
Global Journal of Pure and Applied Mathematics. 

ISSN 0973-1768 Volume 11, Number 6 (2015), pp. 4975-4996 

© Research India Publications 

http://www.ripublication.com 

 

 

Numerical Modelling For time fractional nonlinear 

partial differential equation by Homotopy Analysis 

Fractional Sumudu Transform Method 
 

 

Rishi Kumar Pandey and Hradyesh Kumar Mishra
*
 

 

Department of Mathematics Jaypee University of Engineering and Technology 

Guna-473226 (M. P.), INDIA 

E-mail: rishipandey.9@rediffmail.com, hk.mishra@juet.ac.in, 

Corresponding Author*: Hradyesh Kumar Mishra,(+91-9407570623), 

Department of Mathematics,E-mail hk.mishra@juet.ac.in 

 

 

Abstract 

 

In this article, we implement new analytical technique, the homotopy analysis 

fractional sumudu transform method (HAFSTM), for solving nonlinear partial 

differential equations of fractional order. The fractional derivatives are taken 

in caputo sense. The method in applied mathematics can be used as alternative 

methods for obtaining analytic and approximate solutions for various types of 

differential equations. The purpose of this study is to avoid the restrictive 

assumptions and rounding off errors in numerical computation of problems. 

The numerical solutions obtained by the HAFSTM method indicate that the 

approach is easy to implement and computationally very attractive and 

accurate. 
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1. Introduction 

In past few decades considerable interest showed by many researcher in the field of 

fractional calculus specially application of ordinary and partial differential equations 

of fractional order in modelling and simulation of problems due to their valuable 

applications in field of modelling of science and engineering. These applications in 

interdisciplinary sciences show the importance and necessity of fractional calculus. So 
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far there have been several fundamental works on the fractional derivative and 

fractional differential equations, written by Oldham and Spanier [1], Miller and Ross 

[2], Podlubny [3], Kilbas, Srivastava and Trujillo[4] and others V. Parthiban and K. 

Balachandran [5], Samko et al. [6], Caponetto et al. [7], Diethelm [8]. All mentioned 

authors provide systematic understanding of the fractional calculus such as the 

existence and the uniqueness of solutions, some analytical methods for solving 

fractional differential equations like Green’s function method, the Mellin transform 

method, the power series method etc. Yet presently no method available that yields an 

exact solution for nonlinear fractional partial differential equations. Only approximate 

solutions can be derived using linearization or perturbation methods. Many 

mathematical methods such as Adomian decomposition method (ADM) [9-13], 

homotopy perturbation method (HPM) [14-19], variational iteration method (VIM) 

[20-25], homotopy analysis method (HAM)[26-30], Laplace decomposition method 

(LDM) [31-33], homotopy perturbation transform method (HPTM) [34], homotopy 

perturbation sumudu transform method (HPSTM) [35] and homotopy analysis 

transform method (HATM) [36-38] have been proposed to obtain exact and 

approximate analytical solutions of nonlinear equations. Inspired by all above 

discussion we have applied HAFSTM [39] for the solution of fractional partial 

differential equation. 

The main objective of this paper to extend the application of homotopy analysis 

fractional sumudu transform method to provide approximate solution of initial value 

problems of nonlinear partial differential equation of fractional order. 

 

 

2. Basic Definition of Fractional Calculus and Sumudu transform 

Definition 2.1 A real function , 0,f t t  is said to be in the space ,C R  if there 

exists a real number ,p  such that 1 ,pf t t f t  where 1 0, ,f t C  and 

it is said to be in the space 
mC  iff ,

m
f C m N  

 

Definition 2.2 The Riemann Liouville Fractional integral operator of order 0,  of 

a function ,f t C and 1 is defined as [40,41] 

1

0

1
, 0, 0

t

J f t t f d x  and 
0 .J f t f t  

For the Riemann-Liouville fractional integral, we have 

1

1

y y
y

J t t
y

 

 

Definition 2.3 The fractional derivative of f t in the Caputo sense is defined as 

[42] 
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where 1 , , 0.m m m N t  

 

Definition 2.4 In early 90’s, Watugala [43] introduced an incipient integral 

transforms. The sumudu transform is defined over the set of functions 

1 2, , 0, , 1 0, ,j

t

j
A f t M f t Me if t  

by the following formula 

1 2

0

, , .tf u f t f ut e dt uS  

 

Definition 2.5 The sumudu transform of f t t  is defined as [ 44] 

0

1 , 0.tt e t dt u RS  

 

Definition 2.6 The Sumudu transform f tS  of the Riemann-Liouville fractional 

integral is defined as [44]

 .I f t u F uS  

 

Definition 2.7 The Sumudu transform f tS  of the Caputo fractional derivative is 

defined as [44]

 1

0

0 ,
m

kk

t

k

D f t u f t u fS S  where 1 .m m  

 

 

3. Solution by Homotopy Analysis Fractional Sumudu Transform Method 

To illustrate the rudimental conception of the HAFSTM for the fractional partial 

differential equation, we consider the following fractional partial differential equation 

as 

, , , , ;n

tD U x t R x U x t N x U x t G x t 0, , 1 ,t x R n n  (3.1) 

where ,
n

n

t n
D R x

x  
is the linear operation in ,x N x

 
is the general nonlinear 

operation in x  and ,G x t  is a continuous function. 

For simplicity, we ignore all initial and boundary conditions, which can be treated in a 
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homogeneous way. Now the methodology consists of applying the Sumudu transform 

first on both sides of the equation (3.1), we get 
nα

tD x, t + R x x, t x x, t x, t ;U U N U GS S S S
 

0,x , 1 ,t n n  (3.2) 

Using the differentiation property of the Sumudu transform 
1

0

x, 0
R x x, t x x, t x, t 0,

kn

k
k

U t U
U N U G

u u

S
S S S  

1

0

0
x, R x x, t x x, t x, t 0,

kn

k
k

U
U t u u U N U G

u
S S  (3.3) 

we define nonlinear operator as 

1

0

0
x,t;q x,t;q R x x,t;q x x,t;q x, t;q

kn

k
k

U
N u u N G

u
S S  (3.4) 

where 0,1q be an embedding parameter and x,t;q is a real function of x, t and 

.q  

we construct a homotopy as follow: 

01 q x,t;q U x,t qH x,t x,t;qNS  (3.5) 

where   is a nonzero auxiliary parameter and H x,t 0.  An auxiliary function 

0U x,t  is an initial guess of U x,t  and x,t;q  is an unknown function. It is 

important that one has great freedom to choose auxiliary parameter in HAFSTM. 

Obviously, when 0q  and 1q  it holds 

0x,t;0 x,t , x,t;1 x,tU U  (3.6) 

Thus, as q incre ases from 0 to 1, the solution varies from initial guess 
0 x,tU  to 

the solution x,t .U  Now, expanding x,t;q  on Taylor’s series with respect to ,q  

we get 

0

1

, ; , , ,m

m

m

x t q U x t q U x t  (3.7) 

where 

0

, ;1
,

m

m m

q

x t q
U x t

m q
 (3.8) 

The convergence of the series solution (3.7) is controlled by .  If the auxiliary linear 

operator, the initial guess, the auxiliary parameter   and the auxiliary function are 

properly chosen, the series (3.7) converges at 1.q  Hence we obtain 

0

1

, , , ,m

m

U x t U x t U x t  (3.9) 

which must be one of the solutions of original nonlinear equations. The above 

expression provides us with a relationship between the initial guess 
0 ,U x t  and the 
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exact solution ,U x t  by means of the terms , 1,2,3,... ,mU x t m  which are still to 

be determined. 

Define the vectors 

0 1 2, , , , , ,..., , .mU U x t U x t U x t U x t


 (3.10) 

Differentiating the zero order deformation eq. (3.5) m  times with respect to 

embedding parameter q  and then setting 0,q  and finally dividing them by !,m  we 

obtain the 
thm  order deformation equation as follows: 

11, , , , , .mm m m mU x t U x t H x t R U x t


S  (3.11) 

Operating the inverse Sumudu transform of both sides, we get 
1

11, , , , , ,mm m m mU x t U x t H x t R U x t


S  (3.12) 

where 
1

1
1

0

, ;1
, ,

1 !

m

mm m

q

x t q
R U x t

m q


  (3.13) 

and 

0, 1,

1 1.
m

m

m
 

In this way, it is easy to obtain ,mU x t  for 1,m  at 
thM  order, we have 

0

, , ,
M

m

m

U x t U x t  (3.14) 

where ,M  we obtain an accurate approximation of the original equation (3.1). 

 

 

4. Illustrative Examples 

In this section we shall illustrate the technique by three examples. These examples are 

somewhat artificial in the sense that the exact answer, for the special cases, is known 

in advance and the initial and boundary conditions are directly taken from this answer. 

Nonetheless, such an approach is needed to evaluate the accuracy of the analytical 

techniques and to examine the effect of varying the order of the time-fractional 

derivative on the behaviour of the solution. 

 

Example4.1. We borrow the nonlinear time-fractional advection partial differential 

equation [45] 
2, , , , 0, , 0 1,t xD U x t U x t U x t x xt t x R  (4.1) 

subject to the initial condition 

,0 0.U x  (4.2) 

Operating the Sumudu transform on both sides in eq. (4.1) and after using the 

differentiation property of Sumudu transform for fractional derivative, we get 
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2, , , 1 2 ,xU x t u U x t U x t x uS S  (4.3) 

The nonlinear operator is 

2
, ;

, ; , ; , ; 1 2 ,
x t q

N x t q x t q u x t q x u
x

S S  (4.4) 

and thus 
1

2
1 1

0

, 1 2 1 , , .
m

mm m m j j x
j

R U U x t x t u U x t U x t


S S  (4.5) 

The 
thm  order deformation equation is given by 

11, , , , .mm m m mU x t U x t H x t R U x t


S
 

Applying the inverse Sumudu transform, we have 
1

11, , , , .mm m m mU x t U x t H x t R U x t


S  (4.6) 

On solving above equation from 1,2,...,m  we get 

2

1

2
, ,

3 3

t t
U x t x

 

2 2
2

2

2 2
, ,

1 3 1 3

t t t t
U x t x x 

 

2 2
2

3

2 2
2

3 3 2
3

2

3 4

2

2 2
,

1 3 1 3

2 2

1 3 1 3

2 1 4 2 3

3 1 1 3 3 31

4 2 5
,

3 53

t t t t
U x t x x

t t t t
x x

t t
x

t

 

  


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etc. proceed by same manner the rest of components of the iteration can be obtained. 

Setting the 1,  in eq. (4.7) the above expressions are exactly the same as given by 

ADM [41]. 

 

 
 

Figure 1  curve for different values of . 

 

 
 

Figure 2 Plot of approximate solution for value 0.5.  
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Figure 3 Plot of approximate solution for value 0.75.  

 

 
 

Figure 4 Plot of approximate solution for value 1.
 

 

 
 

Figure 5 Plot of exact solution for value 1.
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Figure 6 The behaviour of solution for different values at 1, 1.x   

 

 
 

Figure 7 The behaviour of solution for different values at 1, 1.t   

 

 

Fig. 1 shows that the  values admissible between 1.6 0.4  obtained from the 

fifth order solution ,U x t  for different fractional Brownian motion 0.5,0.75  

and for standard motion, that is, at 1.  Figs. 2-5 shows the behaviour of 

approximate solution of ,U x t  for different fractional Brownian motions 

0.5,0.75  and at standard motions, also exact solution 1.  

Figs. 6-7 showing the behaviour of approximate solutions at 1t  and 1x

respectively. It is seen that ,U x t  increases very rapidly after point 1t  and 

constant nature 1.3.t Also linear behaviour is observe in different fractional 

Brownian motion 0.5,0.75  and for standard motion, that is, at 1.  
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Table 1 Numerical values when 0.5,0.75
 and 1.0 and comparison with [45] 

 
t x 0.5  0.75  1.0  

  
ADMu

[45] 
VIMu

[45 ] 

HASTMu  ADMu
[45] 

VIMu
[45] 

HASTMu  ADMu
[45] 

VIMu
[45] 

HASTMu  
Exact 

9u u  

0.2 0.25 0.112844 0.103750 0.111585 0.078787 0.077933 0.078766 0.050000 0.050309 0.050000 0.050000 114.63123 10  

0.50 0.225688 0.207499 0.223170 0.157574 0.155865 0.157532 0.100000 0.100619 0.100000 0.100000 119.26246 10  

0.75 0.311249 0.311249 0.334755 0.236361 0.233798 0.236299 0.150001 0.150928 0.150000 0.150000 101.39937 10  

1.0 0.451375 0.414999 0.446341 0.315148 0.311730 0.315065 0.200001 0.201237 0.200000 0.200000 101.85249 10  

0.4 0.25 0.164004 0.172012 0.155966 0.128941 0.134855 0.128203 0.1000230 0.101894 0.100000 0.100000 71.00770 10  

0.50 0.328008 0.344025 0.311932 0.257881 0.269710 0.256406 0.200046 0.203787 0.200000 0.200000 72.01540 10  

0.75 0.492011 0.516037 0.467898 0.386821 0.404565 0.384608 0.300069 0.305681 0.300000 0.300000 73.02310 10  

1.0 0.656015 0.688050 0.623864 0.515762 0.539420 0.512811 0.400092 0.407575 0.400000 0.400000 104.03080 10  

0.6 0.25 0.243862 0.215641 0.250596 0.177238 0.179990 0.171831 0.150411 0.153094 0.150010 0.150000 69.26744 10  

0.50 0.487721 0.431283 0.501189 0.354477 0.359979 0.343663 0.300823 0.306188 0.300019 0.300000 51.92549 10  

0.75 0.731581 0.646924 0.751784 0.531715 0.539969 0.515494 0.451234 0.459282 0.450029 0.450000 52.88822 10  

1.0 0.975441 0.862566 1.00238 0.7089541 0.7089541 0.687326 0.601646 0.612376 0.600039 0.600000 53.85098 10  

 

Example 4.2. We borrow the nonlinear time-fractional hyperbolic equation[45] 

,
, , , 0, , 1 2,t

U x t
D U x t U x t t x

x x
R  (4.8) 

ubject to the initial condition 
2 2, 0 , ,0 2 .tU x x U x x  (4.9) 

Operating the Sumudu transform on both sides in equation (4.8) and after using the 

differentiation property of Sumudu transform for fractional derivative, we get 

,
, , ,

U x t
U x t u U x t

x x
S S

 

The nonlinear operator is 

, ;
, ; , ; , ; ,

x t q
N x t q x t q u x t q

x x
S S  (4.10) 

and thus 
1

2
1 1 1 1

0

, 1 2 1 , , , , .
m

mm m m j m j j m jxx x
j

R U U x t x t u U x t U x t U x t U x t


S S  (4.11) 

The 
thm  order deformation equation is given by 

11, , , , .mm m m mU x t U x t H x t R U x t


S
 

Applying the inverse Sumudu transform, we have 
1

11, , , , .mm m m mU x t U x t H x t R U x t


S  (4.12) 

On solving above equation from 1,2,...,m  we get 
2

0 , 1 2 ,U x t x t  
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2

1

4 8
, 6 ,

1 2 3

t t t
U x t x

 

2

2

2 1 2 22 2 2 2 1

2 2 2 2 2 3 2 22 2 2 2

4 8
, 6 1

1 2 3

144 272 288

2 1 2 2 2 2 1

576 3 1152 4576
,

2 3 2 2 3 2 4 3

t t t
U x t x

t xt x t

t x t xt x

 



 

 

(4.13) 

etc. proceed by same manner the rest of components of the iteration can be obtained. 

Setting the 1, in eq. (4.13) the above expressions are exactly the same as given 

by ADM [45]. 

 

 
 

Figure 8  curve for different values of . 

 

 
 

Figure 9 Plot of approximate solution for value 0.5.  
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Figure 10 Plot of approximate solution for value 0.75.  

 

 
 

Figure 11 Plot of approximate solution for value 1.
 

 

 
 

Figure 12 Plot of exact solution for value 1.
 



4988  Rishi Kumar Pandey and Hradyesh Kumar Mishra 

 
 

Figure 13 The behaviour of solution for different values at 1, 1.x   

 

 
 

Figure 14 The behaviour of solution for different values at 1, 1.t   
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motions 1.  

Figs. 13-14 showing the behaviour of approximate solutions at 1t  and 1x

respectively. It is seen that ,U x t  increases very rapidly after point 0t  and 

constant nature 0t Also quadratic behaviour is observe in different fractional 

Brownian motion 0.5,0.75  and for standard motion, that is, at 1.  around 

origin. 

0.0 0.5 1.0 1.5 2.0

 25000

 20000

 15000

 10000

 5000

0

t 

U
x,t

1.00

0.75

0.50

 4  2 0 2 4

 35000

 30000

 25000

 20000

 15000

 10000

 5000

0

t 

U
x,t

1.00

0.75

0.50



Numerical Modelling For time fractional nonlinear partial differential 4989 

4989 

 

Table 2 Numerical values when 1.5,1.75
 and 2.0 and comparison with [45] 

 
t x 1.5  1.75  2.0  

  
ADMu

[45] 
VIMu
[45] 

HASTMu  ADMu
[45] 

VIMu
[45] 

HASTMu  ADMu
[45] 

VIMu
[45] 

HASTMu  
Exact 

5u u  

0.2 0.25 0.0592832 0.047502 0.060225 0.0497012 0.043403 0.048787 0.0433951 0.043400 0.043403 0.043403 102.10900 10  

0.50 0.237133 0.190007 0.240900 0.194805 0.184170 0.195146 0.173580 0.173600 0.173611 0.173611 108.43600 10  

0.75 0.533549 0.427517 0.542025 0.438311 0.414383 0.439078 0.390556 0.390600 0.390625 0.390625 91.898100 10  

1.0 0.948532 0.760029 0.963600 0.779220 0.736680 0.780584 0.694321 0.694400 0.694444 0.694444 93.33740 10  

0.4 0.25 0.0654119 0.041853 0.081026 0.037742 0.037742 0.045918 0.031567 0.031779 0.031887 0.031888 74.08226 10  

0.50 0.261647 0.167412 0.324099 0.174992 0.150968 0.183674 0.126268 0.127118 0.127549 0.127551 61.63291 10  

0.75 0.588707 0.376676 0.729222 0.393732 0.339679 0.413266 0.284103 0.286015 0.286986 0.286990 63.67404 10  

1.0 1.04659 0.669647 1.29639 0.699969 0.603873 0.734695 0.505072 0.508471 0.508471 0.508471 66.53162 10  

0.6 0.25 0.063177 0.037722 0.128961 0.381836 0.031457 0.050262 0.022005 0.023665 0.024490 0.024414 52.41791 10  

0.50 0.252710 0.150888 0.515844 0.152735 0.125829 0.201050 0.088018 0.094660 0.097560 0.097656 59.67162 10  

0.75 0.568598 0.339499 1.16065 0.343653 0.283114 0.452362 0.198040 0.212984 0.219509 0.219727 42.17611 10  

1.0 1.01084 0.603553 2.06337 0.610938 0.503314 0.804199 0.352071 0.378638 0.390238 0.390625 43.86865 10  

 

 

Example 4.3. We borrow the nonlinear time-fractional Fisher’s equation [45] 

, , 6 , 1 , , 0, , 0 1,t xxD U x t U x t U x t U x t t x R  (4.14) 

subject to the initial condition 

2

1
,0 ,

1 x
U x

e
 (4.15) 

Operating the Sumudu transform of both sides in Eq. (4.14) and after using the 

differentiation property of Sumudu transform for fractional derivative, we get 
2

, , 6 , 6 , 0,xxU x t u U x t U x t U x tS S
 

The nonlinear operator is 
2

, ; , ; , ; 6 , ; 6 , ; ,xxN x t q x t q u x t q x t q x t qS S  (4.16) 

and thus 
1

1 1 1 1 1

0

, , 6 , 6 , , ,
m

mm m m m j m jxx
j

R U U x t u U x t U x t U x t U x t


S S  (4.17) 

The 
thm  order deformation equation is given by 

11, , , , .mm m m mU x t U x t H x t R U x t


S
 

Applying the inverse Sumudu transform, we have 
1

11, , , , .mm m m mU x t U x t H x t R U x t


S  (4.18) 

On solving above equation from 1,2,...,m  we get 
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0 2

1
, ,

1 x
U x t

e
 

1 2 2 3

1 1 10
, ,

11 1 1x x x

t
U x t

e e e


 

2 2 2 3

2 2 3

2 2 2

4 3 4

2 2 2 2

4 4 2

2

1 1 10
,

11 1 1

1 1 10

11 1 1

6 2 6

1 1 1 1 1 1

120 30 6

1 1 1 2 1 1 1

6

x x x

x x x

x x x

x x x

x x

x x x

t
U x t

e e e

t

e e e

e t e t e t

e e e

e t e t t

e e e

t



 

  

  

 2

2 2 4

2 2 2

4 4 5

6 12

1 1 1 1 1 1

12 12 120
,

1 1 1 1 1 2 1

x x x

x x x

t t

e e e

t t t

e e e

 

  

 (4.19) 

 
etc. proceed by same manner the rest of components of the iteration can be obtained. 

Setting the 1,  in eq. (4.19) the above expressions are exactly the same as given 

by ADM [45]. 

 

 
 

Figure 15  curve for different values of . 
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Figure 16 Plot of approximate solution for value 0.5.  

 

 
 

Figure 17 Plot of approximate solution for value 0.75.  

 

 
 

Figure 18 Plot of approximate solution for value 1.
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Figure 19 Plot of exact solution for value 1.
 

 

 
 

Figure 20 The behaviour of solution for different values at 1, 1.x   

 

 
 

Figure 21 The behaviour of solution for different values at 1, 1.t   
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Fig. 15 shows that the  values admissible between 1 0  obtained from the 

fifth order solution ,U x t  for different fractional Brownian motion 0.5,0.75  

and for standard motion, that is, at 1.  Figs. 16-19 shows the behaviour of 

approximate solution of ,U x t  for different fractional Brownian motions 

0.5,0.75  and at standard motions 1.  Shows approximately nearer solution to 

exact solution at 1.  Figs. 20-21 showing the behaviour of approximate solutions at 

1t  and 1x respectively. 

 

Table 2 Numerical values when 0.5,0.75
 and 1.0 and comparison with [45] 

 
t x 0.5  0.75  1.0  

  

ADMu
[45] 

VIMu
[45] 

HASTMu  ADMu
[45] 

VIMu
[45] 

HASTMu  ADMu
[45] 

VIMu
[45] 

HASTMu  
Exact 

9u u  

0.1 0.25 0.946129 0.482361 0.483450 0.488195 0.412450 0.458618 0.317948 0.315940 0.316018 0.316042 52.40905 10  

0.50 0.843908 0.394446 0.356433 0.405740 0.334514 0.390582 0.250500 0.249926 0.249982 0.250000 51.77145 10  

0.75 0.715013 0.311106 0.367574 0.324457 0.262103 0.325749 0.190964 0.191606 0.191683 0.191689 66.11468 10  

1.0 0.576466 0.236710 0.490698 0.249683 0.198407 0.265455 0.140979 0.142411 0.142541 0.142537 63.83664 10  

0.2 0.25 1.47532 0.746994 -0.326863 0.791250 0.617790 0.581424 0.481199 0.459320 0.459795 0.461284 31.48902 10  

 0.50 1.35983 0.653476 -1.13129 0.690142 0.536231 0.519219 0.396941 0.386450 0.386202 0.387456 31.25324 10  

 0.75 1.18098 0.548977 -0.309751 0.574404 0.448264 0.483538 0.315266 0.315478 0.315433 0.316042 46.09277 10  

 1.0 0.970076 0.441936 -0.309751 0.456647 0.359905 0.461939 0.241175 0.249092 0.250066 0.250000 56.55487 10  

0.3 0.25 1.96745 0.935741 -2.04701 1.12423 0.774999 0.445118 0.681440 0.591179 0.588679 0.60415 21.55156 10  

 0.50 1.845231 0.878473 -4.60302 1.00948 0.720112 0.322053 0.581861 0.527635 0.519763 0.534447 21.46838 10  

 0.75 1.622910 0.788974 -4.87857 0.859509 0.643697 0.355934 0.475833 0.459719 0.452525 0.461284 38.75903 10  

 1.0 1.345510 0.673844 -2.90245 0.695479 0.372917 0.495115 0.372917 0.387025 0.386067 0.387456 31.38825 10  

 

 

5. Conclusion 

The new modification of homotopy analysis method is powerful tool to search the 

solution of various linear and nonlinear problems arising in science and engineering. 

The main aim of this article is to provide the approximate analytic solution of the 

time-fractional partial differential equation by using the HASTM. The proposed 

method is very efficient and easily computable. Three examples were investigated to 

demonstrate the ease and versatility of our new approach. The illustrative examples 

show that the method is easy to use and is an effective tool to solve fractional partial 

differential equations numerically. 
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