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Abstract

We study a ring theoretic property which is a special case of right McCoy rings,
introducing the concept of principally right McCoy rings. We study the basic prop-
erties of principally right McCoy rings, and ordinary ring extensions of principally
right McCoy rings are considered.
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1. Principally right McCoy rings

Throughout this note every ring is associative with identity unless otherwise stated.
Given a ring R, rR(−) (lR(−)) is used for the right (left) annihilator in R. If S is a
singleton, say S = {a}, then we write rR(a) (�R(a)) in place of rR({a}) (�R({a})). We
use R[x] to denote the polynomial ring with an indeterminate x over R. Let Z (Zn)
denote the ring of integers (modulo n). Denote the n by n full (resp., upper triangular)
matrix ring over R by Matn(R) (resp., Un(R)). Let Eij be the matrix with (i, j )-entry
1 and zeros elsewhere.

McCoy [7, Theorem 2] proved the following in 1942:
If R is a commutative ring and rR[x](f (x)) �= 0, then rR(f (x)) �= 0.

A ring (possibly without identity) is usually called reduced if it has no nonzero nilpo-
tent elements. Rege et al. [9] called a ring R Armendariz if aibj = 0 for all i, j whenever

f (x) =
m∑

i=0

aix
i , g(x) =

n∑
j=0

bjx
j in R[x] satisfy f (x)g(x) = 0. Reduced rings are

Armendariz by [2, Lemma 1]. A ring is usually called Abelian if every idempotent is
central. Armendariz rings are Abelian by the proof of [1, Theorem 6] or [5, Corollary 8].
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Nielsen [8] called a ring R (possibly without identity) right McCoy provided that the
equation f (x)g(x) = 0 implies f (x)c = 0 for some nonzero c ∈ R, where f (x), g(x)

are nonzero polynomials in R[x]. Left McCoy rings are defined similarly. If a ring is
both left and right McCoy then the ring is called a McCoy ring. Armendariz rings are
clearly McCoy.

A ring R will be called principally right McCoy provided that f (x)g(x) = 0 implies
f (x)r = 0 for some nonzero r in the principal right ideal of R generated by a coefficient
of g(x), where f (x) and g(x) are nonzero polynomials in R[x]. Principally left McCoy
rings are defined similarly. If a ring is both principally left and right McCoy then the
ring is called a principally McCoy ring.

A principally right McCoy ring is obviously right McCoy. Armendariz rings are
clearly principally McCoy rings. And this implication is irreversible as the following
example shows.

Example 1.1. We use the ring and argument in [5, Example 2]. Let A = Z2〈a0, a1,

a2, b0, b1, b2, c〉 be the free algebra with noncommuting indeterminates a0, a1, a2,

b0, b1, b2, c over Z2. Let B be the subalgebra of A consist of all polynomials of zero
constant term. Consider an ideal of A, say I , generated by a0b0, a1b2 + a2b1, a0b1 +
a1b0, a0b2 +a1b1 +a2b0, a2b2, a0rb0, a2rb2, (a0 +a1 +a2)r(b0 +b1 +b2) and r1r2r3r4,
where r, r1, r2, r3, r4 ∈ B. Note B4 ∈ I .

Let next R = A/I . Consider (a0 +a1x+a2x
2)(b0 +b1x+b2x

2) = 0, but a1b2 �= 0.
So R is notArmendariz. We show next thatR is principally right McCoy. supp(−) means

the support of a given polynomial. Take 0 �= f (x) =
n∑

i=0

αix
i, 0 �= g(x)

m∑
j=0

βjx
j ∈

R[x] with f (x)g(x) = 0. If 1 ∈ supp(βj ), then fix α′ to be a monomial in the support

of αi of smallest degree. But this implies α′ · 1 is in the support of
∑

αiβj = 0, a
contradiction. Thus 1 /∈ supp(βj ), and similarly, 1 /∈ supp(αi). So αi, βi ∈ A for each
i, j . Now we have βk �= 0 for some 0 ≤ k ≤ m. Note that A4 = 0. Let Hn be the set of
all linear combinations of monomials of degree n over Z2. Observe that Hn is finite for
any n and that the ideal I of R is homogeneous

If βk with smallest degree 1 exists, then f1 ∈ H1 and so we can find nonzero r ∈ βkR

such that f (x)r = 0.
If βk with smallest degree 2 exists, then f2 ∈ H2 and so we can find nonzero r ∈ βkR

such that f (x)r = 0.
If βk with smallest degree 3 exists, then f3 ∈ H3 and so f3 ∈ βkR such that

f (x)f3 = 0.
Thus R is principally right McCoy.

Following [3], a ring R is called (von Neumann) regular if for each a ∈ R there
exists b ∈ R such that a = aba. If given a ring is regular then we have the following
equivalence.
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Proposition 1.2. Given a regular ring R the following conditions are equivalent:

(1) R is reduced;

(2) R is Armendariz;

(3) R is principally right McCoy;

(4) R is right McCoy;

(5) R is Abelian.

Proof. The proof is done by help of [3, Theorem 3.2] and [6, Proposition 2.14], noting
that Armendariz rings are principally right McCoy and principally right McCoy rings
are right McCoy. �

2. Extensions of principally right McCoy rings

In this section we examine some ring extensions, which have roles in ring theory, to
be principally right McCoy. A ring R is usually called right Ore if given a, b ∈ R with
b regular there exist a1, b1 ∈ R with b1 regular such that ab1 = ba1. Note that R is
a right Ore ring if and only if the classical right quotient ring of R exists. There exist
many reduced rings which are not right Ore as can be seen by the free algebra in two
noncommuting indeterminates over a field. This kind of ring is a domain which cannot
have its classical right quotient ring.

Theorem 2.1. Let R be a right Ore ring with the classical right quotient ring Qr(R).
Then R is principally right McCoy if and only if so is Qr(R).

Proof. We adapt the proof of [4, Theorem 2.1] for the case of principally right McCoy
rings. Let Q = Qr(R). Suppose F(x)G(x) = 0 for 0 �= F(x), G(x) ∈ Q[x]. We
can write F(x) = a0u

−1 + a1u
−1x + · · · + amu−1xm and G(x) = b0v

−1 + b1v
−1x +

· · · + bnv
−1xn, where u, v are regular. Since F(x)G(x) = 0, (a0u

−1 + a1u
−1x + · · · +

amu−1xm)(b0 + b1x + · · · + bnx
n) = 0 and this yields

(†) a0u
−1b0 = 0, a0u

−1b1 + a1u
−1b0 = 0, . . . , amu−1bn = 0.

For u−1b0, u
−1b1, . . . , u

−1bn, there exist c0, c1, . . . , cn and s regular such that

u−1bi = cis
−1 for all i. Then, from the equality (†), we get a0c0 = 0, a0c1 + a1c0 =

0, . . . , amcn = 0 and f (x)g(x) = 0, where f (x) = a0 + a1x + · · · + amxm and

g(x) = c0 + c1x + · · · + cnx
n in R[x]. Note that f (x) �= 0 and g(x) �= 0 because

F(x) �= 0 and G(x) �= 0.
Since R is principally right McCoy, there exists nonzero r ∈ ciR for some i such

that f (x)r = 0. Note that

r ∈ ciR ⊆ ciQ = cis
−1Q = u−1biQ.
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Thus ur ∈ biQ = biv
−1Q and ur �= 0. Since f (x)r = 0, we have

0 = (a0 + a1x + · · · + amxm)r = (a0 + a1x + · · · + amxm)u−1ur

= (a0u
−1 + a1u

−1x + · · · + amu−1xm)ur = F(x)ur.

Therefore Q is principally right McCoy.
Conversely, let 0 �= f (x) = a0 +a1x+· · ·+amxm and 0 �= g(x) = b0 +b1x+· · ·+

bnx
n in R[x] such that f (x)g(x) = 0. Then f (x), g(x) ∈ Q[x]. Since Q is principally

right McCoy, there exists i such that f (x)birs
−1 = 0 for some 0 �= birs

−1 ∈ biQ. This
implies f (x)bir = 0 and bir �= 0. Since bir ∈ biR, R is principally right McCoy. �

Let R be a ring R and n ≥ 2. Following the literature, we usually consider the
subring

Dn(R) =







a a12 a13 · · · a1n

0 a a23 · · · a2n

0 0 a · · · a3n
...

...
...

. . .
...

0 0 0 · · · a




| a, aij ∈ R




of Un(R). Note that Dn(R)[x] is isomorphic to Dn(R[x]).
Theorem 2.2. For a ring R, the following conditions are equivalent:

(1) R is principally right McCoy;

(2) D2(R) is principally right McCoy;

(3) D3(R) is principally right McCoy.

Proof. We apply the proof of [4, Theorem 2.2]. For the proof of (1) implying (2), suppose
that R is principally right McCoy. Recall (Dn(R))[x] ∼= Dn(R[x]). Let

0 �= A(x) =
m∑

i=0

(
a1i b1i

0 a1i

)
xi =

(
f1(x) g1(x)

0 f1(x)

)

and

0 �= B(x) =
n∑

j=0

(
a2j b2j

0 a2j

)
xj =

(
f2(x) g2(x)

0 f2(x)

)
,

where f1(x) =
m∑

i=0

a1ix
i , g1(x) =

m∑
i=0

b1ix
i , f2(x) =

n∑
j=0

a2j x
j , g2(x) =

n∑
j=0

b2j x
j .

Case 1. (f1(x) �= 0, f2(x) �= 0)
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Note f1(x)f2(x) = 0. Then since R is principally right McCoy, there exists nonzero
α ∈ a2jR for some j ∈ {1, 2, . . . , n} such that f1(x)α = 0, say α = a2jαj . So

A(x)

(
0 α

0 0

)
= 0, noting that

(
0 α

0 0

)
=

(
a2j b2j

0 a2j

) (
0 αj

0 0

)
∈

(
a2j b2j

0 a2j

)
D2(R).

Case 2. (f1(x) �= 0 and f2(x) = 0, g2(x) �= 0)
Note f1(x)g2(x) = 0. Then since R is principally right McCoy, there exists nonzero

β ∈ b2jR for some j ∈ {1, 2, . . . , n} such that f1(x)β = 0, say β = b2jβj . So

A(x)

(
0 β

0 0

)
= 0, noting that

(
0 β

0 0

)
=

(
0 b2j

0 0

) (
βj 0
0 βj

)
∈

(
0 b2j

0 0

)
D2(R).

Case 3. (f1(x) = 0, g1(x) �= 0, and f2(x) �= 0)
Let p = a2ipi be any nonzero element for each i = 1, 2, . . . , n. Then we get

A(x)

(
0 p

0 0

)
= 0, noting that

(
0 p

0 0

)
=

(
a2i b2i

0 a2i

) (
0 pi

0 0

)
∈

(
a2i b2i

0 a2i

)
D2(R).

Case 4. (f1(x) = 0 and f2(x) = 0, g2(x) �= 0)
Let q = b2iqi be any nonzero element for each i = 1, 2, . . . , n. Then we get

A(x)

(
0 q

0 0

)
= 0, noting that

(
0 q

0 0

)
=

(
0 b2j

0 0

) (
qj 0
0 qj

)
∈

(
0 b2j

0 0

)
D2(R).

By Cases 1, 2, 3 and 4, D2(R) is principally right McCoy.
For the proof of (1) implying (3), suppose that R is principally right McCoy and let

0 �= A(x) =
m∑

i=0


 a1i b1i c1i

0 a1i d1i

0 0 a1i


 xi =


 f1(x) g1(x) h1(x)

0 f1(x) i1(x)

0 0 f1(x)




and

0 �= B(x) =
m∑

j=0


 a2i b2i c2i

0 a2i d2i

0 0 a2i


 xj =


 f2(x) g2(x) h2(x)

0 f2(x) i2(x)

0 0 f2(x)



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in D3(R)[x] such that A(x)B(x) = O, where f1(x) =
m∑

i=0

a1ix
i , g1(x) =

m∑
i=0

b1ix
i ,

h1(x) =
m∑

i=0

c1ix
i , i1(x) =

m∑
i=0

d1ix
i , f2(x) =

n∑
j=0

a2j x
j , g2(x) =

n∑
j=0

b2j x
j , h2(x) =

n∑
j=0

c2j x
j , i2(x) =

n∑
j=0

d2j x
j .

Case 1. (f1(x) �= 0, f2(x) �= 0)
Note f1(x)f2(x) = 0. Then since R is principally right McCoy, there exists nonzero

α ∈ a2jR for some j ∈ {1, 2, . . . , n} such that f1(x)α = 0, say α = a2jαj . So

A(x)


 0 0 α

0 0 0
0 0 0


 = 0, noting that


 0 0 α

0 0 0
0 0 0


 =


 a2j b2j c2j

0 a2j d2j

0 0 a2j





 0 0 αj

0 0 0
0 0 0


 ∈


 a2j b2j c2j

0 a2j d2j

0 0 a2j


 D3(R).

Case 2. (f1(x) �= 0 and f2(x) = 0, g2(x) �= 0)
Note f1(x)g2(x) = 0. Then since R is principally right McCoy, there exists nonzero

β ∈ b2jR for some j ∈ {1, 2, . . . , n} such that f1(x)β = 0, say β = b2jβj . So

A(x)


 0 0 β

0 0 0
0 0 0


 = 0, noting that


 0 0 β

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 0 0 0

0 0 βj

0 0 0


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

Case 3. (f1(x) �= 0 and f2(x) = 0, g2(x) = 0, h2(x) �= 0)
Note f1(x)h2(x) = 0. Then since R is principally right McCoy, there exists nonzero

γ ∈ c2jR for some j ∈ {1, 2, . . . , n} such that f1(x)γ = 0, say γ = c2j γj . So

A(x)


 0 0 γ

0 0 0
0 0 0


 = 0, noting that


 0 0 γ

0 0 0
0 0 0


 =


 0 0 c2j

0 0 0
0 0 0





 γj 0 0

0 γj 0
0 0 γj


 ∈


 0 0 c2j

0 0 d2j

0 0 0


 D3(R).

Case 4. (f1(x) �= 0 and f2(x) = 0, g2(x) = 0, i2(x) �= 0)
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Note f1(x)i2(x) = 0. Then since R is principally right McCoy, there exists nonzero
δ ∈ d2jR for some j ∈ {1, 2, . . . , n} such that f1(x)δ = 0, say δ = d2j δj . So

A(x)


 0 0 δ

0 0 0
0 0 0


 = 0, noting that


 0 0 δ

0 0 0
0 0 0


 =


 0 0 0

0 0 d2j

0 0 0





 δj 0 0

0 δj 0
0 0 δj


 ∈


 0 0 0

0 0 d2j

0 0 0


 D3(R).

Case 5. (f1(x) = 0, f2(x) �= 0)
Note f1(x)f2(x) = 0. Then, for any nonzero p = a2ipi for each i = 1, 2, . . . , n,

A(x)


 0 0 p

0 0 0
0 0 0


 = 0, noting that


 0 0 p

0 0 0
0 0 0


 =


 a2j b2j c2j

0 a2j d2j

0 0 a2j





 0 0 pj

0 0 0
0 0 0


 ∈


 a2j b2j c2j

0 a2j d2j

0 0 a2j


 D3(R).

Case 6. (f1(x) = 0, f2(x) = 0)
Subcase 1. (g1(x) �= 0)

If g2(x) �= 0, then for any nonzero q = b2iqi for each i = 1, 2, . . . , n we get

A(x)


 0 q 0

0 0 0
0 0 0


 = 0, noting that


 0 q 0

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 0 0 0

0 0 qj

0 0 0


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

If h2(x) �= 0, then for any nonzero r = c2iri for each i = 1, 2, . . . , n we get

A(x)


 0 0 r

0 0 0
0 0 0


 = 0, noting that


 0 0 r

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 rj 0 0

0 rj 0
0 0 rj


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

If i2(x) �= 0, then since g1(x)i2(x) = 0 and R is principally right McCoy, there exists
nonzero ζ ∈ d2jR for some j ∈ {1, 2, . . . , n} such that f1(x)ζ = 0, say ζ = d2j ζj . So
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A(x)


 0 0 0

0 0 ζ

0 0 0


 = 0, noting that


 0 0 0

0 0 ζ

0 0 0


 =


 0 0 0

0 0 d2j

0 0 0





 ζj 0 0

0 ζj 0
0 0 ζj


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

Subcase 2. (g1(x) = 0, h1(x) �= 0)
If g2(x) �= 0, then for any nonzero q = b2iqi for each i = 1, 2, . . . , n we get

A(x)


 0 q 0

0 0 0
0 0 0


 = 0, noting that


 0 q 0

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 0 0 0

0 0 qj

0 0 0


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

If h2(x) �= 0, then for any nonzero r = c2iri for each i = 1, 2, . . . , n we get

A(x)


 0 0 r

0 0 0
0 0 0


 = 0, noting that


 0 0 r

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 rj 0 0

0 rj 0
0 0 rj


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

If i2(x) �= 0, for any nonzero s = d2isi for each i = 1, 2, . . . , n we get

A(x)


 0 0 0

0 0 s

0 0 0


 = 0, noting that


 0 0 0

0 0 s

0 0 0


 =


 0 0 0

0 0 d2j

0 0 0





 sj 0 0

0 sj 0
0 0 sj


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

Subcase 3. (g1(x) = 0, h1(x) = 0, i1(x) �= 0)
If g2(x) �= 0, then for any nonzero q = b2iqi for each i = 1, 2, . . . , n we get

A(x)


 0 q 0

0 0 0
0 0 0


 = 0, noting that


 0 q 0

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 0 0 0

0 0 qj

0 0 0


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).
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If h2(x) �= 0, then for any nonzero r = c2iri for each i = 1, 2, . . . , n we get

A(x)


 0 0 r

0 0 0
0 0 0


 = 0, noting that


 0 0 r

0 0 0
0 0 0


 =


 0 b2j c2j

0 0 d2j

0 0 0





 rj 0 0

0 rj 0
0 0 rj


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

If i2(x) �= 0, for any nonzero s = d2isi for each i = 1, 2, . . . , n we get

A(x)


 0 0 0

0 0 s

0 0 0


 = 0, noting that


 0 0 0

0 0 s

0 0 0


 =


 0 0 0

0 0 d2j

0 0 0





 sj 0 0

0 sj 0
0 0 sj


 ∈


 0 b2j c2j

0 0 d2j

0 0 0


 D3(R).

Therefore D3(R) is principally right McCoy.

For the proof of (2) implying (1), suppose that D2(R) is principally right McCoy,

and let 0 �= f (x) =
m∑

i=0

aix
i, 0 �= g(x) =

n∑
j=0

bjx
j ∈ R[x] with f (x)g(x) = 0. Then,

letting

A(x) =
m∑

i=0

(
ai 0
0 ai

)
xi and B(x) =

n∑
j=0

(
bj 0
0 bj

)
xj ,

we have A(x) =
(

f (x) 0
0 f (x)

)
B(x) =

(
g(x) 0

0 g(x)

)
xj with A(x)B(x) = O.

Since D2(R) is principally right McCoy, there exists nonzero C ∈
(

bj 0
0 bj

)
D2(R)

such that A(x)C = O, say C =
(

bj 0
0 bj

) (
c1j c2j

0 c1j

)
. Note that bjc1j �= 0 or

bjc2j �= 0. Since f (x)bjc1j = 0 and f (x)bjc2j = 0, R is principally right McCoy.
The proof of (3) implying (1) is similar. �

Considering Theorem 2.2, one can ask whether Dn(R) may be also principally right
McCoy for n ≥ 4 over a principally right McCoy ring R. However the following shows
that the answer is negative.

Example 2.3. Let R be any ring and consider Dn(R) for n ≥ 4. We use the polynomials

f (x) = E12 + E13x and g(x) = −E3n + E2nx ∈ Dn(R)[x]
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in Remark (1) after [4, Theorem 2.2]. Then f (x)g(x) = 0. Consider the right ideals
I1 = E2nDn(R) and I2 = E3nDn(R) of Dn(R). Let r1 = aE2n and r2 = bE3n be any
nonzero elements in I1 and I2, respectively. Then

f (x)r1 = aE1n �= 0 and f (x)r2 = bE1nx �= 0

and so Dn(R) is not principally right McCoy.
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