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Abstract

In this article it has been sought to study the effect of longitudinal roughness on
the behaviour of plane slider bearings with a film formed by a magnetic fluid as
the lubricant, by using pressure flow factor-which is strongly dependent on the
surface pattern parameter γ for longitudinally rough slider bearing. A stochastic
random variable with non zero mean, variance and skewness is used to model the
roughness of the underlying bearing surfaces. The associated Reynolds’ equation
is stochastically averaged with respect to the random roughness parameter. Solving
this equation with suitable boundary conditions one obtains the pressure distribution
which results in the calculation of load carrying capacity. The results are shown
graphically. The graphical representations indicate that the use of a magnetic fluid



as lubricant increases the load carrying capacity in comparision with the conven-
tional lubricant based bearing system. Moreover, the adverse effect of roughness
can be minimized to certain extent by increasing the strength of the magnetic field.
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1. Introduction

The study of an inclined plane slider bearing is a classical one. Slider bearing is used
in various fields like clutch plates, automobile transmissions and domestic appliances.
It is well known that the bearing surfaces after having some run-in and wear develop
roughness. Various film shapes [1, 2] have been investigated. It has gained growing
attentions after the introduction of stochastic concept [3]. For the evaluation of the
effect of transverse and longitudinal roughness Christensen and Tonder [4,5,6,7] used a
stochastically averaged Reynolds’type equation to analyse the hydrodynamic lubrication
for slider bearings. Christensen and tonder’s approach formed the base of the analysis to
study the effect of surface roughness in a number of investigations (Prakash and Tiwari
[14], Guha [15], Gupta and Deheri [16], Andharia et al. [17]. The effect of surface
roughness on the performance of hydrodynamic slider bearings was studied by Andharia
et al. [8]. The effect of longitudinal surface roughness on the behaviour of slider bearing
with squeeze film formed by a magnetic fluid was analysed by Deheri et al. [9]. Both
these studies established that the roughness had a significant effect on the performance of
the bearing system. The effect of surface roughness was discussed by many investigators
(Davies [10], Burton [11], Michell [12], Tonder [13]).

To improve the Tribological performance of a sliding interface, magnetic fluid as
a lubricant has been employed in bearings. Agrawal [18], Bhat and Deheri [19, 20]
studied an inclined plane slider bearing by considering a ferrofluid as the lubricant. It
was found that such a lubricant caused increase in the load carrying capacity of the
bearings without affecting the friction force on the respective sliders. Patel et al. [21]
examined the squeeze film performance of ferrofluid with Non-Newtonian couple stress
effect on parallel rough circular disks. The effect of surface roughness on the performance
of a magnetic fluid based parallel plate porous slider bearing was observed by Patel and
Deheri [22]. Slip velocity and roughness effect on magnetic fluid based infinitely long
bearings was analysed by Patel et al. [23]. It was concluded that the slip effect remained
crucial for bearing design. It required to be kept at minimum.

Andharia et al. [17] observed that in case of longitudinal roughness, by suitably
choosing the strength of the ferrofluid, the performance of the bearing could be improved
to a large extent.

Further efforts have been made to analyse the effect of surface roughness and flow
factor-which is strongly dependent on the surface pattern parameter (γ > 1) on the
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behaviour of a longitudinally rough plane slider bearing with a film formed by a magnetic
fluid.

2. Analysis

For a rough planer slider bearing as shown in Figure 1, we assume that the bearing is
infinite in Y -direction and the slider is moving in X-direction with the uniform velocity
U , while hm and hM are minimum and maximum film thickness respectively. The length
of the bearing is l.

The mean pressure in a rough slider bearing is governed by the averaged Reynolds’
type equation (Patir [24] and Patir and Cheng [25, 29])
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where
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∫ ∞
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while

hT = h + δ (2.3)

This stochastically averaged Reynolds’ type equation took surface topography into ac-
count.It has been assumed that the flow of lubricant is steady and in X-direction only
while U1 = U, U2 = 0. Moreover for longitudinally rough surface(γ > 1), the variation
in roughness heights in X-direction is negligible. Thus the effect of shear flow factor
(φs) is also negligible. Equation (2.1) then can be modified as
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The use of magnetic fluid as a lubricant modifying the performance of the bearing
system is well known. The magnetic field M is oblique to the stator as in Agrawal [18]
having magnitude

M2 = x(l − x) (2.5)

In case of magnetic fluid as a lubricant, the pressure generated in a fluid film can be
assumed to be increased with respect to the applied magnetic field. Also, the lubricant
is considered to be incompressible and its flow is laminar. Under the usual assumptions
of the hydrodynamic magnetic lubrication, the modified Reynolds’ equation (Agrawal
[18], Bhat [27], Bhat and Patel [28]) in present case, turns out to be
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where µ0 is magnetic susceptibility, which is a dimensionless proportionality constant
that includes the magnetization of the lubricant in response to an applied magnetic field.
µf is free space permeability . The free space permeability (permeability in vacuum)
of a material characterizes the response of that material to electric or magnetic field. In

simplified models, it is often regarded as constants

(
4π × 10−7 N

A2

)
for a given material.

δ is assumed to be stochastic in nature and is governed by the probability density
function f (δ), −c < δ < c, where c is maximum deviation from the mean film thickness.
Then, mean-α, the standard deviation-σ and the measure of symmetry-ε are described
in Christensen and Tonder [4, 5, 6, 7] in terms of the expected values as:

E(R) =
∫ c

−c

R f (δ) dδ (2.7)

α = E(δ) (2.8)

σ 2 = E[(δ − α)2] (2.9)

ε = E[(δ − α)3] (2.10)

It is to be noted that while α and ε can assume both positive and negative values, σ

is always positive.
Following the discussion of Chiang, Hsiu-Lu, et al.[30] an approximation to f (δ) is

f (δ) =
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if −c ≤ δ ≤ c,
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(2.11)

Hence, h̄T can be approximated as

h̄T = 13

8
h ≈ h (2.12)

Now, following the averaging process of Andharia et al. [8], equation (2.6) can be
modified as
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where (p̄) is expected value of the mean pressure level p̄,

m(h) = h−3[1 − 3αh−1 + 6h−2(σ 2 + α2) − 20h−3(ε + 3σ 2α + α3)] (2.14)
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and

n(h) = h−1[1 − αh−1 + h−2(σ 2 + α2) − h−3(ε + 3σ 2α + α3)] (2.15)

Patir [24] provided that experimental relation for φx

φx = 1 + CH−r (for γ > 1) (2.16)

The dimensionless form of this is

φX = 1 + C(h∗ Hm)−r (for γ > 1) (2.17)

where

H = h

σ
, Hm = hm

σ
(2.18)

while the constants C and r are given as functions of γ in the table-1 (Patir [24]).
Making use of the following dimensionless quantities
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M(h∗) = h∗−3[1 − 3α∗h∗−1 + 6h∗−2(σ ∗2 + α∗2) − 20h∗−3(ε∗ + 3σ ∗2α∗ + α∗3)]
(2.20)

and

N(h∗) = h∗−1[1 − α∗h∗−1 + h∗−2(σ ∗2 + α∗2) − h∗−3(ε∗ + 3σ ∗2α∗ + α∗3)] (2.21)

equation (2.13) leads to the dimensionless form
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The associated boundary conditions are

P̄ = 0, at X = 0 (2.23)

P̄ = 0, at X = 1 (2.24)

Solving equation (2.22) on the boundary conditions one obtains the expression for
non-dimensional pressure distribution

P̄ (X) = µ∗X(1 − X) +
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where,

Q∗ =
∫ 1

0
6M(h∗)
φXN(h∗) dX∫ 1

0
M(h∗)

φX
dX

(2.26)

while

dP̄

dX
= 0, at which the mean gap is maximum, say Q∗ (Constant) (2.27)

The dimensionless load carrying capacity per unit width is then given by

W ∗ = w.h2
m

µUl
=

∫ 1

0
P̄ dX (2.28)

3. Results and discussion

Figures 2-3 dealing with the effect of variance on the load carrying capacity establishes
that the variance (+ve) decreases the load carrying capacity while the variance (-ve)
causes increased load carrying capacity. Also, in the initial stages the effect of standard
deviation remains quite significant.

The increase in the load carrying capacity due to the increase in standard deviation
gets further increased owing to the combined effect of negatively skewed roughness and
variance (-ve) (Figure 4–5) which does not happen in the case of transverse roughness
pattern.

However, the effect of standard deviation on the variation of the load carrying capacity
with respect to skewness is nominal (Figure 6).

In this type of bearing system the roll of variance (-ve) remains more prominent as
compared to the negatively skewed roughness, unlike the case of transverse roughness
pattern (Deheri et al. [31]).

The effect of standard deviation on the variation of the load carrying capacity with
respect to magnetization is approximately marginal (Figure 8).

4. Conclusion

The current investigation shows that this type of bearing system may turn out to be
very effective as there are many parameters contributing towards the increase in the
load carrying capacity of the bearing. The adverse effect of γ can be compensated by
the combined positive effect of standard deviation, negatively skewed roughness and
variance (-ve) by choosing the magnetic strength. However, from bearing’s life period
point of view the roughness aspect deserves to be evaluated at the time of designing the
bearing system.
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5. Tables and Figures
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Nomenclature

h̄T Average film thickness-Mean gap (m)

f (δ) Frequency density function of combined roughness amplitude-δ (m−1)

m Inclination of slider bearing
l Length of slider bearing (m)

w Load carrying capacity (N)

W ∗ Load carrying capacity in dimensionless form
hT Local film thickness (m)

p Local pressure (Nm−2)

M Magnitude of the Magnetic field (Am−1)

p̄ Mean pressure level (Nm−2)

P̄ Mean pressure level in dimensionless form
hm Minimum film thickness at the trailing edge of slider bearing (m)

Hm Minimum film thickness - Roughness ratio in dimensionless form
h Nominal film thickness (m)

H Nominal film thickness - Roughness ratio in dimensionless form
U1, U2 Velocities of surfaces in X-Direction (ms−1)

σ Composite rms roughness given by Gaussian distribution of heights (m)

ρ Density of the lubricant (Kgm−3)

φx, φy Pressure flow factors
δ = δ1 + δ2 Random roughness amplitudes of the two surfaces measured

from their mean level (m)

φs Shear flow factor
σ1, σ2 Standard deviations of the surfaces (m)

µ Viscosity of lubricant (Kgm−1s−1)

µ∗ Magnetization parameter in dimensionless form
µ0 Magnetic susceptibility
µf Free space permeability (KgmA−2s−2)
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