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Abstract

In this study, lattice Boltzmann Method (LBM) is applied for shallow water flows
problem in order to handle two dimensional flows. The LBM and its implementa-
tion in solving Shallow Water Equation (SWE)for physically significant nonlinear
partial differential equations were also analysed.An analytical solution of steady
and two dimensional SWE was derived from a cubic algebraic form of SWE, and
obtained the analytical solution of unsteady and two-dimensional SWE from sub
inertial and super inertial frequency quadratic algebraic form of SWE. The numer-
ical solution of the two dimensional SWE was generated by applying the LBM.
The LBM numerical result of SWE was then compared graphically with the SWE
result obtained via the finite difference method (FDM). Our findings revealed that
the simulation via LBM is more stable than FDM in the microscopic sense.
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1. Introduction

Partial differential equations have been utilized as practical tools to framework many
environmental problems from real life and also they have been used to foretell and
approximate the dynamics of related problems. The shallow water equations are funda-
mentally used to model physical phenomenal of water flows like tidal flows in an estuary
and coastal water regions, dam breaks, flood waves, and bore wave propagation in rivers,
among others [1, 2]. The mathematical theoretical accounts can be very useful to under-
stand the dynamics of water flows. Water quality modelling has obtained significance as
a research area because it also involves some problems that are related to public safety.
On the other hand, numerical simulation of shallow water flows on a rotating sphere has
an important role on atmospheric sciences [2, 3].

The shallow water equation has general characteristics which show that the vertical
dimension is much smaller than the typical horizontal scale. As a result, the depth can
be average to get rid of the vertical dimension. The SWE is an important equation which
can be used in predicting tides, storm surge levels and coastline changes from hurricanes,
ocean currents, and studying dredging feasibility [1, 3, 4]. The general analytical solution
of one-dimensional shallow water equation is discussed but the analytical investigation
of two-dimensional shallow water equations is much more complex [5, 6]. Up till date,
there are very few exact solutions to the SWE and most of them only describe simple
flows in idealized environments but in this study, shape of the eddy (shallow water) would
be determined. This study investigates the application of the LBM formulation for the
shallow water flow in order to handle two dimensional flows, and to study the stability
and accuracy of the method.Furthermore, a simple and practical numerical model that
can help to resolve problems and issues that are related to shallow water flows shall be
presented in this study. This involves looking into how the Lattice Boltzmann Method
(LBM traditional method) will perform under the same condition. This research focuses
on shallow water equation with the aim of applying the proposed method for numerical
simulation of shallow water equations.

2. Analytical Solutions to the Shallow Water Equations

In the rotating fluid, the set of shallow water equations has been applied which is nonethe-
less severely limited and it regularly excludes the baroclinic-instability mechanism. In
a closed form, for exact analytical solutions, the power of the present contribution is
the quest and is often used as stepping stones toward further analytical investigations.
For testing the accuracy of numerical models also it can be used. Wherever the coriolis
parameter is a constant, the choice is made to limit the search within the context of the
shallow water equations because such solutions are rare and quite difficult to obtain.
Considering Goldsbrough’s [4] inclusion of rotation, there has been a rediscovery and
the shallow water equations has been forgotten. This admits a special class of solutions
in the case that the height field is a quadratic expression and the velocity components
are linear functions in the horizontal coordinate variables. Perhaps it was further discov-
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ered by Kirchhoff [5, 7] for the 2-dimensional Euler equations. The pressure field is a
quadratic expression and the velocity components are linear functions of the coordinate
variables, therefore, this solution is known as the Kirchhoff vortex. After Goldsbrough,
in order to study oscillatory modes in shallow, Ball [8, 9] took advantage of this solution
for the spatial structure; he rotated based on reference to tides. Ball’s work became
forgotten and obsolete, as the interest in tides vanished. Cushman-Roisin [10] found an
exact analytical solution for an elliptical vortex with oceanic warm-core rings in mind
which steadily rotates without deformation. This solution is referred to as the Rodon
and Cushman-Roisin et al. [11], which was further analyzed and placed in a context.

3. Rodon Solutions of the Shallow Water Equations

Ball [9] found in an elliptic paraboloid the exact nonlinear analytical solutions of the
SWE for steady flow [6]. Young, reported for unsteady elliptic vortices. Zero divergence
and spatially constant vorticity characterize these flows. The analysis procedure for both
proceeds is similar to each other. Rodon is the time-dependent solutions of Cushman-
Roisin et al. [11] which correspond to steadily rotating elliptic eddies. In order to exist
in a circular paraboloid and to reduce to the Rodon solution as the bottom topographic
variations vanish, unsteady motion with dynamics similar to Rodon is therefore suggested
Mathematical formulation of the problem. The model has been verified by solving both
steady and unsteady flow problems.

3.1. Analytical Solutions of the Shallow Water Equations (1-D)

The classical system of one-dimensional shallow water equations has the form,

ut + uux + ghx = 0, (1)

ht + uhx + hux = 0 (2)

where u(t, x) is the velocity and h(t, x) is the depth of the horizontal boundary, and
g is the acceleration due to gravity. The suffixes in equation (1) correspond to the
differentiation over time t and position x. The more symmetric form of the system will
be used

w = 2(gh)
1
2 (3)

wx = ghx(gh)−
1
2 �⇒ hx = wxg

− 1
2 h− 1

2 (4)

1

2
wwx = ghx (5)

wt = ght(gh)−
1
2 �⇒ ht = wtg

− 1
2 h

1
2 . (6)

By using transformation equations (3), (4), (5) and (6), the equation (1) became as

ut + uux + 1

2
wwx = 0 (7)
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and the equation (2) became as

wt + uwx + 1

2
wux = 0. (8)

By introducing “hodograph” transformation and considering (t, x) as functions of (u, w).
The Jacobian should be non-zero. Using (Reimann-invariant)

ut = Dxw (9)

wt = −Dxu (10)

ux = −Dtw (11)

wx = Dtu. (12)

Equations (7) and (8) take the form of linear equation

Dxw − uDtw + 1

2
wDtu = 0, (13)

−Dxu + uDtu − 1

2
wDtw = 0. (14)

Linear equations
xu − utu + wtw = 0 (15)

xw − utw + 1

2
wtu = 0. (16)

By cross-differentiation x is eliminated from above and we get, equation (15) as follows

xuw − utuw + 1

2
tw + 1

2
wtww = 0 (17)

and equation (16) as follows

−xuw + tw + utwu − 1

2
wtuu = 0, (18)

3w−1tw + tww − tuu = 0. (19)

Using the Fourier-transformation,

t (u, w) =
∫ ∞

−∞
eiku · τ(k, w) dk, (20)

δ{Tww} + δ{3w−1Tw} − δ{Tuu} = 0, (21)

τww + 3w−1τw + k2τ = 0, (22)

ϕ = wτ, τw = ϕw · w − ϕ

w2
, τww = 1

w3
(ϕww · w2 − 2(ϕw · w − ϕ)), (23)
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and we get,
w2ϕww + wϕw + (k2w2 − 1)ϕ = 0. (24)

The above equation is the Bessel equation, then the solution of equation (24) became as

τ(u, w) = c1J 1
k
(w) + c2J 1

k
(w) (25)

or
τ(u, w) = c1J

(1)
1 (kw) + c2J

(2)
1 (kw) (26)

where c1, c2 are the arbitrary functions and J
(1)
1 , J

(2)
1 are two independent Bessel func-

tions of the first order. Finally, we have

τ(u, w) = w−1
∫ ∞

−∞
eiku

{
c1J

(1)
1 (kw) + c2J

(2)
1 (kw)

}
. (27)

3.2. Analytical Solutions to the Shallow Water Equations (2-D)

The rotating fluid flows governed by the inviscid shallow water equation (SWE) on an
f-plan are focused on. Dimensionless variables related to those in [12] are used so that
in Cartesian coordinates (x, y) the continuity and momentum equations are;

εFηt + (hu)x + (hu)y = 0, (28)

εut + ε(uux + vuy) − v = −ηx, (29)

εvt + ε(uvx + vvy) − u = −ηy, (30)

h = εFη + 1 − hB. (31)

εFη is the height of the free surface relative to the undisturbed depth of the fluid H =
1−hB , where hB = (x, y) is the height of the bottom topography and (u, v) are velocity
components in the (x, y) direction and t is the time.

Following Ball [9], the motion in an elliptic paraboloid with bottom topography is
considered.

hB = 1

2
αx2 + 1

2
βy2, α, β ≥ 0, (32)

u = U1x + U2y, (33)

v = V1x + V2y, (34)

η = η0 + 1

2
Ax2 + Bxy + 1

2
Cy2, (35)

where the coefficients U1, U2, V1, V2, η0, A, B and C are functions of time. Substitution
of equations (32)-(35) in equations (28)-(31), gives eight nonlinear ordinary differential
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equations for the eight coefficients.

εF

(
η0 + 1

2
Ax2 + Bxy + 1

2
Cy2

)
+

(
εF

(
η0 + 1

2
Ax2 + Bxy + 1

2
Cy2

)
+ 1

−
(

1

2
αx2 + 1

2
βy2

)
(U1x + U2y)x

)
+

(
εF

(
η0 + 1

2
Ax2 + Bxy + 1

2
Cy2

)
+ 1

−
(

1

2
αx2 + 1

2
βy2

)
(U1x + U2y)y

)
= 0 (36)

ε(U1x + U2y)t + ε((U1x + U2y)(U1x + U2y)x + (V1x + V2y)(U1x + U2y)y)

− (V1x + V2y) = −
(

η0 + 1

2
Ax2 + Bxy + 1

2
Cy2

)
x

(37)

ε(V1x + V2y)t + ε((U1x + U2y)(V1x + V2y)x + (V1x + V2y)(V1x + V2y)y)

− (U1x + U2y) = −
(

η0 + 1

2
Ax2 + Bxy + 1

2
Cy2

)
y

(38)

h = εF

(
η0 + 1

2
Ax2 + Bxy + 1

2
Cy2

)
+ 1 −

(
1

2
αx2 + 1

2
βy2

)
. (39)

The following variables are more convenient to work with;

ξ = vx − uy = V1 − U2, (40)

D = ux + vy = U1 + V2, (41)

M = vx + uy = V1 + U2, (42)

L = ux − vy = U1 − V2, (43)

R = ηxx + ηyy = A + C, (44)

S = 2ηxy = 2B, (45)

Q = ηxx − ηyy = A − C. (46)

The solutions of the equations for the variables defined above are;

εξt + (εξ + 1)D = 0 (47)

εDt + 1

2
ε(D2 + L2 + M2 − ξ2) − ξ = −R (48)

εMt + εMD + L = −S (49)

εLt + εLD − M = −Q (50)
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Rt + SM + 2D(R − θ̃ ) + L(Q − ϕ̃) = 0 (51)

Qt + Sξ + 2D(Q − ϕ̃) + L(R − θ̃ ) = 0 (52)

St + 2SD + M(R − θ̃ ) − ξ(Q − ϕ̃) = 0 (53)

εFη0t + (εFη0 + 1)D = 0 (54)

θ̃ = θ

εF
�⇒ θ = α + β �⇒ θ̃ = θ

F
(55)

ϕ̃ = ϕ

εF
�⇒ ϕ = α − β �⇒ ϕ̃ = ϕ

F
. (56)

(The stability of the solutions is not taken into consideration here).

3.3. Steady Flow

For steady solutions of equations (47)-(54) for ϕ̃ �= 0 are given by

D = 0, L = −S = 0, M = Q, ϕ̃ �= 0 �⇒ ϕ̃ = ϕ

F
= α − β

F
�= 0, εξt = 0,

(57)
1

2
ε(M2 − ξ2) − ξ = −R �⇒ R = ξ + 1

2
ε(ξ2 − Q2) (58)

εMt = 0 (59)

M = Q (60)

Rt = 0 (61)

Qt = 0 (62)

M(R − θ̃ ) − ξ(Q − ϕ̃) = 0 �⇒ ξQ − QR + Qθ̃ = ξ ϕ̃ �⇒ Q = ξ ϕ̃

[θ̃ − ε(R − ξ)]
(63)

εFη0t = 0. (64)

The solutions above are also valid in the limit ϕ̃ → 0. But for ϕ̃ = 0 additional steady
solutions with L �= 0, S �= 0 are possible. Substituting equation (63) in equation (58)
gives the following cubic equation for, T = ε(R − ξ)

T 3 −
(

2θ̃ + 1

2
ε2ξ2

)
T 2 + (θ̃2 + θ̃ε2ξ2)T − 1

2
ε2ξ2(θ̃2 − ϕ̃2) = 0. (65)

To insure physically realizable solutions, we require

εFA < α, εFC < β or
1

2
(R + Q) < α,

1

2
(R − Q) < β. (66)

We consider the steady flow in an elliptic paraboloid for 0 ≤ ε < 1 with either
positive or negative vorticity (ξ ±1) (and with variable values of the bottom topographic
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Figure 1: Exact solutions for steady in an elliptic paraboloid with θ = 0.

parameters and F , such that 0 ≤ θ̃ < ∞ and 0 ≤ ϕ̃

θ̃
≤ 1. For SWE, T is obtained from

the numerical solution of the cubic equation. First we assume θ̃ = 0, ϕ̃ = 0, and ξ = 1
then

T 3 −
(

1

2
ε2ξ2

)
T 2 = 0 �⇒ T = 0, T = 1

2
ε2, R = 1 + 1

2
ε. (67)

Figure 1 shows the graph T against ε. Second we assume θ̃ = 1, ϕ̃ = 0.5, and ξ = 1
then

T 3 −
(

2 + 1

2
ε2

)
T 2 + (1 + ε2)T − 3

8
ε2 = 0. (68)

Figure 2 shows the graph T against ε.
Third we assume θ̃ = 2000, ϕ̃ = 1000, and ξ = ±1 then the effect of an increased

value of θ̃ in the steady flow in an elliptic paraboloid is shown in below graph. Figure 3
shows the graph T against ε. Fourth, the effect of a decreased value of θ̃ in the steady
flow in an elliptic paraboloid is shown in below graph where the parameters are θ̃ = 0.02,
ϕ̃ = 0.01, and ξ = −1. Figure 4 shows the graph T against ε.

3.4. Unsteady Flow

For unsteady case, the class of motions, governed by equations (47)-(54) for which
D = 0 is considered

εξt + (εξ + 1)D = 0 �⇒ ξt = 0 (69)

εDt + 1

2
ε(D2 + L2 + M2 − ξ2) − ξ = −R �⇒ 1

2
ε(L2 + M2 − ξ2) − ξ = −R (70)

εMt + εMD + L = −S �⇒ εMt + L = −S (71)
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Figure 2: Exact solutions for steady in an elliptic paraboloid with θ = 1 [9].

Figure 3: Exact solutions for steady in an elliptic paraboloid with θ = 2000 [9].
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Figure 4: Exact solutions for steady in an elliptic paraboloid with θ = 0.02 [9].

εLt + εLD − M = −Q �⇒ εLt − M = −Q (72)

Rt + SM + 2D(R − θ̃ ) + L(Q − ϕ̃) = 0 �⇒ Rt + SM + L(Q − ϕ̃) = 0 (73)

Qt + Sξ + 2D(Q − ϕ̃) + L(R − θ̃ ) = 0 �⇒ Qt + Sξ + L(R − θ̃ ) = 0 (74)

St + 2SD + M(R − θ̃ ) − ξ(Q − ϕ̃) = 0 �⇒ St + M(R − θ̃ ) − ξ(Q − ϕ̃) = 0 (75)

εFη0t + (εFη0 + 1)D = 0 �⇒ εFη0t = 0. (76)

Substituting equations (69), (71)-(73), in the time derivative of equation (70), gives

1

2
ε(L2 + M2 − ξ2) − ξ = 0 �⇒ 1

2
ε(2LtL + 2MtM − 2ξtξ) − ξt = −Rt

εLtL + εMtM − εξtξ − ξt = −Rt �⇒ ξt = 0,

−LQ + LM − SM − ML = SM + LQ − Lϕ̃ �⇒ SM + LQ − 1

2
Lϕ̃ = 0 (77)

The substitution of equation (77) in equation (73) gives

Rt = 1

2
Lϕ̃. (78)

When the topography is a circular paraboloid, the analytical solutions in terms of simple
functions maybe determined, ϕ̃ = α − β = 0, we reduce equation (75) to

St + M(R − θ̃ ) − ξ(Q − ϕ̃) = 0 �⇒ St + M(R − θ̃ ) − ξQ = 0,

equation (77) to

SM + LQ − 1

2
Lϕ̃ = 0 �⇒ LQ + MS = 0,
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equation (78) to

Rt = 1

2
Lϕ̃ �⇒ Rt = 0.

Solution to equation (69)
ξt = 0,

equation (70)
1

2
ε(L2 + M2 − ξ2) − ξ = −R,

equation (71)
εMt + L = −S,

equation (72)
εLt − M = −Q,

equation (75)
St + M(R − θ̃ ) − ξQ = 0,

equation (77)
LQ + MS = 0,

and equation (78)
Rt = 0,

may be found [11] in the form

ξ0 = ξ, R0 = R, (L, S) = (L0, Q0) sin(wt +θ0), (M, Q) = (−L0, Q0) cos(wt +θ0),

1

2
ε(L2 + M2 − ξ2) − ξ = −R

�⇒ 1

2
ε
[
L2

0 sin2(wt + θ0)
] + [

L2
0 cos2(wt + θ0)

] − ξ2
0 − ξ0 = −R0

�⇒ − R0 = 1

2
εL2

0 − ξ2
0 − ξ0 (79)

εMt + L = −S �⇒ εL0w sin(wt + θ0) + L0 sin(wt + θ0) = −ξ0

�⇒ sin(wt + θ0)[εL0w + L0] = −ξ0 (80)

εLt − M = −Q

�⇒ εL0w cos(wt + θ0) + L0 cos(wt + θ0) = −Q0 cos(wt + θ0)

�⇒ εL0w + L0 = −Q0 (81)
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LQ + MS = 0

�⇒ L0 sin(wt + θ0)Q0 cos(wt + θ0) − L0 cos(wt + θ0)Q0 sin(wt + θ0) = 0

�⇒ L0Q0 = 0 (82)

St + M(R − θ̃ ) − ξQ = 0

�⇒ Q0w cos(wt + θ0) + R0[−L0 cos(wt + θ0)]
+ L0θ̃ cos(wt + θ0) = ξ0Q0 cos(wt + θ0)

�⇒ Q0w − R0L0 + L0θ̃ = ξ0Q0

�⇒ Q0w + L0

(
1

2
εL2

0 − ξ2
0 − ξ0

)
+ L0θ̃ = ξ0(−εL0w − L0). (83)

With reference to equation (78)

(−εL0w − L0)w + 1

2
εL3

0 − L0ξ
2
0 + L0θ̃ = −εL0wξ0.

Recall that

−R0 = 1

2
εL2

0 − ξ2
0 − ξ0,

then equation (79) becomes

−εw2−w+1

2
εL2

0−ξ2
0 +θ̃ = −εwξ0 �⇒ −εw2+(εξ0−1)w−(R−ξ0−θ̃ ) = 0 (84)

and we have,

R = R0 = ξ + 1

2
ε(ξ2 − L2

0) (85)

Q0 = −L0(1 + εw). (86)

For θ̃ = 0, −εw2 + (εξ0 − 1)w − (R − ξ0) = 0. The two roots to give are sub inertial
and super inertial frequency. The sub inertial frequency of interest here is given by

w1,2 = −b ± √
b2 − 4ac

2a
, w = 1

2ε

[
−(1 − εw) ±

√
1 − ξ2ε2 − 2εξ − 4εR + 4εξ

]
,

εw = −1

2
(1 − εξ) + 1

2

[
(1 + εξ)2 − 4εR + 4θ̃

] 1
2
. (87)

For 1 − θ̃ = 0, this solution reduces to the steady rotating elliptical eddy Rodon of
Cushman-Roisin. For 2 − θ̃ = 0, the dynamics is similar, but the frequency is altered
by the presence of the topography.

Substituting (85) into (87) gives

εw = −1

2
(1 − εξ) + 1

2

[
2(1 + ε2L2

0 + 2θ̃ ) − (1 + εξ)2
] 1

2
. (88)
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It is known according equation (79) R = R0 so R = ξ + 1

2
ε(ξ2 − L2

0) by multiplying

×2ε then we obtained
2εR = (1 + εξ)2 − (1 + ε2L2

0) (89)

and Q0 = −L0(1 + εw) and we obtained

4ε2[(R−θ̃ )2−Q2
0] = (1+2θ̃ )2−

{
(1 + εξ)

[
2(1 + ε2L2

0 + 2θ̃ ) − (1 + εξ)2
] 1

2 + ε2L2
0

}2

(90)
Real value of εw are found from (88) provided

2(1 + ε2L2
0 + 2θ̃ ) ≥ (1 + εξ)2 (91)

for physical reliability. It is required that

Q2
0 < (R − θ̃ )2, R < θ̃. (92)

From (89) and (92) requires 2(1 + ε2L2
0 + 2θ̃ ) > (1 + εξ)2 which, if satisfied, implies

that (91) maybe found in terms of ξ and L0 from (90) and reduces to

1 + ε2L2
0 + 2θ̃ − 2ε|L0|(1 + 2θ̃ )

1
2 > (1 + εξ)2

[
(1 + 2θ̃ )

1
2 − ε|L0|

]2
> (1 + εξ)2.

From (90) that 4ε2[(R − θ̃ )2 − Q2
0] ≤ (1 + 2θ̃ )2 which gives a minimum value of the

eddy mean radius. When θ̃ = 0, the equations reduce to the proper existence conditions
for the Rodon (Cushman-Roisin).

First, we consider the unsteady flow problem flow problem for 0 ≤ ε < 1 with
ξ = −1 and L2

0 specified so that physical reliability are satisfied. Results for the rotating
elliptical eddy solution with no topography θ̃ = 0 with L2

0 = 0.1. The frequency εw is
plotted in Figure 5 shows the graph εw against ε.

3.5. Lattice Boltzmann Method

The Austrian physicist, Ludwig Eduard Boltzmann (1844–1906) clarifies and calculates
the way of determination of the atoms and molecules’ properties (microscopic proper-
ties) in the phenomenological (macroscopic) properties of matter such as the viscosity,
diffusion coefficient, and thermal conductivity [13, 14]. The function of distribution
replaces tagging each particle, this process also happened in molecular dynamic sim-
ulations. Significantly, this method designs to saves the computer resources. One of
distinct computational method is lattice Boltzmann method. The base on this method
is upon the lattice gas automata which are simplified, fabricated molecular model. This
model is consists of three basic tasks: lattice pattern, lattice Boltzmann equation, and
local equilibrium distribution function. The lattice Boltzmann equation, lattice pattern
are standard, these two are the same for fluid flows. The local equilibrium distribution
determines which lattice Boltzmann model solves flow equations.



2256 Sara Zergani, Z.A. Aziz, and K.K. Viswanathan

Figure 5: Exact solutions for unsteady rotating elliptic eddy [13] with θ̃ = 0.

3.5.1 Lattice Boltzmann Equation

A distribution function f (r, c, t) can be used to explain the statistical description of the
system. For a system without an external force, the Boltzmann equation can be written
as,

∂f

∂t
+ e · ∇f = � (93)

where e and ∇f are vectors. The rate of change between final and initial condition of the
distribution function is termed collision operator, �. The � is a function of f and should
be determined in order to solve the Boltzmann equation. The complication of collision
term makes the solution of Boltzmann equation difficult [9, 13, 15]. The outcome
of collision in two bodies does not have a considerable influence on the value of many
measured quantities. Therefore, the collision operator with simple operator is possible to
approximate. This simple operator is without major error to the outcome of the solution.
A simplified model for collision operator [14], were introduced. Simultaneously, at that
time, Welander, 1954 in [2], introduced a similar operator. The collision operator is
replaced as;

� = ω(f eq − f ) = 1

τ
(f eq − f ) (94)
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where ω = 1

τ
. The coefficient ω is known as the collision frequency and τ is called

the relaxation factor. The local equilibrium distribution function is represented by f eq .
After the introduction of BGKW approximation [14], the Boltzmann equation without
external forces, can be approximated as;

∂fi

∂t
+ ei · ∇fi = 1

τ
(f

eq

i − fi). (95)

The left-hand side terms denote the streaming process, when the distribution function

streams along the lattice link with velocity ei = 
x


t
.

fi(r + ei
t, t + 
t) = fi(r, t) + 
t

τ

[
f

eq

i (r, t) − fi(r, t)
]
. (96)

3.5.2 Equilibrium Distribution Function

Finding out a suitable local equilibrium function plays a vital role in using the Lattice
Boltzmann method. This function decides which flow equations are solved through the
Lattice Boltzmann equation. To apply this equation, (96) for solution of the 2D shallow
water equations

∂h

∂t
+ ∂(hui)

∂xi

= 0, (97)

∂(hui)

∂t
+ ∂(huiuj )

∂xj

+ ∂

∂xi

(
gh2

2

)
= γ

[
∂2(hui)

∂xixj

]
+ Fi. (98)

The derivation of local equation f eq
α is done in this part. Considering the theory of

the lattice gas automata, the equilibrium function is the Maxwell-Boltzmann equilibrium
distribution function. This Maxwell-Boltzmann equilibrium distribution function is often
expanded as a Taylor series in macroscopic velocity to its second order. On the other
hand, the use of such equilibrium function in the lattice Boltzmann equation can recover
the Navier-Stokes equation. This equation severely limits the capability of the method
in order to solve flow equations. Therefore, a powerful and alternative way is to assume
that an equilibrium function can be expressed as a power series in macroscopic velocity
i.e.

f
eq

i = Aα + Bαeαiui + Cαeαieαjuiuj + Dαuiuj . (99)

This turns out to be a general approach, which is effectively used for solution of various
flow problems and demonstrating its accuracy and suitability. For this reason, it is used.
Since the equilibrium function has the same symmetry as the lattice, there must be

A1 = A3 = A5 = A7 = Ā, A2 = A4 = A6 = A8 = Ã (100)

and similar expressions for Bα, Cα and Dα. Accordingly, it is convenient to write
equation above in the following form,

f eq
α =




A0 + D0uiui, α = 0
Ā + B̄eαi + C̄eαieαjuiuj + D̄uiui, α = 1, 3, 5, 7
Ã + B̃eαiui + C̃eαieαjuiuj + D̃uiuj , α = 2, 4, 6, 8.

(101)
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The coefficients of A0, Ā and Ã can be determined based on the limitations of the
equilibrium distribution function. The following three conditions must be satisfied by
the local equilibrium distribution function in shallow water equation.

∑
α

f eq
α (X, t) = h(X, t), (102)

∑
α

eαif
eq
α (X, t) = h(X, t)ui(X, t), (103)

∑
α

eαieαjf
eq
α (X, t) = 1

2
gh2(X, t)δij + h(X, t)ui(X, t)uj (X, t). (104)

The calculation of the lattice Boltzmann equation leads to the solution of the 2D shallow
water equations if the local equilibrium function could be determined under the above
constraint. Substituting equation (101) into equation (102) yields

A0 + D0uiui + 4Ā +
∑

α=1,3,5,7

B̄eαiui +
∑

α=1,3,5,7

C̄eαieαjuiuj + 4D̄uiui + 4Ã

+
∑

α=2,4,6,8

B̃eαiui +
∑

α=2,4,6,8

C̃eαieαjuiuj + 4D̃uiui = h, (105)

after evaluating the terms in the above equation with equation

eα =




(0, 0), α = 0

e

[
cos

(α − 1)π

4
, sin

(α − 1)π

4

]
, α = 1, 3, 5, 7

√
2e

[
cos

(α − 1)π

4
, sin

(α − 1)π

4

]
, α = 2, 4, 6, 8.

(106)

and equating the coefficients of h and uiui respectively, we have

A0 + 4Ā + 4Ã = h and D0 + 2e2C̄ + 4e2C̄ + 4D̄ + 4D̃ = 0. (107)

Place in equations (101) to equation (103) leads to

A0eαi + D0eαiujuj +
∑

α=1,3,5,7

(
Āeαi + B̄eαieαjuj + C̄eαieαj eαkujuk + D̄eαiujuj

)
+

∑
α=2,4,6,8

(
Ãeαi + B̃eαieαjuj + C̃eαieαj eαkujuk + D̃eαiujuj

)
= hui. (108)

In which we can obtain
2e2B̄ + 4e2B̃ = h. (109)
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Substituting equation (101) into equation (104) results in∑
α=1,3,5,7

(
Āeαieαj + B̄eαieαj eαkuk + C̄eαieαj eαkeαlukul + D̄eαieαjukuk

) +
∑

α=2,4,6,8

(
Ãeαieαj + B̃eαieαj eαkuk + C̃eαieαj eαkeαlukul + D̃eαieαjukuk

)

= 1

2
gh2δij + huiuj . (110)

By using equation (106) to simplify the above equation, we have

2Āe2δij + 2C̄e4uiui + 2D̄e2uiui + 4Ãe2δij + 8C̃e4uiuj + 4C̃e4uiui

+ 4D̃e2uiui = 1

2
gh2δij + huiuj . (111)

This provides the following four relations,

2e2Ā + 4e2Ã = 1

2
gh2,

8e4C̃ = h

2e4C̄ = h

}
�⇒ C̄ = 4C̃, 2e2D̄ + 4e2D̃ = 4e2C̃ = 0.

(112)
From the symmetry of the lattice, based on C̄ = 4C̃, it is reasonable to assume three
additional relations as follows,

A0 = h − 5gh2

6e2
, Ā = gh2

6e2
, Ã = gh2

24e2
, B̄ = h

3e2
, B̃ = h

12e2
,

C̄ = h

2e4
, C̃ = h

8e4
, D̄ = − h

6e2
, D̃ = − h

24e2
, D0 = − 2h

3e2
, (113)

results in,

f eq
α =




h − 5gh2

6e2
− 2huiui

3e2
, α = 0

gh2

6e2
+ heαiui

3e2
+ heαieαjuiuj

2e4
− huiuj

6e2
, α = 1, 3, 5, 7

gh2

24e2
+ heαiui

12e2
+ heαieαjuiuj

8e4
− huiuj

24e2
, α = 2, 4, 6, 8.

(114)

3.5.3 Recovery of the Shallow Water Equations

To prove that the calculated depth and velocities from equation (102) and (96) are the
solution to the shallow water equations, we perform the Chapmann-Enskog expansion
to the lattice Boltzmann equation that recovers the macroscopic equations. Supposing

t is small and is equal to ε, 
t = ε, the equation (96) is expressed as

fα(X + eαε, t + ε) − fα(X, t) = −1

τ

(
fα − f eq

α

) + ε

6e2
eαjFj . (115)
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Putting a Taylor expansion to the first term on the left-hand side of the above equation
in time and space around point (X, t) results in

fα(X + eαε, t + ε) − fα(X, t) = ε

(
∂

∂t
+ eαj

∂

∂xj

)
fα

+ 1

2
ε2

(
∂

∂t
+ eαj

∂

∂xj

)2

fα + O(ε2)

= −1

τ
(fα − f eq

α ) + ε

6e2
eαjFj . (116)

fα around f (0)
α , can also be expanded to have

fα = f (0)
α + εf (1)

α + ε2f (2)
α + O(ε2) (117)

where f (0)
α = f eq

α . The equation above to order ε is

ε

(
∂

∂t
+ eαj

∂

∂xj

)
fα = −1

τ
εf (1)

α + ε

6e2
eαjFj

�⇒
(

∂

∂t
+ eαj

∂

∂xj

)
fα = −1

τ
f (1)

α + 1

6e2
eαjFj (118)

and to order ε2 is(
∂

∂t
+ eαj

∂

∂xj

)
f (1)

α + 1

2

(
∂

∂t
+ eαj

∂

∂xj

)2

f (0)
α = −1

τ
f (2)

α . (119)

Substituting equation order ε in equation order ε2 after rearrangement, leads to(
1 − 1

2τ

) (
∂

∂t
+ eαj

∂

∂xj

)
f (1)

α = −1

τ
f (2)

α − 1

2

(
∂

∂t
+ eαj

∂

∂xj

) (
1

6e2
eαkFk

)
.

(120)
Taking

∑
α

[ (
∂

∂t
+ eαj

∂

∂xj

)
fα = −1

τ
f (1)

α + 1

6e2
eαjFj

+ ε ×
((

1 − 1

2τ

) (
∂

∂t
+ eαj

∂

∂xj

)
f (1)

α

= −1

τ
f (2)

α − 1

2

(
∂

∂t
+ eαj

∂

∂xj

) (
1

6e2
eαkFk

)) ]

about α gives

∂

∂t

(∑
α

f (0)
α

)
+ ∂

∂xj

(∑
α

f (1)
α

)
= −ε

1

12e2

∂

∂xj

(∑
α

eαj eαkFk

)
. (121)
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By applying the first-order accuracy for the force term, the evaluation of the other terms
in the above equation using (115) and (114) results in

∂h

∂t
+ ∂(huj )

∂xj

= 0 (122)

which is the continuity equation for shallow water flows. From

∑
α

eαi

[ ((
∂

∂t
+ eαj

∂

∂xj

)
fα = −1

τ
f (1)

α + 1

6e2
eαjFj

)

+ ε

((
1 − 1

2τ

) (
∂

∂t
+ eαj

∂

∂xj

)
f (1)

α

= −1

τ
f (2)

α − 1

2

(
∂

∂t
+ eαj

∂

∂xj

) (
1

6e2
eαkFk

) )]
(123)

about α, we have

∂

∂t

(∑
α

eαif
(0)
α

)
+ ∂

∂xj

(∑
α

eαieαjf
(0)
α

)
+ ε

(
1 − 1

2τ

)
∂

∂xj

(∑
α

eαieαjf
(1)
α

)

=Fjδij − ε
1

2

∑
α

eαi

(
∂

∂t
+ eαj

∂

∂xj

) (
1

6e2
eαjFj

)
. (124)

Again, by using the first-order accuracy for the force term, the other terms can be sim-
plified with equations (106) and (114), and above equation becomes

∂(hui)

∂t
+ ∂(huiuj )

∂xj

= g
∂

∂xi

(
h2

2

)
− ∂

∂xj

�ij + Fi, (125)

�ij = ε

2τ
(2τ − 1)

∑
α

eαieαjf
(1)
α . (126)

Considering equation (118) using equation (114) after some algebra, we obtain

�ij ≈ −γ

[
∂(hui)

∂xj

+ ∂(huj )

∂xi

]
. (127)

Substituting equation (127) into equation (125) gives

∂(hui)

∂t
+ ∂(huiuj )

∂xj

= −g
∂

∂xi

(
h2

2

)
+ γ

∂2(hui)

∂xj∂xj

+ Fi (128)

with the kinematic viscosity γ defined as γ = c2
t

6
(2τ − 1) and the force Fi expressed

as

Fi = −gh
∂zb

∂xi

+ τωi

ρ
− τbi

ρ
+ Ei. (129)
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Figure 6: LBM solutions to the SWE.

3.5.4 Boundary and Initial Conditions

Suitable boundary and initial conditions must be provided to simulate shallow water flow
problems. Initial and boundary conditions in the lattice Boltzmann formulation rely on
connecting the macroscopic boundary conditions in the physical problem to macroscopic
boundary conditions on the distribution functions fα. Using the periodic boundary
conditions in the lattice Boltzmann formulation is accomplished by setting the unknown
distribution functions, f1, f5 and f8. At the inflow boundary to the corresponding known
distribution functions at the out flow boundary;

fα(i = 1, j, t) = fα(i = 1, j = 1, t), α = 1, 5, 8 (130)

and the unknown distribution functions f3, f6 and f7 at the inflow boundary,

fα(i = 1, j, t) = fα(i = 1, j = 1, t), α = 3, 6, 7. (131)

Boundary conditions for solid boundaries as an example to structures in the flow region or
impermeable boundaries are set down to apply no-slip or free-slip at these boundaries to
set down zero velocity or zero normal velocity at the boundary, respectively. However, in
this research the author made use of bounce back conditions, open boundary conditions
and initial conditions. Furthermore, as opined by previous authors [15] for physical
problems to be modelled, it is given in form of macroscopic variables which are normal
practice in traditional numerical methods. Hence, the lattice Boltzmann formulation is
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Figure 7: Finite Difference (FD) numerical solutions to the SWE.

based on solving equations, so that the initial conditions must be written in terms of the
distribution function fα. If the initial macroscopic boundary conditions h, ux and uy ,
are given, the EDF, f eq

α , can be computed and used as initial conditions for fα as follow

fα = f eq
α

(
h(x, t = 0), ux(x, t = 0), uy(x, t = 0)

)
. (132)

4. Numerical Result

In this section, the Lattice Boltzmann Method for Shallow Water Equation is used to
solve flow problem. Simulation of steady flow over a bump is now presented. The LBM
results arising are then compared with finite difference method (FDM) solutions. The
channel is a rectangular reservoir of area 2.5 × 2.5 m2 with a bump defined by

zb(x) =
{

0.2 − 0.05(x − 10)2, 8 < x < 12
0, otherwise.

In the numerical computations, the water depth inside the channel is h = 2m, e = 15
m

s
,

and τ = 1.5. The domain is covered by 500×50 lattices or cells for numerical simulations



2264 Sara Zergani, Z.A. Aziz, and K.K. Viswanathan

Figure 8: Finite Difference (FD) numerical solutions to the SWE.

and 
x = 
y = 0.05. Figure 6 shows the profile of the water surface along channel with
Lattice Boltzmann solutions where else Figure 7 shows the Finite Difference numerical
solution to the shallow water equations. The comparison of the water surface is shows
as in Figure 8.

5. Conclusions and Recommendations

This work focuses systematically on the study, validation, and demonstration of the lat-
tice Boltzmann method as an invaluable numerical modelling and simulation tool, for
two dimensional flows in the shallow water regime in high performance computing en-
vironments. An accurate, simple and conservative LABSWE model is discussed in this
research. The model has a wide range of applications, most especially in solving steady
and unsteady flow problems. Additionally, it is a numerical technique used for an indirect
solution of flow equations through a microscopic approach to macroscopic phenomena.
From the result of the Numerical test, it is evident that this method can provide accurate
solution, making it an ideal model for shallow water flow simulation. The new analytical
method which has two-dimensional steady-state solutions to the rotating shallow water
equations over variable topography.Exploiting a drastic simplification drive this analyt-
ical method that occurs for non-divergent flows. Set up and implementing Multi-layer
shallow water equations with MRT collision operator, and also it is recommended that
to perform a higher order recovery of the multi-layer shallow water equations. In order
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to perform a stability analysis, the MRT collision operator should be used to provide a
systematic basis for choosing MRT parameters.
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