A Statistical Margin of Error from a Geometric Perspective

David A. Swanson
University of California Riverside, Riverside CA 92521
Center for Studies in Demography and Ecology
University of Washington
Seattle, Washington USA 98195I

Abstract

A statistical margin of error for the mean of variable x taken from a random sample of size n from a population of interest of very large, possibly infinite, size can be presented as an extension of the Pythagorean distance between two vectors, where one vector, V_{m}, represents the mean of the random sample, and the other, V_{1}, is found by summing the n values of x and letting these n summed values form the elements of V_{1},

Suppose we have a random variable, x , where the values of x taken from a random sample of size n from a population of size N , where N is possibly infinite, but at the least very large and not necessarily known. Let the sum of the n values of random variable x equal $\Sigma \mathrm{n}_{\mathrm{i}}$. These same n values form the n elements of vector V_{1}, There are exactly $\mathrm{n}-1$ additional distinguishable vectors, $\mathrm{V}_{2}, \mathrm{~V}_{3}, \ldots, \mathrm{~V}_{\mathrm{n}}$, that can be formed by permuting the n elements of V_{1} such that $V_{1}+V_{2}+V_{3}+, \ldots,+V_{n}=\left(\Sigma n_{1},, \Sigma n i_{2}, \Sigma n i_{3}\right.$, ,$\left.\Sigma \mathrm{ni}_{\mathrm{n}}\right)=\mathrm{V}_{\mathrm{s}}$. Multiplying V_{s} by the scalar $(1 / \mathrm{n})$ gives V_{m}, the point in $\mathrm{n}-$ space that is $(1 / n)^{\text {th }}$ the distance from the origin to $\mathrm{Vs} . \mathrm{V}_{\mathrm{m}}$ can be interpreted as the mean of the random sample of size n.
Now consider an infinite number of random samples of size n from a population of size N , where N is possibly infinite, but at the least very large and not necessarily known, for which this same process was repeated. Let the mean of all of these sample means be V_{n}, which is equal to the mean of the entire population. Because we have an infinite number of samples, V_{n}, is unknown to us but of interest. We can estimate the distance from V_{m} to V_{n} with a selected degree of probability and an extension of this distance can be viewed as the Margin of Error, a statistic expressing the level of confidence in the estimate of the distance between V_{m} to V_{n}.

How can we do this? First, Let D equal the Pythagorean distance between V_{1} and V_{m}.

We then multiply D by the scalar $(1 / n)^{1 / 2}$, which allows us to present the standard deviation of our random sample as $s=(1 / \mathrm{n})^{1 / 2}(D)$. It follows that the standard error associated with our sample mean, V_{m}, is $s e=D$. With a given level of certainty, knowledge of D allows us to assess how far V_{m} is from V_{n}. We can do by constructing a "Margin of Error," (MOE). If $\mathrm{n} \leq 120$, then $\mathrm{MOE}=t_{c} D$, where t_{c} can be taken from a "student's t table" as found in Spiegel [1, p.344]. If, for example, $\mathrm{n}=25$ and we want to be 95% certain of the distance between V_{m} and V_{n}, then we select $t_{c}=2.06$.

If $\mathrm{n}>120$, then $\mathrm{MOE}=z_{c} D$, where z_{c} is taken from a " z table" as found in Spiegel [1, p. 343] Thus, if $n>120$ and we want to be 95% certain of the distance between V_{m} and V_{n}, then we select $z_{c}=1.96$.

Thus, from the perspective of geometry (and linear algebra), an MOE is an extension of D , where the extension is determined by n and the level of confidence we want in terms of the distance between V_{m} and V_{n}. Note that if $\mathrm{D}=$ zero, random variable x is a constant value, k , which implies $\mathrm{V}_{\mathrm{m}}=\mathrm{V}_{\mathrm{n}}$.

Reference

[1] Spiegel, M. (1961). Theory and Problems of Statistics. Schaum's Outline Series. McGraw-Hill. New York.

