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Abstract

In this article, we implement new analytical technique, the homotopy analysis
fractional sumudu transform method (HAFSTM), for solving nonlinear partial
differential equations of fractional order. The fractional derivatives are taken
in caputo sense. The method in applied mathematics can be used as alternative
methods for obtaining analytic and approximate solutions for various types of
differential equations. The purpose of this study is to avoid the restrictive
assumptions and rounding off errors in numerical computation of problems.
The numerical solutions obtained by the HAFSTM method indicate that the
approach is easy to implement and computationally very attractive and
accurate.

Keywords: Homotopy Analysis Method, Homotopy Analysis Fractional
Sumudu Transform Method, Linear and Nonlinear partial differential
equation, Fractional partial differential equation.

AMS Subject Classification: 26A33; 34A08; 60G22; 65GXxX.

1. Introduction

In past few decades considerable interest showed by many researcher in the field of
fractional calculus specially application of ordinary and partial differential equations
of fractional order in modelling and simulation of problems due to their valuable
applications in field of modelling of science and engineering. These applications in
interdisciplinary sciences show the importance and necessity of fractional calculus. So
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far there have been several fundamental works on the fractional derivative and
fractional differential equations, written by Oldham and Spanier [1], Miller and Ross
[2], Podlubny [3], Kilbas, Srivastava and Trujillo[4] and others V. Parthiban and K.
Balachandran [5], Samko et al. [6], Caponetto et al. [7], Diethelm [8]. All mentioned
authors provide systematic understanding of the fractional calculus such as the
existence and the uniqueness of solutions, some analytical methods for solving
fractional differential equations like Green’s function method, the Mellin transform
method, the power series method etc. Yet presently no method available that yields an
exact solution for nonlinear fractional partial differential equations. Only approximate
solutions can be derived using linearization or perturbation methods. Many
mathematical methods such as Adomian decomposition method (ADM) [9-13],
homotopy perturbation method (HPM) [14-19], variational iteration method (VIM)
[20-25], homotopy analysis method (HAM)[26-30], Laplace decomposition method
(LDM) [31-33], homotopy perturbation transform method (HPTM) [34], homotopy
perturbation sumudu transform method (HPSTM) [35] and homotopy analysis
transform method (HATM) [36-38] have been proposed to obtain exact and
approximate analytical solutions of nonlinear equations. Inspired by all above
discussion we have applied HAFSTM [39] for the solution of fractional partial
differential equation.

The main objective of this paper to extend the application of homotopy analysis
fractional sumudu transform method to provide approximate solution of initial value
problems of nonlinear partial differential equation of fractional order.

2. Basic Definition of Fractional Calculus and Sumudu transform
Definition 2.1 Areal function f t ,t>0, issaid to be in the space C,, ueR if there

exists a real number p > , suchthat f t =t°f t , wheref, t eC 0,0 , and

it is said to be in the space C} iff f " eC,,meN

Definition 2.2 The Riemann Liouville Fractional integral operator of order « >0, of
afunction f t €C,, and x> -1is defined as [40,41]

t
Jof t =ij.t—r “Tf rdr, >0 x>0and J°f t =f t.
I'a
For the Riemann-Liouville fractional integral, we have
Jogy = ry+1 .,
' y+a+1

Definition 2.3 The fractional derivative of f t in the Caputo sense is defined as
[42]
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J"D"f t
Dif t = 1 t
I'nn-a |
where m=1<a<m, meN,t>0.

t—-T " " 7 dr,

Definition 2.4 In early 90’s, Watugala [43] introduced an incipient integral
transforms. The sumudu transform is defined over the set of functions
It

A=1f t|3IM,z,7,>0f t|<Me"ifte -1 'x 0,00 |,

by the following formula

fu =S[f t]:?f ut e'dt,ue —7,,T, .
0

Definition 2.5 The sumudu transform of f t =t~ is defined as [ 44]

S [t“]zdje‘tt“dtzr a+1u*,R a >0.
0

Definition 2.6 The Sumudu transform S [f t ] of the Riemann-Liouville fractional

integral is defined as [44]
S[1“f t |=u“F u.

Definition 2.7 The Sumudu transform S [f t ] of the Caputo fractional derivative is
defined as [44]

S[Dff t |=u"s[f t]—fu‘”fk 0", where m—1<a <m.
k=0

3. Solution by Homotopy Analysis Fractional Sumudu Transform Method

To illustrate the rudimental conception of the HAFSTM for the fractional partial
differential equation, we consider the following fractional partial differential equation
as

DU x,t +R xU xt +N xU x,t =G x,t t>0,xeRn-1<a<n, (3.1)
no
where D :8x_”“' R X is the linear operation in x,N x is the general nonlinear
operation in X and G x,t is a continuous function.
For simplicity, we ignore all initial and boundary conditions, which can be treated in a
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homogeneous way. Now the methodology consists of applying the Sumudu transform
first on both sides of the equation (3.1), we get

S[DMU xt [+S[Rx U xt [+S[N x U xt [=S[G xt |,

t>0xell,n-1<a<n, (3.2)
Using the differentiation property of the Sumudu transform

S[U xt] tu® o

— >——+S[RxU xt [+S[N x U xt |-S[G xt |=0,
k=0 U
L )
S[U xt |-u") ——+u"S[R xU xt +N x U xt -G xt |=0, (3.3)
k=0 U

we define nonlinear operator as
n-1 k

N[¢ xtq |=S[4 xtg ]—UD’ZU HO +US[R X ¢ xtq +N X ¢ xtq -G xtq | (34)
u

where ge 0,1 be an embedding parameter and ¢ x,t;q is a real function of x,tand
v?/e construct a homotopy as follow:

1-q S[¢ xtq —U, xt |=hagH xt N[¢ xtq | (3.5)
where # is a nonzero auxiliary parameter and H x,t =0. An auxiliary function
U, xt is an initial guess of U x,t and ¢ xt;,q is an unknown function. It is
important that one has great freedom to choose auxiliary parameter in HAFSTM.
Obviously, when =0 and q=1 it holds
¢ xt0 =U, xt, ¢ xt1l =U xt (3.6)
Thus, as g incre ases from O to 1, the solution varies from initial guess U, x,t to
the solutionu x,t . Now, expanding ¢ x,t;q on Taylor’s series with respect to q,
we get

¢ x.tq =U, x,t +>.q"U, xt (3.7)
m=1
where
"¢ Xt
U, xt - L0 xta )
m aq" |

The convergence of the series solution (3.7) is controlled by #. If the auxiliary linear
operator, the initial guess, the auxiliary parameter # and the auxiliary function are

properly chosen, the series (3.7) converges at ¢ =1. Hence we obtain

U xt=U; xt +>U xt, (3.9)
m=1

which must be one of the solutions of original nonlinear equations. The above

expression provides us with a relationship between the initial guess U, x,t and the
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exact solution U x,t by means oftheterms U_ x,t m=1,2,3,... , which are still to

be determined.
Define the vectors

U=U, xt,U, xt U, xt .U xt . (3.10)
Differentiating the zero order deformation eq. (3.5) m times with respect to
embedding parameter q and then setting =0, and finally dividing them by m!l, we

obtain the m" order deformation equation as follows:

S[U, xt —zU., xt |=AH xt R Unixt. (3.11)
Operating the inverse Sumudu transform of both sides, we get
U, xt =zU_. xt +#S ‘l[H x,t R Un1,xt ] (3.12)
where

_ 1 " xt;
R, Unixt = LT | (3.13)

m-1! &gt |
9=0

and

10, m<1,
711 ms1

In this way, it is easy to obtain U x,t for m2>1 at M order, we have

M
U xt=>U, xt, (3.14)
m=0

where M — o, We obtain an accurate approximation of the original equation (3.1).

4. llustrative Examples

In this section we shall illustrate the technique by three examples. These examples are
somewhat artificial in the sense that the exact answer, for the special cases, is known
in advance and the initial and boundary conditions are directly taken from this answer.
Nonetheless, such an approach is needed to evaluate the accuracy of the analytical
techniques and to examine the effect of varying the order of the time-fractional
derivative on the behaviour of the solution.

Example4.1. We borrow the nonlinear time-fractional advection partial differential
equation [45]

DU x,t +U xt U, xt =x+xt’, t>0,xeR,0<a<], (4.1)
subject to the initial condition
U x,0 =0. 4.2)

Operating the Sumudu transform on both sides in eq. (4.1) and after using the
differentiation property of Sumudu transform for fractional derivative, we get
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S[U xt J+uS[U xt U, xt |=x1+2u® (4.3)
The nonlinear operator is

N[¢ xtiq ]=S[4 xtig |+us {cﬁ Xt

and thus

o0¢ X t;q )
— |=x 1+2u° , _
x } (4.4)

— m-1
R, Umit =S[Um_1 x,t]—x 1+2t° 1-y, +U°S {ZUJ. xt U; xt X}. (4.5)

j=0

The m™ — order deformation equation is given by

S[U, xt —zU,., xt ]=aH xt R, Uni xt

Applying the inverse Sumudu transform, we have

U, xt =zU_. xt +s-1[hH x,t R Un1 xt ] (4.6)

On solving above equation from m=1,2,..., we get

o a+2
U, xt =-#ax t + 2t ,
' a+3 T a+3

a a+2 o a+2
U, x,t =-hx ¢ + 2t — %X ¢ + 2t ,
' a+1 T a+3 ' a+1 T a+3
o a+2 o a+2
U, x,t =—hx L P — h®X L 42t
I aa+1 I +3 I a+1 I’ +3

o a+2 2% a+2
+ h| —hx t + 2t —h®x t + 2t
I a+1 I' o+ 3 I’ a+1 I' ¢+ 3

+ A%x I' 2 +1 3 N A" 2+ 3 t3a+2
' «+1%T 3a+1 ' a+1 T a+3 I 3a+3

+4F 2a+5 a4
1B a+32 I 3+5 |
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a a+2 a a+2
U, Xt =-nx t + 2t — h%x t + 2t
I a+1 I +3 I a+1 I +3

a a+2 a a+2
+ h| —hx t + 2t —n®x t + 2t
I a+1 I' a+3 I a+1 I' a+3

Hox I' 2 +1 3 AT 2 +3 o2
+ +
I a+1%2TI3x+1 T a+1 T «a+3 I 3a+3

4F 20 + 5 t3u+4 R t“ 2tn{+2 hZX t« N 2trx+2
I «a+3° T 3a+5 ' r€+1)r€+3 r€+1>y»r+3

oo trg@rz‘fsgm(réow%"fs%ﬂ

7% [T €x+1Y» t* AT € +3» 32
r€+1jr@+1)r€+1)€+3)@+3)
LA €a+5y ;+ 2x[ h{ > 32
r€+3jr@+5 r€+1jl"€a+l)l"€+l)€+3)(a+3:

4 t3(1+4 tSn( t3a+2
* r €+3jr (a+5; {r €+1jr (a+1) r€+1)€+3) Gx+3>

4 t3u+4
+ ,
rg+3 €x+5
a a+2 a a+2
U, x,t =-nax t + 2 — h®x t + 2
I' o+1 I' +3 I' a+1 I' «a+3

o a+2 a a+2
+ h| —hx t + 2t — h%x t + 2t
I' a+1 I' «+3 I' a+1 I' «+3

1% I' 2 +1 t3« . 41" 2a + 3 t3e+2 +4r 2 +5 it
I a+1°T 3a+1 I' a+1 1T «+3 I 3a+3 I «+3% I’ 3a+5

t(l 2t(1+2 5 < 2t11+2 2t(1+2
+h[ (FQ+1) FQ+3;_E (F€+1) F€+3; h[ {Fé+l) FQ+3;
7712)([ v, 2t ;}er {F €x+1y t* A € +3D» o2

r€+1>y»r&+3 F€+ljr€0!+l) r€¢+1p€&+3»€x+3»

LA @a5) ;J, 2x(h3 { 1o {22
T3> €5 r€+1jr@+1)r€+1)€+3)@+3)

4 t3(1+4 t3u t3u+2
+1-€+35r@+5; L G 13 G+l T €+1)€+3) PEEED

4 | S 2t A t” 2t
+r€+3§r€a+5;] ”{ [r€+1) r(+3;_h X(r€+l)+r€+3;

t(x 2t11+2 5 th 2t(x+2
”{ [r€+1) r€+3; h X(r@ljr@sﬂ
| T €x+1) 3 A €a+3 ) 32 AT €a +5 )y
+hx[' € +10 G 1P TG+ 1DC+3P€ 3> I PAED 1 @+5;
t” 2t 2 2to+2 2to+2
”’[ [r c 1> r€+3;_h X(FQ+1) r€+3;+h|: (r G 1> ré+3;

7712){ 2 ;+h3 r@€x+1) t* A @u+3) e
re+1>y»re&+3 r€+1>l"€a+l)l"€+l)€+3)€a+3)

LA @a+5y v ;+2x(h3|: 2 sa+2
r@+3»l €x+5 rG13 € +1> r€+1)¢g+3)@+3) 4.7

4 t3u+A t3a t3a+2

N r€+3jr(a+5; {r €+1jr(a+1) r€+1)€+3)@+3)
4 e

W@sjr@“‘gﬂ’
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etc. proceed by same manner the rest of components of the iteration can be obtained.

Setting the /1=-1, in eq. (4.7) the above expressions are exactly the same as given by
ADM [41].

00 [’
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Figure 1 # curve for different values of « .
Teti —

Figure 2 Plot of approximate solution for value « =0.5.
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Figure 3 Plot of approximate solution for value « =0.75.

Figure 4 Plot of approximate solution for value o =1.

Figure 5 Plot of exact solution for value « =1.
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Figure 6 The behaviour of solution for different values crat X =17 =-1.
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Figure 7 The behaviour of solution for different values cat t=1,7=-1.

Fig. 1 shows that the # values admissible between —1.6 <7 < —0.4 obtained from the
fifth order solution U x,t for different fractional Brownian motion « =0.5,0.75
and for standard motion, that is, at «=1. Figs. 2-5 shows the behaviour of
approximate solution of U x,t for different fractional Brownian motions
a =0.5,0.75 and at standard motions, also exact solution o =1.

Figs. 6-7 showing the behaviour of approximate solutions at t=1 and x =1
respectively. It is seen that U x,t increases very rapidly after point t>1 and
constant nature t<1.3.Also linear behaviour is observe in different fractional
Brownian motion « =0.5,0.75 and for standard motion, that is, at « =1.
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Table 1 Numerical values when « =0.5,0.75 and 1.0 and comparison with [45]

t]x a=0.5 a=0.75 a=1.0
Exact
Upom | Wim |Unastm | Yaom | Uim {Unastm | Ynaom | Yvim |Unastu |u9 - u|
[45] 45 ] [45] [45] [45] [45]

0.2[0.25[0.112844{0.103750[0.111585| 0.078787 | 0.077933 [0.078766] 0.050000 [0.050309(0.050000/0.050000( 4 63123 x 10~

0.50|0.225688|0.207499|0.223170{ 0.157574 | 0.155865 (0.157532| 0.100000 |0.100619|0.100000/0.100000| 9 26246 x 10™**

0.75/0.311249[0.311249]0.334755 0.236361 | 0.233798 |0.236299] 0.150001 |0.1509280.150000[0.150000(1 39937 % 10-2°

1.0 [0.451375(0.414999(0.446341] 0.315148 | 0.311730 [0.315065] 0.200001 [0.201237/0.200000[0.200000(1_ 85249 x 10-2°

0.4]0.25[0.164004(0.172012[0.155966( 0.128941 | 0.134855 [0.128203[0.1000230]0.101894(0.100000[0.100000( 1 00770 10~

0.50|0.328008|0.344025|0.311932] 0.257881 | 0.269710 [0.256406| 0.200046 (0.203787(0.200000{0.200000| 2 01540 x 10"

0.75/0.492011[0.516037(0.467898| 0.386821 | 0.404565 [0.384608] 0.300069 |0.305681(0.300000/0.300000| 3 02310 x 10~

1.0 [0.656015(0.688050[0.623864( 0.515762 | 0.539420 [0.512811] 0.400092 [0.407575(0.400000[0.400000] 4 03080 x 10-°

0.6[0.25(0.243862[0.215641]0.250596] 0.177238 [ 0.179990 [0.171831] 0.150411 [0.153094]0.1500100.150000| 9 26744 x 10-°

0.50[0.487721[0.431283[0.501189 0.354477 | 0.359979 [0.343663] 0.300823 [0.306188[0.300019[0.300000] 1 92549 x10-°

0.75(0.731581]0.646924{0.751784] 0.531715 | 0.539969 [0.515494 0.451234 [0.459282|0.450029(0.450000] 2 88822 » 10-°

1.0 [0.975441{0.862566| 1.00238 [0.7089541(0.7089541[0.687326] 0.601646 [0.612376(0.600039(0.600000 3 85098 x 10-°

Example 4.2. We borrow the nonlinear time-fractional hyperbolic equation[45]

oU x,t
DU x,t _9 U x,t ——— |, t>0, xeR, 1<a <2, (4.8)
OX OX

ubject to the initial condition
U x,0 =x?, U, x,0 =-2x° 4.9

Operating the Sumudu transform on both sides in equation (4.8) and after using the
differentiation property of Sumudu transform for fractional derivative, we get

oU x,t
S[U xt |=u’s Iy xt 20
OX OX
The nonlinear operator is
0 o¢ x,t.q
N|ig x,t;q [=S Xtq |[—u“S|—|¢ x,t;q —— ||, 4.10
[¢ xt;q |=S[¢ xtq ] ¢ xta —— (4.10)

and thus
— m-1
Ry Ui =S [Uy, %t =X 1-2t 1-7, +u°S {Z Upxt Uy xt +Upxt Upypxt } (4.11)
j=0
The m™ — order deformation equation is given by
S[U, xt —zU,., xt |=aH xt R, Uni xt
Applying the inverse Sumudu transform, we have
U, xt =xU_, xt +s—1[hH Xt R Uma xt ] (4.12)

m-1

m

On solving above equation from m=1,2,..., we get
U, x,t =x* 1-2t ,

4985
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U, X,t =-6ax° t + At __ 8 ,
Fa+l T a+2 T ao+3

- +
Fe+l T a+2 T a+3

. 72t %%h: 288t 144K a+2
I' 20+1 T 2a+2 I' 20+2 T a+1

. 576t°7 2 x%h? . 576t°**x°1n°T a+3 1152t °*x*h°T o +4
I' 2a+3 ' a+2 T’ 2a+3 I' 20+4 T a+3
etc. proceed by same manner the rest of components of the iteration can be obtained.

Setting the h=-1in eq. (4.13) the above expressions are exactly the same as given
by ADM [45].

U, Xt =6k 1+7 xz[ t & 8t ]

(4.13)

Uxtl

Figure 8 £ curve for different values of « .

Tt =

Figure 9 Plot of approximate solution for value « = 0.5.
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Figure 10 Plot of approximate solution for value « = 0.75.

Figure 12 Plot of exact solution for value « =1.
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Uxt_ [

Figure 13 The behaviour of solution for different values crat X =17 =-1.

Uxt_ [

Figure 14 The behaviour of solution for different values cat t=1,7=-1.

Fig. 8 shows that the 7 values admissible between —1.5 <# < —0.5 obtained from the
fifth order solution U x,t for different fractional Brownian motion « =0.5,0.75
and for standard motion, that is, at « =1.Shows approximately nearer solution to
exact solution at« =1.Figs. 8-10 shows the behaviour of approximate solution of
U x,t for different fractional Brownian motions « =0.50.75 and at standard
motions « =1.

Figs. 13-14 showing the behaviour of approximate solutions at t=1 and x =1
respectively. It is seen that U x,t increases very rapidly after point t>0 and
constant nature t<0Also quadratic behaviour is observe in different fractional
Brownian motion « =0.5,0.75 and for standard motion, that is, at «=1. zround
origin.
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Table 2 Numerical values when @ =1.5,1.75 and 2.0 and comparison with [45]

t)x a=15 a=1.75 a=2.0

Exact
uADM l'IVIM uHASTM uADM uVIM uHASTM uADM l'IVIM uHASTM |U5—U|

[45] [45] [45] [45] [45] [45]

0.2|0.250.0592832|0.047502|0.060225(0.0497012/0.043403(0.048787|0.0433951|0.043400(0.043403|0.043403| 2 10900 x 10°1°

0.50] 0.237133 |0.1900070.240900] 0.194805 [0.184170[0.195146( 0.173580 |0.173600]0.173611[0.173611(g 43600 x 10-2°

0.75( 0.533549 [0.427517|0.542025] 0.438311 [0.414383|0.439078| 0.390556 |0.390600]0.390625/0.390625/1 898100 x 10°

1.0{0.948532 [0.760029(0.963600| 0.779220 [0.736680(0.780584| 0.694321 0.694400(0.694444(0.694444] 3 33740 x10-°

0.4[0.25/0.0654119]0.041853|0.081026| 0.037742 [0.037742|0.045918] 0.031567 |0.031779(0.031887(0.031888| 4 08226 x 10~/

0.50[ 0.261647 [0.167412]0.324099] 0.174992 [0.150968|0.183674| 0.126268 [0.127118|0.127549(0.127551] 1 63091 x 10-°

0.75| 0.588707 |0.376676|0.729222| 0.393732 |0.339679|0.413266| 0.284103 |0.286015|0.286986(0.286990| 3 67404 x 10™°

1.0| 1.04659 |0.669647| 1.29639 | 0.699969 [0.603873(0.734695| 0.505072 [0.508471[0.508471(0.508471] 6 53162 x10-°

0.6(0.25/ 0.063177 [0.037722(0.128961] 0.381836 [0.031457|0.050262] 0.022005 |0.023665(0.024490(0.024414 5 41791 x10°

0.50] 0.252710 |0.1508880.515844] 0.152735 [0.125829/0.201050| 0.088018 [0.094660]0.097560[0.097656] 9 67162 x 10-°

0.75( 0.568598 [0.339499] 1.16065 | 0.343653 [0.283114{0.452362] 0.198040 |0.212984/0.219509[0.219727| 2 1761110

1.0| 1.01084 |0.603553| 2.06337 | 0.610938 [0.503314(0.804199] 0.352071 |0.378638[0.390238|0.390625| 3 86865 x 10~

Example 4.3. We borrow the nonlinear time-fractional Fisher’s equation [45]

D/U xt =U, xt +6U xt 1-U xt , t>0,xeR, O<a<], (4.14)
subject to the initial condition
1
U x0=——, (4.15)
1+e"

Operating the Sumudu transform of both sides in Eq. (4.14) and after using the
differentiation property of Sumudu transform for fractional derivative, we get

S[U xt ]-us [u Xt +6U xt -6 U xt 2}:0,

XX

The nonlinear operator is
N[¢ xtq |=S[¢ xtq |-us |:¢xx x,tq +6¢ x,tq -6 ¢ xtq 2}, (4.16)
and thus

R, Un: =S[U

m-1
X, t ]_u"s{um1 Xt +6U,, xt -6> U, xt U, xt } (4.17)

j=0
The m™ — order deformation equation is given by

S[U, xt —zU,., xt |=aH xt R, Uni xt

Applying the inverse Sumudu transform, we have

U, xt =zU_. xt +s-1[hH x,t R Un1 Xt ] (4.18)

m

m-1

m-1

On solving above equation from m =1,2,..., we get
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B 1
= =,
1+¢€
1 1 | 10
= +h - + :
1+¢e" 1+¢" I' a+1 1+¢"
S D S 10
1+e* 1+e* I' a+1 1+e*
on| L ot v 10
1+e* 1+e* I' a+1 1+e*
3 6he**t” 2he*t” 3 6h%e**t”
1+ex41" o+1 1+ex31" o+1 1+ex41" o+1
120n°e**t” 30n%e*t*” 3 6nt”
1+e* 4F a+1 1+ex41" 2 +1 1+ex21" o+1
67°t” 3 6nt>” 3 12nt”
(+exj"€+1) (+exj"€+1) (+eX)"€+1)
12At~ 12K%t” 1207#°%t%*

(+ ex)" €+1)_ (+eX)" €+1)+ (+exj“ €a+1j

(4.19)

etc. proceed by same manner the rest of components of the iteration can be obtained.

Setting the 1=-1, in eq. (4.19) the above expressions are exactly the same as given
by ADM [45].

2.0 15 10 0.5 0.0

Figure 15 7 curve for different values of « .
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400
Tt —

Figure 16 Plot of approximate solution for value « =0.5.

400
Tt —

o

Figure 17 Plot of approximate solution for value « =0.75.

i
Tzt 400
e

0
-+

Figure 18 Plot of approximate solution for value o =1.
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L)

uxtd

Figure 20 The behaviour of solution for different values crat X =17 =-1.
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Figure 21 The behaviour of solution for different values cat t=1,7=-1.
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Fig. 15 shows that the 7 values admissible between —1<# <0 obtained from the
fifth order solution U x,t for different fractional Brownian motion « =0.5,0.75

and for standard motion, that is, at «=1. Figs. 16-19 shows the behaviour of
approximate solution of U x,t for different fractional Brownian motions

a =0.5,0.75 and at standard motions « =1. Shows approximately nearer solution to

exact solution at o =1. Figs. 20-21 showing the behaviour of approximate solutions at
t =1 and x = 1respectively.

Table 2 Numerical values when « =0.5,0.75 and 1.0 and comparison with [45]

t x |¢=0.5 a=0.75 a=1.0

Exact
uADM l'IVIM uHASTM uADM l'IVIM uHASTM uADM l'IVIM uHASTM |u9 —U|

[45] [45] [45] [45] [45] [45]
0.110.25/0.946129 0.482361 (0.483450 |0.488195 0.412450 10.458618 |0.317948 10.315940 |0.316018 (0.3160425 40905 x 10°°

0.50/0.843908 0.394446  |0.356433 |0.405740 |0.334514 |0.390582 |0.250500 0.249926 |0.249982 10.250000|1 77145 %1075
0.75/0.715013  0.311106 |0.367574 |0.324457 10.262103 |0.325749 |0.190964 0.191606 |0.191683 |0.191689| 5 11468 x10°°
1.0 (0576466 |0.236710 (0.490698 |0.249683 |0.198407 |0.265455 |0.140979 |0.142411 |0.142541 (0.142537| 3 83664 % 10~°
0.2|0.25|1.47532 0.746994 |-0.326863 |0.791250 |0.617790 |0.581424 10.481199 (0.459320 |0.459795 |0.461284|1 418902 x 102
0.50|1.35983 0.653476 |-1.13129 |0.690142 |0.536231 0.519219 |0.396941 (0.386450 0.386202 |0.387456|1 25324 %103
0.75|1.18098  |0.548977 |-0.309751|0.574404 0448264 |0.483538 |0.315266 |0.315478 |0.315433 (0.316042|5 19277 x 107
1.0 /0970076 |0.441936 |-0.309751|0.456647 |0.359905 |0.461939 (0.241175 |0.249092 |0.250066 (0.250000| 5 55487 %10~
0.3(0.25[1.96745  0.935741 |-2.04701 |1.12423  |0.774999 |0.445118 |0.681440 |0.591179 10.588679 |0.60415 |1 55156 x 1072
0.50|1.845231  0.878473 |-4.60302 |1.00948  |0.720112 |0.322053 (0.581861 [0.527635 |0.519763 |0.534447|1 16838 % 1072
0.75|1.622910 |0.788974 |-4.87857 |0.859509 |0.643697 |0.355934 (0.475833 0459719 |0.452525 |0.461284|3 75003 % 1072
10 |1.345510 10673844 |-2.90245 |0.695479 |0.372917 |0.495115 |0.372917 |0.387025 |0.386067 |0.387456|1 38875 103

5. Conclusion

The new modification of homotopy analysis method is powerful tool to search the
solution of various linear and nonlinear problems arising in science and engineering.
The main aim of this article is to provide the approximate analytic solution of the
time-fractional partial differential equation by using the HASTM. The proposed
method is very efficient and easily computable. Three examples were investigated to
demonstrate the ease and versatility of our new approach. The illustrative examples
show that the method is easy to use and is an effective tool to solve fractional partial
differential equations numerically.
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