

Fuzzy Graph Structures: A Generalised Approach

Dinesh T. and Ramakrishnan T.V.

*Department of Mathematical Sciences,
Kannur University, Mangattuparamba
Kannur University Campus P.O.-670 567, Kerala, India*

Abstract

The present authors introduced the concept of a fuzzy graph structure in an earlier paper *On Generalised Fuzzy Graph Structures*, Appl. Math. Sc., 5(4), 2011, 173-180. Here it is further generalised by defining $\rho_{i_1 i_2 \dots i_r}$ -path, $\rho_{i_1 i_2 \dots i_r}$ -cycle, $\rho_{i_1 i_2 \dots i_r}$ -tree, $\rho_{i_1 i_2 \dots i_r}$ -forest, fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle, fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree and fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest. Some results are obtained.

Subject Classification: 05C72, 05C05, 05C38, 05C40

Keywords: $\rho_{i_1 i_2 \dots i_r}$ -path, $\rho_{i_1 i_2 \dots i_r}$ -connectedness, fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle, fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree.

1.0 Introduction

The concept of fuzzy sets introduced by L.A. Zadeh in 1965 was used by A. Rosenfeld in 1975 [1] for defining fuzzy graph. E. Sampathkumar introduced the concept of graph structure in [2]. It is in particular, a generalisation of the notions like graphs, signed graphs and edge - coloured graphs with the colourings. He defined a graph structure G as $G = (V, R_1, R_2, \dots, R_k)$ where V is a non-empty set and R_1, R_2, \dots, R_k are relations on V which are mutually disjoint such that each R_i , $i = 1, 2, \dots, k$ is symmetric and irreflexive.

Based on these concepts, we introduced the concept of fuzzy graph structure in [3]. Therein we defined ρ_i -edge, ρ_i -cycle, ρ_i -tree, ρ_i -forest, fuzzy ρ_i -cycle, fuzzy ρ_i -tree, fuzzy ρ_i -forest etc. and proved some results.

In this paper, we generalise the above notions and introduce some new concepts like $\rho_{i_1 i_2 \dots i_r}$ -cycle, $\rho_{i_1 i_2 \dots i_r}$ -tree, $\rho_{i_1 i_2 \dots i_r}$ -forest, fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle, fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree and fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest.

Essential preliminaries are given wherever necessary. For more details on Graph Theory, reference may be made to [4], on Fuzzy Graph Theory, to [5] and for Graph Structures, to [2].

2.0 Preliminaries

We first recall the definition of fuzzy graph structure [3].

Definition 2.1 [3]

Let $G = (V, R_1, R_2, \dots, R_k)$ be a graph structure and $\mu, \rho_1, \rho_2, \dots, \rho_k$ be fuzzy subsets of V, R_1, R_2, \dots, R_k respectively such that

$\rho_i(x, y) \leq \mu(x) \wedge \mu(y) \quad \forall x, y \in V, i=1, 2, \dots, k$. Then $\tilde{G} = (\mu, \rho_1, \rho_2, \dots, \rho_k)$ is a fuzzy graph structure of G .

Convention

Throughout this paper, G and \tilde{G} will have the above meaning, unless otherwise stated.

The concepts of partial fuzzy subgraph structure, ρ_i -edge, ρ_i -path, ρ_i -cycle, fuzzy ρ_i -cycle, ρ_i -forest, ρ_i -tree, fuzzy ρ_i -forest, fuzzy ρ_i -tree etc. were introduced in [3] as follows.

Definition 2.2 [3]

$\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ is a partial fuzzy spanning subgraph structure of

$\tilde{G} = (\mu, \rho_1, \rho_2, \dots, \rho_k)$ if $\tau_r \subseteq \rho_r$ for $r = 1, 2, \dots, k$.

Definition 2.3 [3]

Let G be a graph structure and \tilde{G} be a fuzzy graph structure of G . If $(x, y) \in \text{supp}(\rho_i)$, then (x, y) is said to be a ρ_i -edge of \tilde{G} .

Definition 2.4 [3]

A ρ_i -path of a fuzzy graph structure \tilde{G} is a sequence of vertices, x_0, x_1, \dots, x_n which are distinct (except possibly $x_0 = x_n$ such that (x_{j-1}, x_j) is a ρ_i -edge for all $j=1, 2, \dots, n$.

Definition 2.5 [3]

\tilde{G} is a ρ_i -cycle iff $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \dots, \text{supp}(\rho_k))$ is an R_i -cycle (where an R_i -cycle is a sequence of vertices $x_0, x_1, \dots, x_{n-1}, x_n = x_0$ in V such that each (x_{j-1}, x_j) is an R_i -edge for $j=1, 2, \dots, n$).

Definition 2.6 [3]

\tilde{G} is a fuzzy ρ_i -cycle iff $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \dots, \text{supp}(\rho_k))$ is an R_i -cycle and there exists no unique (x, y) in $\text{supp}(\rho_i)$ such that

$$\rho_i(x, y) = \wedge \{ \rho_i(u, v) | (u, v) \in \text{supp}(\rho_i) \}.$$

Definition 2.7 [3]

\tilde{G} is a ρ_i -forest if its ρ_i -edges form an R_i -forest (where an R_i -forest is a fuzzy graph structure which does not contain R_i -cycles).

Definition 2.8 [3]

\tilde{G} is a ρ_i -tree if it is a ρ_i -connected ρ_i -forest.

Definition 2.9 [3]

\tilde{G} is a fuzzy ρ_i -forest if it has a partial fuzzy spanning subgraph structure

$\tilde{F}_i = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a τ_i -forest where for all ρ_i -edges not in \tilde{F}_i ,

$$\rho_i(x, y) < \tau_i^\infty(x, y).$$

Definition 2.10 [3]

\tilde{G} is a fuzzy ρ_i -tree if it has a partial fuzzy spanning subgraph structure

$\tilde{F}_i = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a τ_i -tree where for all ρ_i -edges not in

\tilde{F}_i , $\rho_i(x, y) < \tau_i^\infty(x, y)$.

3.0 Generalisation

Now we introduce some new terms by generalising the above concepts. First we define $\rho_{i_1 i_2 \dots i_r}$ -path and $\rho_{i_1 i_2 \dots i_r}$ -connectedness.

Definition 3.1

Let x_0, x_1, \dots, x_n be a sequence of distinct vertices of \tilde{G} . Let $\rho_{i_p}(x_{j-1}, x_j) > 0$

$\forall j = 1, 2, \dots, n$ for some $p \in \{1, 2, \dots, r\}$ where $\rho_{i_1}, \rho_{i_2}, \dots, \rho_{i_r}$ are some among $\rho_1, \rho_2, \dots, \rho_k$. Then $x_0, x_1, \dots, x_{n-1}, x_n$ is a $\rho_{i_1 i_2 \dots i_r}$ -path.

Definition 3.2

Two vertices of a fuzzy graph structure \tilde{G} joined by a $\rho_{i_1 i_2 \dots i_r}$ -path are said to be $\rho_{i_1 i_2 \dots i_r}$ -connected.

Definition 3.3

The strength of a $\rho_{i_1 i_2 \dots i_r}$ -path $x_0, x_1, \dots, x_{n-1}, x_n$ of a fuzzy graph structure \tilde{G} is $\bigwedge_{j=1}^n \bigvee_{q=1}^r \rho_{i_q}(x_{j-1}, x_j)$.

We may denote the strength of a $\rho_{i_1 i_2 \dots i_r}$ -path from x to y as $\rho_{i_1 i_2 \dots i_r}(x, y)$ and the strength of a strongest $\rho_{i_1 i_2 \dots i_r}$ -path from x to y as $\rho_{i_\infty}(x, y)$.

We now define $\rho_{i_1 i_2 \dots i_r}$ -cycle, $\rho_{i_1 i_2 \dots i_r}$ -tree, $\rho_{i_1 i_2 \dots i_r}$ -forest etc.

Definition 3.4

A sequence of vertices $x_0, x_1, \dots, x_{n-1}, x_n = x_0$ of V of a fuzzy graph structure \tilde{G} such

that each (x_{j-1}, x_j) , $j=1, 2, \dots, n$, is an R_i -edge for some $i \in \{1, 2, \dots, r\}$, is said to be an $R_{i_1 i_2 \dots i_r}$ -cycle if $R_{i_1}, R_{i_2}, \dots, R_{i_r}$ are some among R_1, R_2, \dots, R_k which are represented in it by nonzero R_i -edges, $i=1, 2, \dots, k$.

Note that R_i -cycle [2] is an $R_{i_1 i_2 \dots i_r}$ -cycle with $i_1=i_2=\dots=i_r=i$.

Definition 3.5

\tilde{G} is a $\rho_{i_1 i_2 \dots i_r}$ -cycle iff $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \dots, \text{supp}(\rho_k))$ is an $R_{i_1 i_2 \dots i_r}$ -cycle and $\rho_{i_1}, \rho_{i_2}, \dots, \rho_{i_r}$ are some among $\rho_1, \rho_2, \dots, \rho_k$ which correspond to $R_{i_1}, R_{i_2}, \dots, R_{i_r}$.

Note that $\rho_{i_1 i_2 \dots i_r}$ -cycle is a ρ_i -cycle [3] for $i_1=i_2=\dots=i_r=i$.

Definition 3.6

\tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle iff $(\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \dots, \text{supp}(\rho_k))$ is an $R_{i_1 i_2 \dots i_r}$ -cycle and there exists no unique (x, y) in $\bigcup_{q=1}^r \text{supp}(\rho_{i_q})$ such that $\bigvee_{q=1}^r \rho_{i_q}(x, y) = \bigwedge \{\bigvee_{q=1}^r \rho_{i_q}(u, v) \mid (u, v) \in \bigcup_{q=1}^r \text{supp}(\rho_{i_q})\}$

Definition 3.7

A graph structure which does not contain $R_{i_1 i_2 \dots i_r}$ -cycles for $i_1, i_2, \dots, i_r \in \{1, 2, \dots, k\}$ which need not be distinct, is an $R_{i_1 i_2 \dots i_r}$ -forest.

Definition 3.8

An $R_{i_1 i_2 \dots i_r}$ -forest is an $R_{i_1 i_2 \dots i_r}$ -tree if it is connected by a $\rho_{i_1 i_2 \dots i_r}$ -path.

Definition 3.9

\tilde{G} is a $\rho_{i_1 i_2 \dots i_r}$ -forest if its ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$) form an $R_{i_1 i_2 \dots i_r}$ -forest.

Definition 3.10

\tilde{G} is a $\rho_{i_1 i_2 \dots i_r}$ -tree if it is connected by a $\rho_{i_1 i_2 \dots i_r}$ -path and it is a $\rho_{i_1 i_2 \dots i_r}$ -forest.

Definition 3.11

\tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest if it has a partial fuzzy spanning subgraph structure

$\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a $\tau_{i_1 i_2 \dots i_r}$ -forest and $\tau_{i_1}, \tau_{i_2}, \dots, \tau_{i_r}$ are some among $\tau_1, \tau_2, \dots, \tau_k$ which are represented in \tilde{F} where for all ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$) not in \tilde{F} , $\rho_{i_p}(x, y) < \tau_{i_\infty}(x, y)$.

Definition 3.12

\tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree if it has a partial fuzzy spanning subgraph structure

$\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a $\tau_{i_1 i_2 \dots i_r}$ -tree where for all ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$) not in \tilde{F} , $\rho_{i_p}(x, y) < \tau_{i_\infty}(x, y)$.

4.0 Some results on fuzzy $\rho_{i_1 i_2 \dots i_r}$ -trees and fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forests

We generalise some results discussed in [3] to fuzzy $\rho_{i_1 i_2 \dots i_r}$ -trees and fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forests.

Theorem 4.1

\tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest iff in any $\rho_{i_1 i_2 \dots i_r}$ -cycle, there exists some ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$) such that $\rho_{i_p}(x, y) < \rho'_{i_\infty}(x, y)$ where $(\mu, \rho_1', \rho_2', \dots, \rho_k')$ is the partial fuzzy spanning subgraph structure obtained by deleting (x, y) and $\rho_{i_1}', \rho_{i_2}', \dots, \rho_{i_r}'$ are defined accordingly.

Proof

Sufficiency

If \tilde{G} does not contain a $\rho_{i_1 i_2 \dots i_r}$ -cycle, it is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest. Then there is nothing to prove.

Let \tilde{G} contains a $\rho_{i_1 i_2 \dots i_r}$ -cycle. Consider some ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) (x, y) with $\rho_{i_p}(x, y) < \rho'_{i_\infty}(x, y)$.

Remove (x, y) . Still there may be $\rho_{i_1 i_2 \dots i_r}$ -cycles. Repeat the process with some ρ_{i_q} -edge ($q \in \{1, 2, \dots, r\}$), q need not be different from p .

Strength of the deleted ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$) increases in each step. When the fuzzy graph structure is cleared of all $\rho_{i_1 i_2 \dots i_r}$ -cycles, the resultant partial fuzzy spanning subgraph structure is a $\rho_{i_1 i_2 \dots i_r}$ -forest. Let it be \tilde{F} .

If $(x, y) \notin \tilde{F}$, it was deleted. So there exists a $\rho_{i_1 i_2 \dots i_r}$ -path from x to y in \tilde{F} , stronger than (x, y) . There will be stronger $\rho_{i_1 i_2 \dots i_r}$ -paths for diverting around deleted ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$). Repeating the process, we get a $\rho_{i_1 i_2 \dots i_r}$ -path consisting only of ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$). Hence \tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest.

Necessity

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest. Let C be a $\rho_{i_1 i_2 \dots i_r}$ -cycle. Some ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) (x, y) of C is not in $\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$, the partial fuzzy spanning subgraph structure which is a $\tau_{i_1 i_2 \dots i_r}$ -forest ($\tau_{i_1}, \tau_{i_2}, \dots, \tau_{i_r}$ are some among $\tau_1, \tau_2, \dots, \tau_k$ which are represented in it) and $\rho_{i_p}(x, y) < \tau_{i_\infty}(x, y)$.

But $\tau_{i_\infty}(x, y) < \rho'_{i_\infty}(x, y)$ where $(\mu, \rho_1', \rho_2', \dots, \rho_k')$ is obtained from \tilde{G} by deleting (x, y) and $\rho_{i_1}', \rho_{i_2}', \dots, \rho_{i_r}'$ are defined accordingly.

Therefore $\rho_{i_p}(x, y) < \rho'_{i_\infty}(x, y)$.

Theorem 4.2

Let \tilde{G} be a fuzzy graph structure. If there is at most one strongest $\rho_{i_1 i_2 \dots i_r}$ -path between any two vertices, then \tilde{G} must be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest.

Proof

Suppose there exists at most one strongest $\rho_{i_1 i_2 \dots i_r}$ -path between any two vertices of \tilde{G} .

If possible, let \tilde{G} be not a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest. Then by definition, there exists a $\rho_{i_1 i_2 \dots i_r}$ -cycle C such that for every ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) (x, y) in C , $\rho_{i_p}(x, y) \geq \rho_{i_1 i_2 \dots i_r}'(x, y)$ where $(\mu, \rho_1', \rho_2', \dots, \rho_k')$ is the partial fuzzy spanning subgraph structure obtained by deleting (x, y) from \tilde{G} and $\rho_{i_1 i_2 \dots i_r}'(x, y)$ is the strength of $\rho_{i_1 i_2 \dots i_r}$ -path (there is only one such $\rho_{i_1 i_2 \dots i_r}$ -path) from x to y not involving (x, y) . ie., (x, y) is the strongest $\rho_{i_1 i_2 \dots i_r}$ -path from x to y .

If (x, y) is the weakest ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) of C , the remaining ρ_{i_p} -edges ($p \in \{1, 2, \dots, r\}$) of C form a strongest $\rho_{i_1 i_2 \dots i_r}$ -path which is a contradiction.

Therefore \tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -forest.

Theorem 4.3

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree and $\tilde{G}^* = (\text{supp}(\mu), \text{supp}(\rho_1), \text{supp}(\rho_2), \dots, \text{supp}(\rho_k))$ be not a $\rho_{i_1 i_2 \dots i_r}$ -tree. Then there exists at least one ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) (u, v) in $\bigcup_{q=1}^r \text{supp}(\rho_{i_q})$ for which $\rho_{i_p}(u, v) < \rho_{i_\infty}(u, v)$.

Proof

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree. Then there exists a partial fuzzy spanning subgraph structure $\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a $\tau_{i_1 i_2 \dots i_r}$ -tree and for every ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) $(u, v) \notin \tilde{F}$, $\rho_{i_p}(u, v) < \tau_{i_\infty}(u, v)$.

Also $\tau_{i_\infty}(u, v) \leq \rho_{i_\infty}(u, v)$.

Therefore $\rho_{i_p}(u, v) < \rho_{i_\infty}(u, v) \ \forall \rho_{i_p}$ -edge $(u, v) \notin \tilde{F}$. \tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree and \tilde{G}^* is not a $\rho_{i_1 i_2 \dots i_r}$ -tree.

Therefore there exists at least one ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) $(u, v) \notin \tilde{F}$. ie., there exists at least one ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) (u, v) in $\bigcup_{q=1}^r \text{supp}(\rho_{i_q})$ with $\rho_{i_p}(u, v) < \rho_{i_\infty}(u, v)$.

Lemma 1

Let \tilde{G} be a fuzzy graph structure with $\rho_{i_p}(u, v) = \mu(u) \wedge \mu(v)$ for some $p \in \{1, 2, \dots, r\}$ and for every ρ_{i_p} -edge $(u, v) \in \bigcup_{q=1}^r \text{supp}(\rho_{i_q})$ where $\bigcup_{q=1}^r \text{supp}(\rho_{i_q}) \neq \emptyset$. Then $\rho_{i_\infty}(u, v) = \rho_{i_p}(u, v)$ for that p .

Proof

$\rho_{i_p}(u, v) = \mu(u) \wedge \mu(v)$ for every ρ_{i_p} -edge (u, v) for some $p \in \{1, 2, \dots, r\}$, $(u, v) \in \bigcup_{q=1}^r \text{supp}(\rho_{i_q})$. $\rho_{i_\infty}(u, v)$ = strength of the strongest $\rho_{i_1 i_2 \dots i_r}$ -path from u to v . ie., $\rho_{i_\infty}(u, v) = \mu(u) \wedge \mu(v) = \rho_{i_p}(u, v)$ for that p .

Theorem 4.4

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree. Then $\rho_{i_p}(u, v) < \mu(u) \wedge \mu(v)$ for some ρ_{i_p} -edge (u, v) ($p \in \{1, 2, \dots, r\}$), in $\bigcup_{q=1}^r \text{supp}(\rho_{i_q})$.

Proof

If possible, let $\rho_{i_p}(u, v) = \mu(u) \wedge \mu(v) \forall (u, v) \in \bigcup_{q=1}^r \text{supp}(\rho_{i_q})$.

Then by lemma, $\rho_{i_p}(u, v) = \rho_{i_\infty}(u, v)$ for that p for which $\rho_{i_p}(u, v) = \mu(u) \wedge \mu(v)$.

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree. Then it has a partial fuzzy spanning subgraph structure $\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a $\tau_{i_1 i_2 \dots i_r}$ -tree with $\rho_{i_p}(u, v) < \tau_{i_\infty}(u, v) \forall \rho_{i_p}$ -edge $(u, v) \notin \tilde{F}$.

Therefore $\rho_{i_\infty}(u, v) < \tau_{i_\infty}(u, v)$ which is a contradiction.

Hence $\rho_{i_p}(u, v) < \mu(u) \wedge \mu(v)$ for some ρ_{i_p} -edge ($p \in \{1, 2, \dots, r\}$) (u, v) .

Theorem 4.5

Let \tilde{G} be a $\rho_{i_1 i_2 \dots i_r}$ -cycle. \tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle iff \tilde{G} is not a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree.

Proof

Let \tilde{G} be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle.

If possible, let it be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree also. Then it has a partial fuzzy spanning subgraph structure $\tilde{F} = (\mu, \tau_1, \tau_2, \dots, \tau_k)$ which is a $\tau_{i_1 i_2 \dots i_r}$ -tree. Then

$[\bigcup_{q=1}^r \text{supp}(\rho_{i_q}) - \bigcup_{q=1}^r \text{supp}(\tau_{i_q})] = \{(u, v)\}$ for some $u, v \in V$ since \tilde{G} is a $\rho_{i_1 i_2 \dots i_r}$ -cycle.

There does not exist a unique (x, y) in $\bigcup_{q=1}^r \text{supp}(\rho_{i_q})$ such that

$$\bigvee_{q=1}^r \rho_{i_q}(x, y) = \bigwedge \{\bigvee_{q=1}^r \rho_{i_q}(u, v) : (u, v) \in \bigcup_{q=1}^r \text{supp}(\rho_{i_q})\}.$$

Therefore there exists no $\tau_{i_1 i_2 \dots i_r}$ -path in \tilde{F} from u to v having greater strength than $\rho_{i_1 i_2 \dots i_r}(u, v)$. Otherwise \tilde{G} will not be a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle.

Thus \tilde{G} is not a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree.

Conversely, let \tilde{G} be not a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -tree. Then it has no partial fuzzy spanning subgraph structure \tilde{F} which is a $\tau_{i_1 i_2 \dots i_r}$ -tree.

\tilde{G} is a $\rho_{i_1 i_2 \dots i_r}$ -cycle. Let $(\mu, \tau_1, \tau_2, \dots, \tau_k)$ be a partial fuzzy spanning subgraph structure of \tilde{G} , which is a $\tau_{i_1 i_2 \dots i_r}$ -tree with $\rho_{i_p}(u, v) < \tau_{i_\infty}(u, v)$ for all ρ_{i_p} -edge

$(p \in \{1, 2, \dots, r\})$ $(u, v) \notin \tilde{F}$.

$\tau_{i_\infty}(u, v) \leq \rho_{i_p}(u, v) \forall \rho_{i_p}$ -edge (u, v) in $\bigcup_{q=1}^r \text{supp}(\rho_{i_q})$, $p \in \{1, 2, \dots, r\}$, where $\tau_{i_p}(u, v) = 0 \forall p = 1, 2, \dots, r$.

$\tau_{i_p}(x, y) = \rho_{i_p}(x, y) \forall (x, y) \in \bigcup_{q=1}^r \text{supp}(\rho_{i_q}) - \{(u, v)\}$ for $p \in \{1, 2, \dots, r\}$.

Therefore there does not exist unique (x, y) with

$$\bigvee_{q=1}^r \rho_{i_q}(x, y) = \bigwedge \{\bigvee_{q=1}^r \rho_{i_q}(u, v) : (u, v) \in \text{supp}(\rho_{i_q})\}.$$

Therefore \tilde{G} is a fuzzy $\rho_{i_1 i_2 \dots i_r}$ -cycle.

References

- [1] Rosenfeld, A., 1975, Fuzzy Graphs in "Fuzzy Sets and their Applications to Cognitive and Decision Processes"(eds. L.A. Zadeh, K.S. Fu & M. Shimura), Acad. Press, New York, pp 77-95.
- [2] Sampathkumar, E., Dec 2006, Generalised Graph Structures, Bull. Kerala Math. Assoc., Vol 3, No.2, 65-123.
- [3] Dinesh, T. & Ramakrishnan, T.V., On Generalised Fuzzy Graph Structures, Appl. Math. Sc., 5(4), 2011, 173-180.
- [4] Harary, F. - Graph Theory, 1995, Narosa Pub. House.
- [5] Mordeson, J.N. & Nair, P.S., 2000, Fuzzy Graphs and Fuzzy Hypergraphs, Physica- verlag.