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Abstract 

Taylor’s Law is a widely observed empirical pattern that relates variance to the mean 

in sets of non-negative measurements via an approximate power function. This note 

provides a geometric expression of Taylor’s Law. 

Taylor’s law (TL) is named after Lionel R. Taylor, a British ecologist who published 

“aggregation, variance, and the mean” in the March 4th, 1961 issue of Nature (Taylor, 

1961). TL is a widely observed empirical pattern (Clark and Perry 1994, Cohen 2016, 

Cohen 2017, Cohen, Bohk-Ewald and Rau 2018, Demers 2018, Eisler, Bartos, and 

Kertész 2006, Kilpatrick and Ives 2003, Swanson and Tayman, 2022, Swanson and 

Tedrow 2022, Tokeshi 1995) that relates the variances to the means of sets of non-

negative measurements via an approximate power function: varianceg ≈ a × (meang)
b, 

where g indexes the group of measurements (Reuman et al. 2017: 6788).   

Cohen and Courgeau (2017) found that TL applies to the distances between two 

randomly chosen points in various geometric shapes, subject to a few conditions.  In 

this note, I observe that TL itself can be expressed geometrically, a perspective 

overlooked until now, even in kindred publications that preceded Taylor’s seminal 1961 

paper (e.g., Barnes 1952, Bartlett 1936, Bliss, 1941, Neyman 1926, Tweedie, 1946). 

Following Swanson (1977, 2023), let the sum of the N values of random variable X 

equal Σni.  These same N values form the N elements of vector V1, There are exactly N 

- 1 additional distinguishable vectors, V2, V3, ... , VN, that can be formed by permuting 

the N elements of V1 such that V1 + V2 + V3 + ,..., + VN = (Σni1, , Σni2, Σni3, ... , ΣniN) 

= Vs. Multiplying Vs by the scalar (l/N) gives Vm, the point in N–Space that is (l/N)th  

the distance from the origin to Vs, which can be interpreted as the mean of random 

variable X. Now let D equal the Pythagorean distance between V1 and Vm. By 

multiplying D by the scalar (1/N)½, the standard deviation of random variable X can be 

expressed as σ =  (1/N)½(D), while the variance of X can be expressed as σ2 =  (1/N)(D2) 



2 David A. Swanson 

≈ aVm
b, where  aVm

b = a × (meang)
b. 
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