the above question comes from
its special boundary condition: the physical variables and their conjugate variables are
assigned simultaneously at the same boundaries.The pair of conjugate variables u and
uxxx are assigned simultaneously at x = 0.

From the system theoritic point of view, the system (1)–(4) is not passive, hence its
associated generator in the state space with energy norm is not dissipative. This gives
rise to difficulties in analyzing the well-posedness and the stability of the system (1)–(4)
using the traditional dissipativity-based method. In this paper, we give a positive answer
to the question proposed above, using the Riesz basis approach. Actually, we go beyond
the question of well-posedness:
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– we show that the system (1)–(4) verifies the Riesz basis property which means that
there is a sequence of generalized eigenfunctions of generator of system (1)–(4)
which forms a Riesz basis for the state space with the energy norm (which is a
Hilbert space);

– the spectrum-determined growth condition holds;

– we obtain exponential stability.

These results show that there is more freedom in the design of boundary control for
the suppression of vibrations of flexible structures. Therefore the applied mathematics
principle mentioned earlier can be relaxed.

The rest of this paper is organized as follows: we rewrite the two systems in their
operators forms, then we study the spectrum and prove the Riesz basis property for the
system. The exponential stability of (1)–(4) is also concluded.

2. Energy space and energy norm

In this section we rewrite the two systems in their evolutive forms. Let us introduce the
following spaces:

L = {
u ∈ H 2(0, 1); u(0) = ux(0) = 0

}
K = {

(u, v)T ; u ∈ L, v ∈ L2(0, 1)
} = L × L2(0, 1)},

V = {
u ∈ H 2(0, 1); u(0) = uxxx(0) = 0

}
, (5)

H = {
(u, v)T ; u ∈ V, v ∈ L2(0, 1)

} = V × L2(0, 1)}, (6)

D (0, 1) = the space of smooth functions with compact support,
D′ (0, 1) = the space of continuous linear functions f : D (0, 1) → C.

The superscript T stands for the transpose and the spaces L2 (0, 1) and Hk (0, 1) are
defined as

L2 (0, 1) =
{
y : [0, 1] → R

∣∣∣∣ ∫ 1

0
|y|2 dx < ∞

}
. (7)

Hk (0, 1) =
{
y : [0, 1] → R

∣∣y, y(1), . . . , y(k) ∈ L2 (0, 1)
}

. (8)

We consider the system (S) and let z = yt , R = (y, z)T . The space K is called energy
space of the system (S). We define the inner product on the space K as follows:

∀(y1, z1) ∈ K, ∀(y2, z2) ∈ K, 〈(y1, z1) , (y2, z2)〉 =
∫ 1

0
(y′′

1 y′′
2 + z1z2)dx + βy′

1y
′
2.

The energy norm induced by the inner product is hence defined by

‖(y, z)‖2
K =

∫ 1

0

[
(y′′)2 + z2] dx + β

(
y′)2
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Letting

B =
 0 1

d4

dx4
0


The system (S) can be written as{

dR (t)

dt
= BR (t)

R (0) = R0 ∈ K,

where D(B) the domain of the operator is defined as follows:

D (B) =
{

(y, z)T ∈ (H 4 (0, 1) ∩ L) × L

yxxx (1) = 0, yxx (1) = −αzx(1) − βzx(1)

}
.

We consider the system (1)–(4) and let v = ut , W = (u, v)T . The space H is called
energy space of the system. We define the inner product on the space H as follows:

∀(u, v) ∈ H, ∀(u1, v1) ∈ H, 〈(u1, v1) , (u2, v2)〉 =
∫ 1

0
(u′′

1u
′′
2 + v1v2)dx + βu1u2.

The energy norm induced by the inner product is hence defined by

‖(u, v)‖2
H =

∫ 1

0

[
(u′′)2 + v2] dx + βu2.

Finally letting

A =
 0 1

d4

dx4
0

 . (9)

The system (1)−(4) can be written as{
dW (t)

dt
= AW (t)

W (0) = W0 ∈ H,
(10)

where D(A) the domain of the operator is defined as follows:

D (A) =
{

(u, v)T ∈ (H 4 (0, 1) ∩ V ) × V
∣∣uxx (1) = 0, ux (1) = −αv(1) − βu(1)

}
.
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3. Spectral Analysis and the Riesz basis property

In this section, we show that there is a sequence of generalized eigenvectors of the
operator A which forms a Riesz basis for the energy space H . The study of the spectral
problem associated with the evolutive system reveals that the spectral parameter appears
in boundary conditions. For this kind of problem, the classical theorem of Bari seems
very difficult to apply [5] . Let us recall the basic idea of Bari’s theorem: if {�n}∞1
is a Riesz basis for a Hilbert space H and if another ω−linearly independent basis
sequence{�n}∞1 from H satisfies

∞∑
n=1

‖�n − �n‖2 < ∞,

then {�n}∞1 is also a Riesz basis for H.

In this paper, we use a method due to Shkalikov [14] . The basis idea of the method
is to build using the operator A a new operator called the Shkalikov’s linearized operator
which will give the Riesz basis property and then deduce the same property for the
operator A. Here, we must work in the complexified Hilbert spaces of spaces V, L2 (0, 1)

and H. For convenience, we do not change the notation for these spaces.
Let λ ∈ C be an eigenvalue of A and let W = (u, v)T ∈ D (A) be a corresponding

eigenvector. The equation AW = λW leads to the following set of equations
λu − v = 0,

λv + uxxxx = 0,

uxxx (0) = uxx (1) = u (0) = 0,

ux (1) = −αv (1) − βu (1) .

Eliminating v from the above equations, we get
uxxxx + λ2u = 0,

uxxx (0) = 0,

uxx (1) = 0,

ux (1) = −(αλ + β)u (1) ,

u (0) = 0.

Letting λ = τ 2, we get
uxxxx + τ 4u = 0 (11)

uxxx (0) = 0 (12)

uxx (1) = 0 (13)

ux (1) = −(ατ 2 + β)u (1) (14)

u (0) = 0 (15)
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The Shkalikov’s characteristic polynomial ([13, p. 1314]) associated with equation (11)
is:

ω4 + 1 =
(
ω2 − √

2ω + 1
) (

ω2 + √
2ω + 1

)
= 0. (16)

The zeros of the above polynomial are the complex numbers

ω1 = 1 + i√
2

, ω2 = −1 + i√
2

, ω3 = −1 − i√
2

, ω4 = 1 − i√
2

.

The solutions of (11) can be then found in the following form:

u (x) = C1e
τω1x + C2e

τω2x + C3e
τω3x + C4e

τω4x. (17)

Let

Fi = τ 2ω2
i e

τωi , i = 1, . . . , 4

Gi = (
ατ 2 + τωi + β

)
eτωi i = 1, . . . , 4.

We get the following matrix equation:
F1 F2 F3 F4

G1 G2 G3 G4

τ 3ω3
1 τ 3ω3

2 τ 3ω3
3 τ 3ω3

4
1 1 1 1




C1

C2

C3

C4

 =


0
0
0
0

 .

A necessary and sufficient condition for this matrix equation to have nontrivial solutions
for C1, C2, C3, and C4 is that the following characteristic determinant

� (τ) =

∣∣∣∣∣∣∣∣
F1 F2 F3 F4

G1 G2 G3 G4

τ 3ω3
1 τ 3ω3

2 τ 3ω3
3 τ 3ω3

4
1 1 1 1

∣∣∣∣∣∣∣∣
vanishes. By developing � (τ) with respect to the last row, we get

� (τ) = τ

{
(ω3 − ω4) (F1G2 − F2G1) + (ω2 − ω3) (F1G4 − F4G1)

+ (ω3 − ω1) (F2G4 − F4G2) + (ω4 − ω1) (F3G2 − F2G3)

+ (ω2 − ω4) (F3G1 − F1G3) + (ω1 − ω2) (F3G4 − F4G3)

}
.

Next, we set

Wij = (
ωi − ωj

)
1 ≤ i, j ≤ 4

Tij = FiGj − FjGi 1 ≤ i, j ≤ 4
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so that

� (τ) = τ (W34T12 + W23T14 + W31T24 + W41T32 + W24T31 + W12T34)

where

W34 = √
2, W23 = i

√
2, W31 = (1 − i)

√
2

W41 = −i
√

2, W24 = (1 + i)
√

2, W12 = −√
2

T12 = τ 2
[
−√

2τ + 2i
(
ατ 2 + β

)]
eiτ

√
2

T14 = τ 2
[
i
√

2τ + 2i
(
ατ 2 + β

)]
eτ

√
2

T24 = √
2 (−1 − i) τ 3

T32 = τ 2
[
−i

√
2τ + 2i

(
ατ 2 + β

)]
e−τ

√
2

T31 = √
2 (−1 + i) τ 3

T34 = τ 2
[√

2τ + 2i
(
ατ 2 + β

)]
e−iτ

√
2

After simplification, we get

� (τ) = τ 7
{ [

−2τ−1 + 2
√

2iα + 2
√

2iβτ−2
]
eiτ

√
2

−
[
2τ−1 + 2

√
2iα + 2

√
2iβτ−2

]
e−iτ

√
2

−
[
2τ−1 + 2

√
2α + 2

√
2βτ−2

]
eτ

√
2

+
[
−2τ−1 + 2

√
2α + 2

√
2βτ−2

]
e−τ

√
2 − 8τ−1

}
.

We observe that for |τ | sufficiently large, the dominant term of each expression in bracket
is nonzero. In the view of Shkalikov’s theory, the boundary conditions are said to be
regular. We also mention that the previous characteristic determinant is the same as that
found for system (S) in [17] . Hence we obtain the following results:

Lemma 3.1. A has compact resolvent and 0 ∈ ρ (A) . Therefore the eigenvalues of A

are countable and isolated.

Proof. Clearly, we only need to prove that 0 ∈ ρ (A) and A−1 is compact on H. For any
G = (u, v) ∈ H, we need to find a unique F = (f, g) ∈ D (A) such that AF = G. In
other words such that the following set of equations is satisfied

g = u (18)

−fxxxx = v (19)

fxxx (0) = fxx (1) = f (0) = 0 (20)
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fx (1) = −αg (1) − βf (1) (21)

By integrating (3.9) we obtain for all s in [0, 1]:

−
∫ s

0
fxxxx (x) dx =

∫ s

0
v (x) dx

− [fxxx]s0 =
∫ s

0
v (x) dx.

Using the boundary condition (3.10) we have:

−fxxx (s) =
∫ s

0
v (x) dx.

By integrating again we get for all z ∈ [0, 1]:

−
∫ 1

z

fxxx (s) ds =
∫ 1

z

∫ s

0
v (x) dxds

− [fxx (s)]1
z =

∫ 1

z

∫ s

0
v (x) dxds.

Using the boundary condition (3.10) we get for all z ∈ [0, 1]:

fxx (z) =
∫ 1

z

∫ s

0
v (x) dxds.

By integrating again we obtain for all r in [0, 1]:∫ r

1
fxx (z) dz =

∫ r

1

∫ 1

z

∫ s

0
v (x) dxdsdz

[fx]r1 =
∫ r

1

∫ 1

z

∫ s

0
v (x) dxdsdz

fx (r) − fx (1) =
∫ r

1

∫ 1

z

∫ s

0
v (x) dxdsdz.

Using the boundary condition (3.11) we have for all r in [0, 1]:

fx (r) + αg(1) + βf (1) =
∫ r

1

∫ 1

z

∫ s

0
v (x) dxdsdz

Then set

k (r) =
∫ r

1

∫ 1

z

∫ s

0
v (x) dxdsdz
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we get for all r in [0, 1]:
fx (r) + βf (1) = −αu (1) + k (r) .

By integrating again we obtain for all m in [0, 1]:∫ m

0
fx (r) dr + β

∫ m

0
f (1)dr = −α

∫ m

0
u (1) dr +

∫ m

0
k (r) dr

f (m) + βmf (1) = −αmu (1) +
∫ m

0
k (r) dr.

Next we determine f (1). We get:

f (1) + βf (1) = −αu (1) +
∫ 1

0
k (r) dr;

f (1) = −αu (1) + ∫ 1
0 k (r) dr

1 + β
.

Then we get for all m in [0, 1]:

f (m) = −βm

(
−αu (1) + ∫ 1

0 k (r) dr

1 + β

)
− αmu (1) +

∫ m

0
k (r) dr.

Obviously we have (u, v) ∈ D (A) . Therefore we get:

F = (f, g) = A−1G = (N (m) , u) .

Where N is given by:

N (m) = −βm

(
−αm (1) + ∫ 1

0 k (r) dr

1 + β

)
− αmu (1) +

∫ m

0
k (r) dr.

Finally we obtain that 0 ∈ ρ (A) and Sobolev’s embedding theorem implies that A−1

is a compact operator on H. �

Theorem 3.2. For α > 0 and β > 0, we get:

1. The operators A and B have the same spectrum and for each λ ∈ σ (A) = σ (B),
Re (λ) < 0;

2. The eigenvalues of the unbounded operator A which governs the system (S) take
asymptotically the form

λn = − 1

α
+ O

(
1

n

)
+ i

[(
n − 1

4

)2

π2 + O

(
1

n2

)]
, n ∈ N;

and lim
n→+∞Re (λn) = − 1

α
< 0,



2802 Touré K. Augustin et al.

3. the eigenvalues of the operator A are asymptotically simple and isolated.

(For the proof see [17] .)

Remark 3.3. We recall that the property (3) of the above theorem is essential for applying
theorem 3.1 of Shkalikov’s theory [14] .

Theorem 3.4. Consider the system given by (2.6) where α > 0 and β > 0, then there
exists a fundamental system of generalized eigenvectors of the operator A which forms
a Riesz basis in H = V × L2 (0, 1) .

Proof. Following the notation of Shkalikov in [14] , for integer r ≥ 0, we set

Wr
2 = Wn−1+r

2 (0, 1) ⊕ Wn−2+r
2 (0, 1) ⊕ · · · ⊕ Wr

2 (0, 1) , (22)

where Wk
2 (0, 1) is the Sobolev space of smooth functions on the segment [0, 1] having

k − 1 absolutely continuous and derivatives and k-th derivative from L2 (0, 1) with the

norm ‖f ‖Wk =
∥∥∥f (k)

∥∥∥
L2(0,1)

+ ‖f ‖L2(0,1) .

In our case n = 4 and we have

Wr
2 = W 3+r

2 (0, 1) ⊕ W 2+r
2 (0, 1) ⊕ Wr+1

2 (0, 1) ⊕ Wr
2 (0, 1) .

We rewrite equation (11) in the following from

l (u, τ ) = l0 (u) + τ l1 (u) + τ 2l2 (u) + τ 3l3 (u) + τ 4l4 (u) = 0,

where l0 (u) = uxxxx, l1 (u) = l2 (u) = l3(u) = 0, l4 (u) = u.

Now, we consider the operator H, defined as follows:

ṽ =


v0

v1

v2

v3

 ∈ Wr
2 �−→ Hṽ =


v1

v2

v3

−
3∑

i=0

li (vi)

 =


v1

v2

v3

−v
(4)
0

 ,

where v0 = u, v1 = τu, v2 = τ 2u, v3 = τ 3u.

We also define Hi (̃v) ∈ Wr−i
2 , where Hi is the i th power of H. Now, we normalize

the boundary conditions (3.2) − (3.5) according to Shkalikov’s method [14] . First, we
rewrite them as follows:

U1 (u, τ ) = u′′′ (0) = 0
U2 (u, τ ) = u′′ (1) = 0

U3 (u, τ ) = u′ (1) + (
ατ 2 + β

)
u (1) = 0

U4 (u, τ ) = u (0) = 0

(23)
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and in (3.9) , we make substitutions according to the rule

τ iu(k) (x) = (
Hiṽ

)(k)

0 (x) if i + k < n + r,

τ iu(k) (x) = ri+k−n−r+1 (Hn+r−k−1ṽ
)(k)

0 (x) if i + k ≥ n + r,

where x = 0 or x = 1, n being the number of boundary conditions and the subscript
index means that we take the first component of the associated vector. As a result of
these substitutions, we represent the boundary conditions in a following form

Ũi(ṽ,τ ) =
vi(r)∑
k=0

τ kUk
i (̃v) , 1 ≤ i ≤ n,

where now the linear forms Uk
i do not depend on λ. We set

Nr = v1 (r) + v2 (r) + · · · + vq (r)

where the numbers vi (r) are those which appear above. If they are all zeros, then Nr = 0.

With the previous transformations in mind, we rewrite the second above boundary con-
ditions as follows: the term τ 2u (1) is replaced by v2 (1) , the other boundary conditions
remain unchanged. Hence, we can represent (3.9) as follows:

Ũ1 (̃v, τ ) = Ũ1 (̃v) = v′′′
0 (0) = 0

Ũ2 (̃v, τ ) = Ũ2 (̃v) = v′′
0 (1) = 0

Ũ3 (̃v, τ ) = Ũ3 (̃v) = v′
0 (1) + (

ατ 2 + β
)
v0 (1) = 0

Ũ4 (̃v, τ ) = Ũ4 (̃v) = v0 (0) = 0.

We denote by Wr
2,U the Shkalikov space defined as follows:

Wr
2,U =

{
ṽ ∈ Wr

2 , Uj

(
Hk (̃v)

) = 0, 1 ≤ j ≤ n for 0 ≤ k ≤ n + r − 2
and all boundary conditions of order ≤ n + r − k − 2

}
(24)

Following the theory of Shkalikov Wr
2,U is a closed subspace of finite codimension in

Wr
2 . In our case, since n = 4, for r = 0, the Shkalikov’s space W 0

2,U ([14]) is defined as
follows:

W 0
2,U =


ṽ =


v0

v1

v2

v3

 ∈ W 3
2 (0, 1) ⊕ W 2

2 (0, 1) ⊕ W 1
1 (0, 1) ⊕ L2 (0, 1) ,

Uj

(
Hkṽ

) = 0,

for 0 ≤ k ≤ n + r − 2 = 2 and all boundary conditions of order ≤ 2 − k


.
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We get

W 0
2,U =


ṽ ∈ W 3

2 (0, 1) ⊕ W 2
2 (0, 1) ⊕ W 1

2 (0, 1) ⊕ L2 (0, 1) ,

v′′
0 (1) = 0, v′

0 (1) + αv2 (1) + βv0 (1) = 0, v′
1 (1)

+αv3 (1) + βv1 (1) = 0,

v0 (0) = 0, v1 (0) = 0, v2 (0) = 0


We define the Shkalikov’s operator as follows:

H0


v0

v1

v2

v3

 = H


v0

v1

v2

v3

 =


v1

v2

v3

−v
(4)
0

 , D (H0) = W 1
2,U .

Using corollary 3.1 of Shkalikov’s Theorem 3.1 [14] , we deduce that there is a set of
generalized eigenvectors of the operator H0 which forms a Riesz basis of the Hilbert
space W 0

2,U . When r = 1, the space W 1
2,U is defined as follows:

W 1
2,U =

{
ṽ ∈ W 4

2 (0, 1) ⊕ W 3
2 (0, 1) ⊕ W 2

2 (0, 1) ⊕ W 1
2 (0, 1) ,

v′′′
0 (0) = 0, v′′

0 (1) = 0, v′′
1 (1) = 0, v′

0 (1) + αv2 (1)

+βv0 (1) = 0,

v′
1 (1) + αv3 (1) + βv1 (1) = 0, v′

2 (1) + αv
(4)
0 (1) + βv2 (1) = 0, v0 (0) = 0,

v1 (0) = 0, v2 (0) = 0, v3 (0) = 0

}
Since λ = τ 2, we define Shkalikov’s operator H 2

0 as follows:

H 2
0


v0

v1

v2

v3

 =


v2

v3

−v′′′′
0

−v′′′′
1

 and D
(
H 2

0

) = W 2
2,U ⊂ W 0

2,U ,

D
(
H 2

0

) = {̃v ∈ D (H0) /H0ṽ ∈ D (H0)}
=

{
ṽ ∈ W 5

2 (0, 1) ⊕ W 4
2 (0, 1) ⊕ W 3

2 (0, 1) ⊕ W 2
2 (0, 1) ,

v
(4)
0 (0) = 0, v′′′

0 (0) = 0, v′′′
1 (0) = 0, v′′

0 (1) = 0,

v′′
1 (1) = 0, v′′

2 (1) = 0,

v′
0 (1) + αv2 (1) + βv0 (1) = 0, v′

1 (1) + αv3 (1) + βv1 (1) = 0,

v′
2 (1) + αv

(4)
0 (1) + βv2 (1) = 0, v′

3 (1) + αv
(4)
1 (1) + βv3 (1) = 0,

v0 (0) = 0, v1 (0) = 0, v2 (0) = 0, v3 (0) = 0,

}
.
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Using Corollary 3.1 of Shkalikov’s Theorem 3.1 [14], we deduce that there is a set of
generalized eigenvectors of the operator H 2

0 which forms a Riesz basis of the Hilbert
space W 1

2,U .

Now, we build a Riesz basis for the operator A. First, we remark that we can write
operator H 2

0 as follows:
H 2

0 = H 1 ⊕ H 2,

where H 2 operates on v1, v3 and H 1 operates on v0, v2. Operator H 2 is defined as
follows:

H 2
[

w

v

]
=

[
v

−w′′′′
]

,

where

D
(
H 2) =



(
w

v

)
∈ W 4

2 (0, 1) ⊕ W 2
2 (0, 1) /w′′′ (0) = 0,

w′′ (1) = 0, w′ (1) + αv (1) + βw (1) = 0,

v′ (1) + αw(4) (1) + βv (1) = 0
w (0) = 0, v (0) = 0


=


(

w

v

)
, w ∈ W 4

2 (0, 1) ∩ V, v ∈ V, wxx (1) = 0,

wx (1) + αv (1) + βw (1) = 0, vx (1) + αwxxxx (1) + βv (1) = 0


Next, we prove that the spectral problem associated with operator H 2

0 is equivalent
to the one defined by A. Let λ be an eigenvalue of H 2

0 . We have:

H 2
0 U = λU

where
U = (v0, v1, v2, v3)

T ∈ D
(
H 2

0

)
is an eigenvector of H 2

0 associated with λ. We then obtain :

v2 = λv0,

v3 = λv1,

−v′′′′
0 = λv2,

−v′′′′
1 = λv3,

U ∈ D
(
H 2

0

)
.

Now, by a substitution, we get the following set of systems:
v′′′′

1 + λ2v1 = 0,

v′
1 (1) + αλv1 (1) + βv1 (1) = 0,

λv′
1 (1) + αv

(4)
1 (1) + λβv1 (1) = 0,

v′′′
1 (0) = v′′

1 (1) = v1 (0) = 0,

(25)
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v′′′′
0 + λ2v0 = 0,

v′
0 (1) + αλv′

0 (1) + βv0 (1) = 0,

λv′
0 (1) + αv

(4)
0 (1) + λβv0 (1) = 0

v′′′′
0 (0) = v′′′

0 (0) = v0 (0) = 0,

v′′
0 (1) = 0.

(26)

To obtain the last condition of (26), it suffices to remark that:

v′′′′
0 + λ2v0 = 0 and v0 ∈ W 5

2 (0, 1) .

From (25), λ is an eigenvalue of H 1 associated with the eigenvector (v1, v3)
T . From

(26), we deduce that λ is an eigenvalue of H 2 associated with the eigenvector (v0, v2)
T .

Next, let λ be an eigenvalue of A associated with the spectral problem (1)–(4). Then we
easily deduce that λ is an eigenvalue of H 2

0 . Since we know from the previous study of
H 2

0 that there is a set of generalized eigenvectors of operator H 2
0 which form a Riesz basis

of the Hilbert space W 1
2,U , we deduce that there is also a set of generalized eigenvectors

of the operator A or H 2 which forms a Riesz basis of Hilbert space H = V ⊕L2 (0, 1) .

Following the idea of ([5, Theorem 2.4]) , all the properties of operator A found
above, allows us to claim that for the semigroup eAt generated by A, the spectrum-
determined growth condition holds:

ω (A) = S (A) ,

where

ω (A) = lim
t→∞

1

t

∥∥eAt
∥∥

is the growth order of eAt and

S (A) = sup {Reλ/λ ∈ σ (A)}
is the spectral bound of A. �

Theorem 2 is the fundamental property of the evolutive system (1)–(4). Many other
important properties of this system can be concluded from Theorem 2. The exponential
stability stated below is one of such important property.

Theorem 3.5. System (1)–(4) is exponentially stable for any β > 0 and α > 0. That
is, there are nonnegative constants M, ω such that the energy E (t) of system (1)–(4)
satisfies

E (t) ≤ ME (0) e−ωt , ∀t ≥ 0, (27)

for any initial condition (u (x, 0) , ut (x, 0)) ∈ H.
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Proof. Following the theorem 1, we get: for each λ ∈ σ (A) = σ (B) , Re(λ) <

0, the eigenvalues of the unbounded operator A which governs the system (S) take
asymptotically the form

λn = − 1

α
+ O

(
1

n

)
+ i

[(
n − 1

4

)2

π2 + O

(
1

n2

)]
, n ∈ N

and

lim
n→+∞Re (λn) = − 1

α
< 0.

Moreover the spectrum-determined conditions holds hence the system (1)–(4) is expo-
nential stable. �
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