On the Eigenproblems of Nilpotent Lattice Matrices

Geena Joy
Department of Mathematics, Union Christian College,
Aluva, Kochi, Kerala, India – 683102

K. V. Thomas
Department of Mathematics, Bharata Mata College,
Thrikkakara, Kochi, Kerala, India – 682021

Abstract

This paper discusses the eigenproblems of nilpotent lattice matrices and describes the λ – eigenspace of a nilpotent lattice matrix. Also, this paper introduces the concept of non-singular lattice matrices. We prove that every invertible lattice matrix is non-singular and every nilpotent lattice matrix is singular.

Keywords: Distributive lattice, Nilpotent lattice matrix, λ – eigenspace, Non-singular lattice matrix, Invertible lattice matrix

2010 MSC: 15B99

1. INTRODUCTION

The notion of lattice matrices appeared firstly in the work, ‘Lattice matrices’ [2] by G. Give’on in 1964. A matrix is called a lattice matrix if its entries belong to a distributive lattice. All Boolean matrices and fuzzy matrices are lattice matrices. Lattice matrices in various special cases become useful tools in various domains like the theory of switching nets, automata theory and the theory of finite graphs [2]. The concept of nilpotent lattice matrix was introduced firstly by G. Give’on [2]. A square lattice matrix A is called nilpotent if $A^n = 0_n$, for some positive integer m, where 0_n is the zero matrix. In [2], Give’on proved that an $n \times n$ lattice matrix A is nilpotent if and only if $A^n = 0_n$. Since then, a number of researchers have carried out their research in the area of nilpotent lattice matrices (see [6, 8, 9, 10]). The eigenvector-eigenvalue problems (for short, eigenproblems) of matrices over a
complete and completely distributive lattice with the greatest element 1 and the least element 0 (lattice matrices) were discussed firstly by Y. J. Tan [5]. In [7], Y. J. Tan raised an open problem ‘How to describe the λ- eigenspace for a given lattice matrix?’ In this paper, we describe the λ- eigenspace of a given nilpotent lattice matrix.

Further, we introduce the concept of non-singular lattice matrices. In classical theory of matrices over a field, the theory of non-singular matrices coincides with the theory of invertible matrices. In the case of lattice matrices, every non-singular lattice matrix need not be invertible. Also, we prove that every nilpotent lattice matrix is singular.

2. PRELIMINARIES
We recall some basic definitions and results on lattice theory and lattice matrices which will be used in the sequel. For details see [1, 2, 3, 4, 7, 9, 10].

A partially ordered set (L, \leq) is a lattice if for all $a, b \in L$, the least upper bound of $\{a, b\}$ and the greatest lower bound of $\{a, b\}$ exist in L. For any $a, b \in L$, the least upper bound and the greatest lower bound is denoted by $a \vee b$ and $a \wedge b$ (or ab), respectively.

An element $a \in L$ is called greatest element of L if $x \leq a$, $\forall x \in L$. An element $b \in L$ is called least element of L if $b \leq x$, $\forall x \in L$. We use 1 and 0 to denote the greatest element and the least element of L, respectively.

A nonvoid subset K of a lattice L is a sublattice of L, if for any $a, b \in K$, $a \vee b$, $a \wedge b \in K$. A lattice L is called a complete lattice if for any $H \subseteq L$, both the least upper bound $\vee \{y \mid y \in H\}$ and the greatest lower bound $\wedge \{y \mid y \in H\}$ of H exist in L. A lattice (L, \leq, \vee, \wedge) is a distributive lattice if the operations \vee and \wedge are distributive with respect to each other.

For any $a, b \in L$, the greatest element $x \in L$ satisfying the inequality $a \wedge x \leq b$ is called the relative pseudocomplement of a in b and is denoted by $a \rightarrow b$. If for any $a, b \in L$, $a \rightarrow b$ exists, then L is said to be a Brouwerian lattice. For $a \in L$, $a \rightarrow 0$ is denoted by a^\vee.

A lattice L is said to be completely distributive if for any $x \in L$ and any $\{y_i \mid i \in I\} \subseteq L$, where I is an index set,

(a). $x \wedge (\vee_{i \in I} y_i) = \vee_{i \in I} (x \wedge y_i)$ and

(b). $x \vee (\wedge_{i \in I} y_i) = \wedge_{i \in I} (x \vee y_i)$ holds.

It is known [1] that a complete lattice L is Brouwerian if and only if (a) is satisfied in L. Therefore, a complete and completely distributive lattice L is Brouwerian.

Unless otherwise specified, we shall assume throughout the paper that L is a complete and completely distributive lattice with the greatest element 1 and the least element 0, respectively.

Lemma 2.1 [4, 7] Let $\{a_i \mid 1 \leq i \leq n\} \subseteq L$. Then we have

(a). $(\vee_{1 \leq i \leq n} a_i)^\vee = \wedge_{1 \leq i \leq n} a_i^\vee$

(b). $\vee_{1 \leq i \leq n} a_i^\vee \leq (\wedge_{1 \leq i \leq n} a_i)^\vee$.

On the Eigenproblems of Nilpotent Lattice Matrices

Lemma 2.2 Let \(a, b \in L \) such that \(a^c = b^c = 0 \). Then \((ab)^c = 0 \).

Proof. If possible, assume that \((ab)^c > 0 \). Then there exists \(y > 0 \) such that \((ab)y = 0 \). That is, there exists \(y > 0 \) such that \((ay)(by) = 0 \).

Let \(y_1 = ay \) and \(y_2 = by \). Then \(y_1, y_2 > 0 \). Otherwise, \(a^c, b^c > 0 \). Now \(by_1 = b(ay) = (ab)y = 0 \) and \(ay_2 = a(by) = (ab)y = 0 \).

Thus there exist \(y_1, y_2 > 0 \) such that \(by_1 = ay_2 = 0 \), which is a contradiction.

Hence \((ab)^c = 0 \).

Let \(M_n(L) \) be the set of all \(n \times n \) matrices over \(L \) (Lattice Matrices). We shall denote by \(A_{ij} \) the element of \(L \) which stands in the \((i, j) \)th entry of \(A \in M_n(L) \).

For \(A = (A_{ij}), B = (B_{ij}), C = (C_{ij}) \in M_n(L) \), define
\[
A \vee B = C \iff C_{ij} = A_{ij} \vee B_{ij} \quad (i, j = 1, 2, \ldots, n)
\]
\[
aA = C \iff C_{ij} = aA_{ij}, \text{for } a \in L \quad (i, j = 1, 2, \ldots, n)
\]
\[
AB = C \iff C_{ij} = \sum_{k=1}^{n} A_{ik}B_{kj} \quad (i, j = 1, 2, \ldots, n) \quad \text{(Multiplication)}
\]
\[
A^T = C \iff C_{ij} = A_{ji} \quad (i, j = 1, 2, \ldots, n) \quad \text{(Transposition)}
\]
\[
(I)_{ij} = \begin{cases}
1, & \text{if } i = j \\
0, & \text{if } i \neq j
\end{cases} \quad (0_n)_{ij} = 0 \quad (i, j = 1, 2, \ldots, n)
\]
\[
A^0 = I, A^{k+1} = A^k A \text{ for } k \geq 0, k \text{ is an integer}.
\]

It is clear that \(M_n(L) \) is a semigroup with the identity \(I \) and the zero \(0_n \) with respect to the multiplication. Also, the transposition in \(M_n(L) \) has the following properties:

(a) \((AB)^T = B^T A^T \)

(b) \((A^T)^T = A \).

Let \(A \in M_n(L) \). Then \(A \) is called nilpotent, if there exists some integer \(k \geq 1 \) such that \(A^k = 0_n \).

Theorem 2.3 [2] Let \(A \in M_n(L) \). Then \(A \) is nilpotent if and only if \(A^n = 0_n \).

Theorem 2.4 [10] Let \(A \in M_n(L) \) be nilpotent. Then \(a_{i_1i_2} \cdots a_{i_m} = 0 \), for \(\{i_1, i_2, \ldots, i_m\} \subseteq \{1, 2, \ldots, n\} \).

Let \(A \in M_n(L) \). Then \(A \) is said to be invertible if there is a \(B \in M_n(L) \) such that \(AB = BA = I \). Here \(B \) is called the inverse of \(A \) and is denoted by \(A^{-1} \).
A set \(S = \{a_1, a_2, \ldots, a_m\} \) of elements of \(L \) is a *decomposition* of \(1 \) in \(L \) if and only if \(\lor_{i \in S} a_i = 1 \). The set \(S \) is called orthogonal if and only if \(a_i a_j = 0 \), for all \(i, j = 1, 2, \ldots, m, i \neq j \). Hence \(S \) is called an orthogonal decomposition of \(1 \) in \(L \) if and only if it is orthogonal and a decomposition of \(1 \) in \(L \).

Theorem 2.5 [2] Let \(A \in M_n(L) \). Then \(A \) is invertible if and only if each row and each column of \(A \) is an orthogonal decomposition of 1 in \(L \).

Let \(A, B \in M_n(L) \). If there exists an invertible matrix \(P \in M_n(L) \) such that \(B = P^{-1}AP \), then \(B \) is said to be similar to \(A \).

For \(A \in M_n(L) \), the **permanent** of \(A \) is defined as

\[
|A| = \sum_{\sigma \in S_n} a_{\sigma(1)} a_{\sigma(2)} \cdots a_{\sigma(n)},
\]

where \(S_n \) denotes the symmetric group of all permutations of the indices \(\{1, 2, \ldots, n\} \).

Lemma 2.6 [9] Let \(A \in M_n(L) \) be invertible. Then \(|A| = 1. \)

Let \(V_n(L) \) be the set of all column vectors or \(n \)-vectors over \(L \). For \(\bar{x} = (x_1, x_2, \ldots, x_n)^T, \bar{y} = (y_1, y_2, \ldots, y_n)^T \in V_n(L) \) and \(a \in L \), define

Addition: \(\bar{x} \lor \bar{y} = (x_1 \lor y_1, x_2 \lor y_2, \ldots, x_n \lor y_n)^T \),

scalar multiplication: \(a\bar{x} = (ax_1, ax_2, \ldots, ax_n)^T \) and \(\bar{0} = (0, 0, \ldots, 0)^T \in V_n(L) \).

Then \(V_n(L) \) is a lattice vector space over \(L \). The elements of \(V_n(L) \) are called as vectors and the elements of \(L \) are called as scalars. Also, \(\bar{0} \) is called the zero vector. Denote by \(\bar{e} = (1, 1, \ldots, 1)^T \).

For \(\bar{x} = (x_1, x_2, \ldots, x_n)^T, \bar{y} = (y_1, y_2, \ldots, y_n)^T \in V_n(L) \), define

\[
\bar{x} \leq \bar{y} \iff x_i \leq y_i \quad (i = 1, 2, \ldots, n)
\]

\[
\bar{x} \land \bar{y} = (x_1 \land y_1, x_2 \land y_2, \ldots, x_n \land y_n)^T
\]

\[
\bar{x} \rightarrow \bar{y} = (x_1 \rightarrow y_1, x_2 \rightarrow y_2, \ldots, x_n \rightarrow y_n)^T
\]

\[
\bar{x}^c = (x_1^c, x_2^c, \ldots, x_n^c)^T
\]

\[
\bar{y} = A\bar{x} \iff y_i = \lor_{j \in S} A_{ij} \land x_j, \text{ for } A \in M_n(L) \quad (i = 1, 2, \ldots, n).
\]

Lemma 2.7 [7] For \(\bar{x}, \bar{y} \in V_n(L) \), we have \((\bar{x} \lor \bar{y})^c = \bar{x}^c \land \bar{y}^c \).

A vector \(\bar{x} = (x_1, x_2, \ldots, x_n)^T \) is an ortho vector when \(x_i x_j = 0 \), for \(i, j = 1, 2, \ldots, n \) and \(i \neq j \). An ortho vector \(\bar{x} = (x_1, x_2, \ldots, x_n)^T \) is a stochastic vector when \(\lor_{i \in S} x_i = 1 \).
Let W be a non-empty subset of $V_n(L)$. Then W is a sub lattice vector space of $V_n(L)$ if and only if W is closed under addition and scalar multiplication in $V_n(L)$.

Let S be a subset of W. Then a vector $\vec{v} \in W$ is a linear combination of the vectors in S, if there exists $\vec{v}_1, \vec{v}_2, \cdots, \vec{v}_n \in S$ and $a_1, a_2, \cdots, a_n \in L$ such that $\vec{v} = \Sigma_{i=1}^{n} a_i \vec{v}_i$.

Assume that there exists $S \subseteq W$ such that every $\vec{v} \in W$ is a linear combination of the vectors from S. Then S is called a spanning subset of W.

3. EIGENPROBLEMS OF NILPOTENT MATRICES OVER L

In this section, we consider the eigenproblems (See [7]) of nilpotent matrices over L, a complete and completely distributive lattice with 1 and 0.

Definition 3.1 [5] Let $A \in M_n(L)$. An eigenvector of A is a vector $x \in V_n(L)$ such that $Ax = \lambda x$, for some scalar λ in L. The element λ is called the associated eigenvalue.

First, we consider a given eigenvalue λ of a nilpotent matrix A in $M_n(L)$ and discuss the properties of its eigenvectors.

For a given eigenvalue λ of a matrix A in $M_n(L)$, the set of all eigenvectors of λ is denoted by $E_A(\lambda)$. That is, $E_A(\lambda) = \{ x \in V_n(L) | Ax = \lambda x \}$.

Theorem 3.2 [7] Let $A \in M_n(L)$ and λ be a given eigenvalue of A. Then $E_A(\lambda)$ is a sub lattice vector space of $V_n(L)$ and is called the λ-eigenspace of A. Moreover, $E_A(\lambda)$ has the least element $\vec{0}$ and the greatest element $\vec{x}_g(\lambda) = (\lambda \vec{e} \vee A^T \vec{e}) \rightarrow (\lambda A^n \vec{e})$.

Theorem 3.3 Let $A \in M_n(L)$ be nilpotent and λ be a given eigenvalue of A. Then $E_A(\lambda)$ has the least element $\vec{0}$ and the greatest element $\vec{x}_g(\lambda) = (\lambda \vec{e} \vee A^T \vec{e})^\vee$.

Proof. By Theorem 3.2, $E_A(\lambda)$ has the least element $\vec{0}$ and the greatest element

$$\vec{x}_g(\lambda) = (\lambda \vec{e} \vee A^T \vec{e}) \rightarrow (\lambda A^n \vec{e}) = (\lambda \vec{e} \vee A^T \vec{e}) \rightarrow (\lambda 0_a \vec{e})$$

(by Theorem 2.3)

$$= (\lambda \vec{e} \vee A^T \vec{e}) \rightarrow \vec{0} = (\lambda \vec{e} \vee A^T \vec{e})^\vee.$$

Theorem 3.4 Let $A \in M_n(L)$ be nilpotent and λ be a given eigenvalue of A. Then $E_A(\lambda)$ is spanned by

$$\{ (x_1,0,\cdots,0)^T, (0,x_2,\cdots,0)^T, \cdots, (0,0,\cdots,x_n)^T \} - \{ (0,0,\cdots,0)^T \},$$

where $\vec{x}_g(\lambda) = (x_1,x_2,\cdots,x_n)^T = (\lambda \vec{e} \vee A^T \vec{e})^\vee$ is the greatest element of $E_A(\lambda)$.

Proof. Let $\vec{x}_1 = (x_1,0,\cdots,0)^T, \vec{x}_2 = (0,x_2,\cdots,0)^T, \cdots, \vec{x}_n = (0,0,\cdots,x_n)^T$.

Firstly we prove that
\[x_i = (\lambda \vee_{1 \leq j \leq n} A_{ji})^c = \lambda^c \wedge_{1 \leq j \leq n} A_{ji}^c, \]
for \(i = 1, 2, \cdots, n \) (By Lemma 2.1(a)).

To do this, for \(i = 1, 2, \cdots, n \), consider
\[A\bar{x}_i = A(0, \cdots, x_i, \cdots, 0)^T \]
\[= \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{ni} & A_{n2} & \cdots & A_{nn} \end{bmatrix} \]
\[= (A_{ij}, A_{ji}, \cdots, A_{in}x_i)^T \]
\[= (A_{ij}(\lambda^c \wedge_{1 \leq j \leq n} A_{ji}^c), A_{ji}(\lambda^c \wedge_{1 \leq j \leq n} A_{ji}^c), \cdots, A_{in}(\lambda^c \wedge_{1 \leq j \leq n} A_{ji}^c))^T \]
\[= (0, \cdots, 0)^T = \vec{0}. \]

Also,
\[\lambda\bar{x}_i = \lambda(0, \cdots, x_i, \cdots, 0)^T = (0, \cdots, \lambda x_i, \cdots, 0)^T \]
\[= (0, \cdots, \lambda(\lambda^c \wedge_{1 \leq j \leq n} A_{ji}^c), \cdots, 0)^T \]
\[= (0, \cdots, 0)^T = \vec{0}. \]

Therefore \(A\bar{x}_i = \lambda\bar{x}_i \), for \(i = 1, 2, \cdots, n \). Hence \(\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_n \in E_A(\lambda) \).

Now let \((y_1, y_2, \cdots, y_n)^T \) be any eigenvector of \(\lambda \). Then by Theorem 3.3,
\[(y_1, y_2, \cdots, y_n)^T \leq (x_1, x_2, \cdots, x_n)^T \]
\[\Rightarrow y_i \leq x_i, \text{ for } i = 1, 2, \cdots, n. \]

Take \(a_i = y_i \), for \(i = 1, 2, \cdots, n \). Then \(a_i \in L \) and \(y_i = a_ix_i \), for \(i = 1, 2, \cdots, n \).

Therefore
\[(y_1, y_2, \cdots, y_n)^T = (a_1x_1, a_2x_2, \cdots, a_nx_n)^T \]
\[= a_1(x_1, 0, \cdots, 0)^T \lor a_2(0, x_2, \cdots, 0)^T \lor \cdots \lor a_n(0, 0, \cdots, x_n)^T \]
\[= a_1\bar{x}_1 \lor a_2\bar{x}_2 \lor \cdots \lor a_n\bar{x}_n. \]

Hence the \(\lambda \)-eigenspace \(E_A(\lambda) \) is spanned by \(\{\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_n\} - \{\vec{0}\} \).

Theorem 3.5 Let \(A \in M_n(L) \) be nilpotent and \(\lambda \) be a given eigenvalue of \(A \). Then \(\lambda = 0 \) if and only if the only eigenvector of \(\lambda \) is \(\vec{0} \).

Proof. First assume that \(\lambda = 0 \). Then by Lemma 2.7,
\[\bar{x}_g(\lambda) = (\lambda\bar{e} \lor A^T\bar{e})^c = (\lambda\bar{e})^c \wedge (A^T\bar{e})^c = \vec{0} \wedge (A^T\bar{e})^c = \vec{0}. \]

Hence by Theorem 3.3, the only eigenvector of \(\lambda \) is \(\vec{0} \).

Conversely assume that the only eigenvector of \(\lambda \) is \(\vec{0} \). Then by Theorem 3.3,
On the Eigenproblems of Nilpotent Lattice Matrices

\[\tilde{x}_g(\lambda) = (\lambda \tilde{e} \lor A^T \tilde{e})^\gamma = 0 \Rightarrow (\lambda \lor \bigvee_{1 \leq j \leq n} A_{ji})^\gamma = 0, 1 \leq i \leq n. \]

If possible, assume that \(\lambda^c \neq 0 \). Then

\[(\lambda \lor \bigvee_{1 \leq j \leq n} A_{ji})^\gamma = 0, 1 \leq i \leq n \Rightarrow (\lambda \lor \bigvee_{1 \leq j \leq n} A_{ji})^c \neq 0, 1 \leq i \leq n \]

\[\Rightarrow (\lambda^c \lor (\bigvee_{1 \leq j \leq n} A_{ji})^c) \neq 0, 1 \leq i \leq n \]

\[\Rightarrow \bigvee_{1 \leq j \leq n} (A_{ji})^c \neq 0, 1 \leq i \leq n \]

\[\Rightarrow A_{ji}^c \neq 0, \text{for some } i, j = 1, 2, \ldots, n \]

Let \(i = p \) and \(j = p_1 \). Then \(A_{p_1}^c \neq 0 \).

Now

\[(\lambda \lor \bigvee_{1 \leq j \leq n} A_{jp_1})^\gamma = 0 \Rightarrow (\lambda \lor \bigvee_{1 \leq j \leq n} A_{jp_1}) A_{p_1}^c \neq 0 \]

\[\Rightarrow (\lambda A_{p_1}^c \lor (\bigvee_{1 \leq j \leq n} A_{jp_1}) A_{p_1}^c \neq 0 \]

\[\Rightarrow \bigvee_{1 \leq j \leq n} (A_{jp_1} A_{p_1}^c) \neq 0 \]

\[\Rightarrow A_{jp_1} A_{p_1}^c \neq 0, \text{for some } j = 1, 2, \ldots, n, (\text{say } p_2) \]

Hence \(A_{p_2} A_{p_1}^c \neq 0 \).

Proceeding as above, we get

\[A_{p_n} \cdots A_{p_2} A_{p_1}^c \neq 0, \text{where } 1 \leq p, p_1, p_2, \ldots, p_n \leq n. \]

But, by Theorem 2.4,

\[A_{p_n} \cdots A_{p_2} A_{p_1}^c = 0, \text{where } 1 \leq p, p_1, p_2, \ldots, p_n \leq n. \]

Therefore, we get a contradiction.

Hence \(\lambda^c = 0 \).

Next, we consider a given eigenvector \(\tilde{x} \) of a nilpotent matrix \(A \) in \(M_n(L) \) and discuss the properties of its eigenvalues. For \(a, b \in L \), the interval \([a, b] = \{x \in L \mid a \leq x \leq b\}\).

Theorem 3.6 [5] Let \(A \in M_n(L) \) and \(\tilde{x} \) be an eigenvector of \(A \). Then the set of all eigenvalues of \(\tilde{x} \) form a sublattice of \(L \) consisting of the interval \([\lambda^l, \lambda^u]\), where \(\lambda^l = e^T A \tilde{x} \) and \(\lambda^u = e^T \tilde{x} \rightarrow \lambda^l \).

A modification for the value of \(\lambda^l \) in Theorem 3.6 can be given as \(\lambda^l = \tilde{x}^T A \tilde{x} \), since

\[\lambda^l = \tilde{x}^T A \tilde{x} = \tilde{x}^T \lambda \tilde{x}, \text{for some } \lambda \in L \]

\[= \lambda \tilde{x}^T \tilde{x} = \lambda e^T \tilde{x} = e^T A \tilde{x} = e^T \tilde{x}. \]
Theorem 3.7 Let $A \in \mathcal{M}_n(L)$ be nilpotent and \bar{x} be an eigenvector of A. If \bar{x} is an ortho vector of A with $(\bar{e}^T \bar{x})^c = 0$, then \bar{x} has the unique eigenvalue 0.

Proof. We have by Theorem 2.4,
$$\lambda' = \bar{x}^T A \bar{x} = \sqrt{\sum_{i,j \in n} A_{ij} x_i x_j} = \sqrt{\sum_{i,j \in n} A_{ij} x_i x_j} = 0$$
and
$$\lambda'' = \bar{e}^T \bar{x} \rightarrow \lambda' = \bar{e}^T \bar{x} \rightarrow 0 = (\bar{e}^T \bar{x})^c = 0.$$
Hence by Theorem 3.6, \bar{x} has the unique eigenvalue 0.

Corollary 3.8 Let $A \in \mathcal{M}_n(L)$ be nilpotent and \bar{x} be an eigenvector of A. If \bar{x} is a stochastic vector of A, then \bar{x} has the unique eigenvalue 0.

Theorem 3.9 [7] If an eigenvector \bar{x} of $A \in \mathcal{M}_n(L)$ has the unique eigenvalue λ, then $0 \leq \lambda \leq \bar{e}^T A^n \bar{e}$.

Theorem 3.10 Let $A \in \mathcal{M}_n(L)$ be nilpotent. If an eigenvector \bar{x} of A has the unique eigenvalue λ, then $\lambda = 0$.

Proof. Since A is nilpotent, by Theorem 2.3, we have $A^n = 0_n$. Therefore by Theorem 3.9, $0 \leq \lambda \leq \bar{e}^T 0_n \bar{e} = 0$. Hence $\lambda = 0$.

Theorem 3.11 Let $A \in \mathcal{M}_n(L)$ be nilpotent and \bar{x} be an eigenvector of A with the associated eigenvalue $\lambda \neq 0$, then \bar{x} is an eigenvector of A with the associated eigenvalue 0.

Proof. Let \bar{x} be an eigenvector of A with the associated eigenvalue $\lambda \neq 0$, then $A \bar{x} = \lambda \bar{x}$. By Theorem 2.3, we have
$$0 = A^n \bar{x} = A^{n-1} A \bar{x} = A^{n-2} \lambda \bar{x} = \cdots = A \lambda \bar{x} = \lambda A \bar{x} = \lambda \lambda \bar{x} = \lambda \bar{x}.$$
Therefore, $A \bar{x} = \lambda \bar{x} = 0 = 0 \bar{x}$.
Hence the proof is complete.

4. NON-SINGULAR LATTICE MATRICES
In this section, we introduce the concept of non-singular matrices over a complete and completely distributive lattice with 1 and 0.

Definition 4.1 Let $A \in \mathcal{M}_n(L)$. If the sub lattice vector space
$$E_A(0) = \{ \bar{x} \in V_n(L) | A \bar{x} = 0 \}$$
of $V_n(L)$ contains a non-zero vector, then A is said to be singular. Otherwise, A is non-singular.

Theorem 4.2 Let $A \in \mathcal{M}_n(L)$. Then A is non-singular if and only if $(A^T \bar{e})^c = 0$.

Proof. We have A is non-singular $\iff E_A(0) = \{ \bar{0} \}$. By Theorem 3.2,
$$\bar{x}_g(0) = (0 \bar{e} \vee A^T \bar{e}) \rightarrow (0 A^T \bar{e} = 0 \iff A^T \bar{e} = 0 \iff (A^T \bar{e})^c = 0.$$
Theorem 4.3 Let \(A \in M_n(L) \). If \(A \) is invertible, then \(A \) is non-singular.

Proof. Assume that \(A \) is invertible. Then by Theorem 2.5, \(A^T \bar{e} = \bar{e} \). Therefore, \((A^T \bar{e})^c = \bar{e}^c = 0\). Hence by Theorem 4.2, \(A \) is non-singular.

However, the converse need not be true. The following example shows that if \(A \) is non-singular, then \(A \) need not be invertible.

Example 4.4 Consider the lattice \(L = \{0, f, g, h, i, 1\} \), whose diagrammatical representation is as follows:

![Diagram of lattice](image)

It is easy to see that \(L \) is a distributive lattice.

Let \(A = \begin{bmatrix} h & f \\ f & h \end{bmatrix} \in M_2(L) \). Then \((A^T \bar{e})^c = (h, h)^c = 0\). Hence by Theorem 4.2, \(A \) is non-singular. But by Theorem 2.5, we can see that \(A \) is not invertible.

Theorem 4.5 Every nilpotent lattice matrix is singular.

Proof. Let \(A \in M_n(L) \) be nilpotent. Since \(0^r = 1 \), by Theorem 3.5, \(E_A(0) \) contains a non-zero vector. Hence \(A \) is singular.

Theorem 4.6 Let \(A, B \in M_n(L) \) such that \(A \) is non-singular and \(B \) is invertible. Then we have

(a) \(A \) is non-singular if and only if \(AB \) is non-singular.

(b) \(A \) is non-singular if and only if \(BA \) is non-singular.

Proof. (a) First assume that \(A \) is non-singular. Then by Theorem 4.2, \((A^T \bar{e})^c = 0\).

Let \(C = AB \). Then

\[
((AB)^T \bar{e})^c = (C^T \bar{e})^c = ((\vee_{1 \leq k \leq n} C_{k1})^T, (\vee_{1 \leq k \leq n} C_{k2})^c, \cdots, (\vee_{1 \leq k \leq n} C_{kn})^c)^T.
\]
Consider

\[
\left(\bigvee_{i \leq k} \mathbb{S}_n C_{k_i} \right)^c \vee \left(\bigvee_{i \leq k} \mathbb{S}_n C_{k_2} \right)^c \vee \cdots \vee \left(\bigvee_{i \leq k} \mathbb{S}_n C_{k_n} \right)^c
\]

\[
= (\bigwedge_{i \leq k} \mathbb{S}_n C_{k_i})^c \vee (\bigwedge_{i \leq k} \mathbb{S}_n C_{k_2})^c \vee \cdots \vee (\bigwedge_{i \leq k} \mathbb{S}_n C_{k_n})^c \quad \text{(By Lemma 2.1(a))}
\]

\[
\leq \bigwedge_{i \leq k} \mathbb{S}_n (C_{k_1} \wedge C_{k_2} \wedge \cdots \wedge C_{k_n})^c \quad \text{(By Lemma 2.1(b))}
\]

\[
\leq \left(\bigvee_{i \leq k} C_{k_1} \wedge C_{k_2} \wedge \cdots \wedge C_{k_n} \right)^c \quad \text{(By Lemma 2.1(a))}
\]

Now

\[
C_{k_1} \wedge C_{k_2} \wedge \cdots \wedge C_{k_n}
\]

\[
= (\bigvee_{i \leq k} \mathbb{S}_n A_{k_1} B_{t_1}) \wedge (\bigvee_{i \leq k} \mathbb{S}_n A_{k_2} B_{t_2}) \wedge \cdots \wedge (\bigvee_{i \leq k} \mathbb{S}_n A_{k_n} B_{t_n})
\]

\[
= \bigvee_{i \leq k} (A_{k_1} A_{k_2} \cdots A_{k_n}) \wedge (B_{t_1} B_{t_2} \cdots B_{t_n})
\]

\[
= \bigvee_{\sigma \in \mathcal{S}_n} (A_{k_{\sigma(1)}} A_{k_{\sigma(2)}} \cdots A_{k_{\sigma(n)}}) \wedge (B_{\sigma(1)} B_{\sigma(2)} \cdots B_{\sigma(n)}) \quad \text{(By Theorem 2.5)}
\]

Therefore,

\[
\left(\bigvee_{i \leq k} \mathbb{S}_n C_{k_i} \right)^c \vee \left(\bigvee_{i \leq k} \mathbb{S}_n C_{k_2} \right)^c \vee \cdots \vee \left(\bigvee_{i \leq k} \mathbb{S}_n C_{k_n} \right)^c
\]

\[
\leq \left(\bigwedge_{i \leq k} \mathbb{S}_n (C_{k_1} \wedge C_{k_2} \wedge \cdots \wedge C_{k_n})^c \right)^c
\]

\[
\leq \left(\bigvee_{i \leq k} \mathbb{S}_n (A_{k_1} A_{k_2} \cdots A_{k_n}) \wedge (B_{\sigma(1)} B_{\sigma(2)} \cdots B_{\sigma(n)}) \right)^c
\]

\[
\leq (\bigvee_{\sigma \in \mathcal{S}_n} (A_{k_{\sigma(1)}} A_{k_{\sigma(2)}} \cdots A_{k_{\sigma(n)}})) \wedge (\bigvee_{\sigma \in \mathcal{S}_n} (B_{\sigma(1)} B_{\sigma(2)} \cdots B_{\sigma(n)}))^c
\]

\[
\leq (\bigvee_{\sigma \in \mathcal{S}_n} (A_{k_1} A_{k_2} \cdots A_{k_n}))^c \quad \text{(By Lemma 2.6)}
\]

\[
\leq (\bigvee_{i \leq k} \mathbb{S}_n A_{k_i})^c
\]

\[
\leq 0 \quad \text{(By Theorem 4.2 and Lemma 2.2)}.
\]

Thus \((\bigvee_{i \leq k} \mathbb{S}_n C_{k_j})^c = 0 \), for \(i = 1, 2, \cdots, n \). Therefore, \((AB)^T \varnothing = 0 \). Hence \(AB \) is non-singular.

Conversely assume that \(AB \) is non-singular. Then by first part \((AB)B^{-1} = A(BB^{-1}) = A \) is non-singular.
(b) First assume that A is non-singular. Then by Theorem 4.2, \((A^T \bar{e})^c = \bar{0}\).
We have by Theorem 2.5, \(((BA)^T \bar{e})^c = ((A^T B^T \bar{e})^c = (A^T (B^T \bar{e}))^c = (A^T \bar{e})^c = \bar{0}\) Hence BA is non-singular.
Conversely assume that BA is non-singular. Then by first part $B^{-1}(BA) = (B^{-1}B)A = A$ is non-singular.

Theorem 4.7 Let $A \in M_n(L)$. Then A is non-singular if and only if every lattice matrix similar to A is non-singular.

Proof. Let $B \in M_n(L)$ such that B is similar to A. Then there exists an invertible matrix $P \in M_n(L)$ such that $B = P^{-1}AP$. By Theorem 4.6, A is non-singular if and only if B is non-singular. Hence the proof is complete.

5. CONCLUSION

In this paper, we partially solved the open problem 'How to describe the λ-eigenspace of a given lattice matrix?', for a given nilpotent matrix over a complete and completely distributive lattice with 1 and 0. Also, we introduced the concept of non-singular lattice matrices. We hope this research would be able to throw light on at least a few new concepts in lattice matrices including Boolean and fuzzy matrices and its applications which will further enrich the subject in science and technology.

ACKNOWLEDGEMENT

The first author is thankful to the University Grants Commission, New Delhi, India for the award of Teacher Fellowship under the XII Plan period.

REFERENCES
