ψ^*α - irresolute maps, quasi ψ^*α -continuous maps and perfectly ψ^*α -continuous maps

N. Balamani
Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India.

A. Parvathi
Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women University, Coimbatore-641043 Tamil Nadu, India.

Abstract

Only a few class of generalized closed sets form a topology. The class of ψ^*α-closed set is one among them. In this paper we introduce new classes of maps called ψ^*α-irresolute maps, quasi ψ^*α-continuous maps and perfectly ψ^*α-continuous maps and study the relationships between the above maps and their properties and characterizations.

Keywords: ψg-closed sets, ψg-open sets, ψ^*α-closed sets and ψ^*α-open sets

1. INTRODUCTION

2. PRELIMINARIES

Throughout this paper (X, τ), (Y, σ) and (Z, η) represent non-empty topological space on which no separation axioms are assumed, unless otherwise mentioned. The interior
and closure of a subset A of a space (X, τ) are denoted by $\text{int}(A)$ and $\text{cl}(A)$ respectively.

Definition 2.1 A subset A of a topological space (X, τ) is called

1) generalized closed set (briefly g-closed)[8] if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

2) semi-generalized closed set (briefly sg-closed)[4] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is semi-open in (X, τ).

3) ψ-closed set [13] if $\text{scl}(A) \subseteq U$ whenever $A \subseteq U$ and U is sg-open in (X, τ).

4) ψg-closed set [12] if $\psi \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ).

5) $\psi^* \alpha$-closed set [1] if $\alpha \text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is ψg-open in (X, τ).

6) The $\psi^* \alpha$-closure of a set A is defined as $\psi^* \alpha \text{cl}(A) = \bigcap \{F \subseteq X: A \subseteq F$ and F is $\psi^* \alpha$-closed in $(X, \tau)\}$[1]

Definition 2.2 A topological space (X, τ) is said to be a

(i) $\psi^* \alpha T_c$-space if every $\psi^* \alpha$-closed subset of (X, τ) is closed in (X, τ).[2]

(ii) $\psi^* \alpha T_\alpha$-space if every $\psi^* \alpha$-closed subset of (X, τ) is α-closed in (X, τ).[2]

Definition 2.3 A map $f : (X, \tau) \to (Y, \sigma)$ is called

i. (i)Continuous [8] if $f^{-1}(V)$ is closed in (X, τ) for each closed set V of (Y, σ).

(ii) α-continuous [10] if $f^{-1}(V)$ is α-closed in (X, τ) for every closed set V of (Y, σ).

(iii) strongly continuous [7] if $f^{-1}(V)$ is both open and closed in (X, τ) for every subset V of (Y, σ).

(iv) perfectly continuous [11] if $f^{-1}(V)$ is both open and closed in (X, τ) for every closed subset V of (Y, σ).

(v) $\psi^* \alpha$-continuous[3] if $f^{-1}(V)$ is $\psi^* \alpha$-closed in (X, τ) for each closed set V of (Y, σ).

Definition 2.4 A map $f : (X, \tau) \to (Y, \sigma)$ is called

i. irresolute [5] if $f^{-1}(V)$ is semi closed in (X, τ) for every semi closed set V of (Y, σ).

ii. α- irresolute [10] if $f^{-1}(V)$ is α-closed in (X, τ) for every α-closed set V of (Y, σ).

iii. ψg- irresolute [12] if $f^{-1}(V)$ is ψg-closed in (X, τ) for every ψg-closed set V of (Y, σ).

Definition 2.5 A map $f : (X, \tau) \to (Y, \sigma)$ is called pre α-closed [6] if the image of each α-closed(resp. α-open) set in (X, τ) is α-closed(resp. α-open) in (Y, σ).
3. $\psi^*\alpha$ - IRRESOLUTE MAPS

Definition 3.1 A map $f : (X, \tau) \to (Y, \sigma)$ is called $\psi^*\alpha$ - irresolute if $f^{-1}(V)$ is $\psi^*\alpha$ - closed in (X, τ) for every $\psi^*\alpha$ - closed set V in (Y, σ).

Example 3.2 Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, X\}$ and $\sigma = \{\emptyset, \{a\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be the identity map. Then f is $\psi^*\alpha$ - irresolute.

Theorem 3.3 A map $f : (X, \tau) \to (Y, \sigma)$ is $\psi^*\alpha$ - irresolute if and only if $f^{-1}(V)$ is $\psi^*\alpha$ - open in (X, τ) for every $\psi^*\alpha$ - open set V in (Y, σ).

Proof: Let V be any $\psi^*\alpha$-open set in (Y, σ). Since f is $\psi^*\alpha$ - irresolute, $f^{-1}(V^c)$ is $\psi^*\alpha$-closed in (X, τ). Since $f^{-1}(V^c) = (f^{-1}(V))^c$, so $f^{-1}(V)$ is $\psi^*\alpha$-open in (X, τ).

Conversely, let V be $\psi^*\alpha$-closed in (Y, σ), then $f^{-1}(V^c)$ is $\psi^*\alpha$ -open in (X, τ). Since $f^{-1}(V^c) = (f^{-1}(V))^c$, $f^{-1}(V)$ is $\psi^*\alpha$-closed and hence f is $\psi^*\alpha$ - irresolute.

Theorem 3.4 If a map $f : (X, \tau) \to (Y, \sigma)$ is $\psi^*\alpha$ - irresolute, then it is $\psi^*\alpha$ - continuous but not conversely.

Proof: Let V be any closed set in (Y, σ). Since every closed set is $\psi^*\alpha$-closed [1] and f is $\psi^*\alpha$ - irresolute, $f^{-1}(V)$ is $\psi^*\alpha$-closed in (X, τ). Therefore f is $\psi^*\alpha$ - continuous.

Example 3.5 Let $X = Y = \{a, b, c\}$, $\tau = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\emptyset, \{a, b\}, Y\}$. Let $f : (X, \tau) \to (Y, \sigma)$ be a map defined by $f(a) = a$, $f(b) = c$, $f(c) = b$. Then f is $\psi^*\alpha$ - continuous but not $\psi^*\alpha$ - irresolute, since $\{a, c\}$ is $\psi^*\alpha$ - closed in (Y, σ) but $f^{-1}(\{a, c\}) = \{a, b\}$ is not $\psi^*\alpha$ - closed in (X, τ).

Remark 3.6 Every $\psi^*\alpha$-irresolute map is continuous and α-continuous, if (X, τ) is respectively an $\psi^*\alpha T_\alpha$ - space and an $\psi^*\alpha T_\alpha$ - space.

Theorem 3.7 Let (X, τ) be any topological space and (Y, σ) be an $\psi^*\alpha T_\alpha$ - space and $f : (X, \tau) \to (Y, \sigma)$ be a map. Then the following are equivalent.

(a) f is $\psi^*\alpha$ - irresolute
(b) f is $\psi^*\alpha$ - continuous

Proof: (a) \Rightarrow (b) Let V be a closed set in (Y, σ). Since every closed set is $\psi^*\alpha$-closed in (Y, σ). Since $f : (X, \tau) \to (Y, \sigma)$ is $\psi^*\alpha$ - irresolute, $f^{-1}(V)$ is $\psi^*\alpha$ - closed in (X, τ). Hence f is $\psi^*\alpha$ - continuous.

(b) \Rightarrow (a) Let V be a $\psi^*\alpha$ - closed set in (Y, σ). Since (Y, σ) is an $\psi^*\alpha T_\alpha$ - space, V is closed in (Y, σ) and $f : (X, \tau) \to (Y, \sigma)$ is $\psi^*\alpha$ - continuous, $f^{-1}(V)$ is $\psi^*\alpha$ - closed in (X, τ). Hence f is $\psi^*\alpha$ - irresolute.

Theorem 3.8 If a map $f : (X, \tau) \to (Y, \sigma)$ is $\psi^*\alpha$ - irresolute then for every subset A of (X, τ) such that $f(A)$ is $\psi^*\alpha$ - closed in (Y, σ), $f(\psi^*\alpha acl(A)) \subseteq \psi^*\alpha acl(f(A))$.
Proof: For every subset $A \subseteq X$, $\psi^*\alpha\text{cl}(f(A))$ is $\psi^*\alpha$-closed in (Y, σ). Since f is $\psi^*\alpha$-irresolute, $f^{-1}(\psi^*\alpha\text{cl}(f(A)))$ is $\psi^*\alpha$-closed in (X, τ). Now $A \subseteq f^{-1}(f(A)) \subseteq f^{-1}(\psi^*\alpha\text{cl}(f(A)))$. Therefore $\psi^*\alpha\text{cl}(A) \subseteq f^{-1}(\psi^*\alpha\text{cl}(f(A)))$ and hence $f((\psi^*\alpha\text{cl}(A)) \subseteq f(f^{-1}(\psi^*\alpha\text{cl}(f(A)))) \subseteq \psi^*\alpha\text{cl}(f(A))$.

Theorem 3.9 If a map $f : (X, \tau) \rightarrow (Y, \sigma)$ is $\psi^*\alpha$-irresolute then for every $\psi^*\alpha$-closed set $B \subseteq Y$, $\psi^*\alpha\text{cl}(f^{-1}(B)) \subseteq f^{-1}(\psi^*\alpha\text{cl}(B))$.

Proof: Let B be a $\psi^*\alpha$-closed set in (Y, σ). Then $\psi^*\alpha\text{cl}(B))$ is $\psi^*\alpha$-closed in (Y, σ). Since f is $\psi^*\alpha$-irresolute, $f^{-1}(\psi^*\alpha\text{cl}(B))$ is $\psi^*\alpha$-closed in (X, τ). Since $B \subseteq \psi^*\alpha\text{cl}(B)$, $f^{-1}(B) \subseteq f^{-1}(\psi^*\alpha\text{cl}(B))$, $\psi^*\alpha\text{cl}(f^{-1}(B)) \subseteq f^{-1}(\psi^*\alpha\text{cl}(B))$.

Theorem 3.10 Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a closed and surjective $\psi^*\alpha$-irresolute map. If (X, τ) is a $\psi^*\alpha\text{cl}$-space then (Y, σ) is a $\psi^*\alpha\text{cl}$-space.

Proof: Let V be any $\psi^*\alpha$-closed set in (Y, σ). Since f is a $\psi^*\alpha$-irresolute map, $f^{-1}(V)$ is $\psi^*\alpha$-closed in (X, τ). Since (X, τ) is a $\psi^*\alpha\text{cl}$-space, $f^{-1}(V)$ is closed in (X, τ). Since f is closed and surjective, $f(f^{-1}(V)) = V$ is closed in (Y, σ). Hence (Y, σ) is a $\psi^*\alpha\text{cl}$-space.

Definition 3.11 A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called pre $\psi^*\alpha$-open if the image of each $\psi^*\alpha$-closed (resp. $\psi^*\alpha$-open) set in (X, τ) is $\psi^*\alpha$-closed (resp. $\psi^*\alpha$-open) in (Y, σ).

Theorem 3.12 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is bijective, pre $\psi^*\alpha$-open and $\psi^*\alpha$-continuous from (X, τ) to an α-space (Y, σ), then f is $\psi^*\alpha$-irresolute.

Proof: Let A be a $\psi^*\alpha$-closed set in (Y, σ). Let U be any $\psi^*\alpha$-open set in (X, τ) such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$. Since A is $\psi^*\alpha$-closed and $f(U)$ is $\psi^*\alpha$-open in (Y, σ), $\text{cl}(A) \subseteq f(U)$ holds and $f^{-1}(\text{cl}(A)) \subseteq U$. Since f is $\psi^*\alpha$-continuous and (Y, σ) is an α-space, $f^{-1}(\text{cl}(A))$ is $\psi^*\alpha$-closed in (X, τ) and so $\text{cl}(f^{-1}(A)) \subseteq \text{cl}(f^{-1}(\text{cl}(A))) \subseteq U$. Therefore $f^{-1}(A)$ is $\psi^*\alpha$-closed in (X, τ) and hence f is $\psi^*\alpha$-irresolute.

Theorem 3.13 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is bijective, pre $\psi^*\alpha$-open and α-irresolute, then f is $\psi^*\alpha$-irresolute.

Proof: Let A be a $\psi^*\alpha$-closed set in (Y, σ). Let U be any $\psi^*\alpha$-open set in (X, τ) such that $f^{-1}(A) \subseteq U$. Then $A \subseteq f(U)$. Since A is $\psi^*\alpha$-closed and f is pre $\psi^*\alpha$-open, $\text{cl}(A) \subseteq f(U)$ holds and $f^{-1}(\text{cl}(A)) \subseteq U$. Since f is α-irresolute and $\text{cl}(A)$ is α-closed in (Y, σ), $f^{-1}(\text{cl}(A))$ is α-closed in (X, τ). Thus $\text{cl}(f^{-1}(A)) \subseteq \text{cl}(f^{-1}(\text{cl}(A))) \subseteq U$ and so $f^{-1}(A)$ is $\psi^*\alpha$-closed in (X, τ) and hence f is $\psi^*\alpha$-irresolute.

Theorem 3.14 If $f : (X, \tau) \rightarrow (Y, \sigma)$ is bijective, pre α-closed and $\psi^*\alpha$-irresolute, then $f^{-1} : (Y, \sigma) \rightarrow (X, \tau)$ is $\psi^*\alpha$-irresolute.
Proof: Let A be $\psi^*\alpha$-closed set in (X, τ). Let $(f^{-1})(A) = f(A) \subseteq U$, where U is ψg-open set in (Y, σ). Then $A \subseteq f^{-1}(U)$ holds. Since $f^{-1}(U)$ is ψg-open in (X, τ) and A is $\psi^*\alpha$-closed in (X, τ), $acl(A) \subseteq f^{-1}(U)$ and hence $f(acl(A)) \subseteq U$. Since f is pre α-closed and $acl(A)$ is α-closed in (X, τ), therefore $acl(f(acl(A))) \subseteq acl(f(A)) \subseteq U$. Thus $f(A)$ is $\psi^*\alpha$-closed in (Y, σ) and so f^{-1} is $\psi^*\alpha$-irresolute.

Remark 3.15 The following examples show that irresolute maps and $\psi^*\alpha$-irresolute maps are independent.

Example 3.16 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is irresolute but not $\psi^*\alpha$-irresolute, since for the $\psi^*\alpha$-closed set $\{a\}$ in (Y, σ), $f^{-1}(\{a\}) = \{a\}$ is not $\psi^*\alpha$-closed in (X, τ).

Example 3.17 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a, b\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is $\psi^*\alpha$-irresolute but not irresolute, since for the semi closed sets $\{b\}$ and $\{b, c\}$ in (Y, σ), $f^{-1}(\{b\}) = \{b\}$ and $f^{-1}(\{b, c\}) = \{b, c\}$ are not semi closed in (X, τ).

Remark 3.18 The following examples show that α-irresolute maps and $\psi^*\alpha$-irresolute maps are independent.

Example 3.19 Let $X = Y = \{a, b, c, d\}$, $\tau = \{\phi, \{d\}, \{a, b\}, \{a, b, d\}, X\}$ and $\sigma = \{\phi, \{a, b\}, \{a, b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by $f(a) = b$, $f(b) = a$, $f(c) = d$, $f(d) = c$. Then f is α-irresolute but not $\psi^*\alpha$-irresolute, since for the $\psi^*\alpha$-closed sets $\{a, d\}$, $\{b, d\}$, $\{a, c, d\}$ and $\{b, c, d\}$ in (Y, σ), $f^{-1}(\{a, d\}) = \{a, c\}$, $f^{-1}(\{b, d\}) = \{b, c\}$, $f^{-1}(\{a, c, d\}) = \{a, c, d\}$ and $f^{-1}(\{b, c, d\}) = \{b, c, d\}$ are not $\psi^*\alpha$-closed in (X, τ).

Example 3.20 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be the identity map. Then f is $\psi^*\alpha$-irresolute but not α-irresolute, since for the α-closed sets $\{a, c\}$ and $\{b, c\}$ in (Y, σ), $f^{-1}(\{a, c\}) = \{a, c\}$ and $f^{-1}(\{b, c\}) = \{b, c\}$ are not α-closed in (X, τ).

4. QUASI $\psi^*\alpha$-CONTINUOUS AND PERFECTLY $\psi^*\alpha$-CONTINUOUS

Definition 4.1 A map $f : (X, \tau) \rightarrow (Y, \sigma)$ is called quasi $\psi^*\alpha$-continuous if $f^{-1}(V)$ is closed in (X, τ) for each $\psi^*\alpha$-closed set V in (Y, σ).

Example 4.2 Let $X = Y = \{a, b, c\}$, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, X\}$ and $\sigma = \{\phi, \{a\}, \{b, c\}, Y\}$. Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by $f(a) = b$, $f(b) = a$, $f(c) = c$. Then f is quasi $\psi^*\alpha$-continuous.
Theorem 4.3 A map \(f : (X, \tau) \to (Y, \sigma) \) is quasi \(\psi^*\alpha \)-continuous if and only if the inverse image of every \(\psi^*\alpha \)-open set in \((Y, \sigma) \) is open in \((X, \tau) \).

Proof: Proof is similar to proposition 3.16[3]

Definition 4.4 A map \(f : (X, \tau) \to (Y, \sigma) \) is called **perfectly \(\psi^*\alpha \)-continuous** if \(f^{-1}(V) \) is clopen in \((X, \tau) \) for each \(\psi^*\alpha \)-closed set \(V \) in \((Y, \sigma) \).

Example 4.5 Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{b\}, \{c\}, Y\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be a map defined by \(f(a) = a, f(b) = c, f(c) = b \). Then \(f \) is perfectly \(\psi^*\alpha \)-continuous.

Theorem 4.6 A map \(f : (X, \tau) \to (Y, \sigma) \) is perfectly \(\psi^*\alpha \)-continuous if and only if the inverse image of every \(\psi^*\alpha \)-open set in \((Y, \sigma) \) is clopen in \((X, \tau) \).

Proof: Let \(U \) be any \(\psi^*\alpha \)-open set in \((Y, \sigma) \). Since \(f \) is perfectly \(\psi^*\alpha \)-continuous, \(f^{-1}(U) \) is clopen in \((X, \tau) \). Conversely, let \(V \) be any \(\psi^*\alpha \)-open set in \((Y, \sigma) \). Since \(f^{-1}(V) = (f^{-1}(V))^c \) is clopen in \((X, \tau) \). Thus \(f \) is perfectly \(\psi^*\alpha \)-continuous.

Theorem 4.7 Every perfectly \(\psi^*\alpha \)-continuous map \(f : (X, \tau) \to (Y, \sigma) \) is quasi \(\psi^*\alpha \)-continuous but not conversely.

Proof: Let \(V \) be a \(\psi^*\alpha \)-closed set in \((Y, \sigma) \). Since \(f \) is perfectly \(\psi^*\alpha \)-continuous, \(f^{-1}(V) \) is clopen in \((X, \tau) \). Hence \(f \) is quasi \(\psi^*\alpha \)-continuous.

Example 4.8 Let \(X = Y = \{a, b, c\} \), \(\tau = \{\emptyset, \{b\}, \{a, b\}, \{b, c\}, X\} \) and \(\sigma = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{b, c\}, Y\} \). Let \(f : (X, \tau) \to (Y, \sigma) \) be a map defined by \(f(a) = c, f(b) = a, f(c) = b \). Then \(f \) is quasi \(\psi^*\alpha \)-continuous but not perfectly \(\psi^*\alpha \)-continuous, since for the \(\psi^*\alpha \)-closed set \(\{b\} \) in \((Y, \sigma) \), \(f^{-1}(\{b\}) = \{c\} \) is closed but not open in \((X, \tau) \).

Theorem 4.9 Let \(f : (X, \tau) \to (Y, \sigma) \) be a continuous map. If \((Y, \sigma) \) is a \(\psi^*\alpha T_c \)-space then \(f \) is quasi \(\psi^*\alpha \)-continuous.

Proof: Let \(V \) be a \(\psi^*\alpha \)-closed set in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(V) \) is open in \((X, \tau) \). Hence \(f^{-1}(V) \) is clopen in \((X, \tau) \). Hence \(f \) is perfectly \(\psi^*\alpha \)-continuous.

Theorem 4.10 Let \(f : (X, \tau) \to (Y, \sigma) \) be a continuous map. If \((Y, \sigma) \) is a \(\psi^*\alpha T_c \)-space and a discrete space then \(f \) is perfectly \(\psi^*\alpha \)-continuous.

Proof: Let \(V \) be a \(\psi^*\alpha \)-closed set in \((Y, \sigma) \). Since \(f \) is continuous, \(f^{-1}(V) \) is closed in \((X, \tau) \). Since \((X, \tau) \) is discrete, \(f^{-1}(V) \) is open in \((X, \tau) \). Hence \(f^{-1}(V) \) is clopen in \((X, \tau) \). Hence \(f \) is perfectly \(\psi^*\alpha \)-continuous.

Theorem 4.11 Let \(f : (X, \tau) \to (Y, \sigma) \) be a continuous map. If \((Y, \sigma) \) is a \(\psi^*\alpha T_c \)-space and a discrete space then \(f \) is perfectly \(\psi^*\alpha \)-continuous.
Theorem 4.16

Let $f : (X, \tau) \rightarrow (Y, \sigma)$ be a map defined by $f(a) = c, f(b) = a, f(c) = b$. Then f is quasi $\psi'\alpha$-continuous if both f and g are quasi $\psi'\alpha$-continuous (resp. perfectly $\psi'\alpha$-continuous).
(vii) $\psi^* \alpha$ - continuous if f is $\psi^* \alpha$- irresolute and g is continuous (resp. α-continuous).

(viii) $\psi^* \alpha$ - irresolute if both f and g are $\psi^* \alpha$- irresolute.

(ix) $\psi^* \alpha$ - irresolute if g is quasi $\psi^* \alpha$- continuous (resp. perfectly $\psi^* \alpha$- continuous) and f is $\psi^* \alpha$ - continuous.

Proof:

(i) Let V be any $\psi^* \alpha$ - closed set in (Z, η). Since g is strongly continuous, $g^{-1}(V)$ is both open and closed in (Y, σ). Since every closed set is $\psi^* \alpha$ - closed, $g^{-1}(V)$ is $\psi^* \alpha$ - closed in (Y, σ). Since f is quasi $\psi^* \alpha$- continuous (resp. perfectly $\psi^* \alpha$- continuous), $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is closed (resp. clopen) in (X, τ). Hence $g \circ f$ is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$- continuous).

(ii) Let V be any $\psi^* \alpha$-closed set in (Z, η). Since g is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$ - continuous), $g^{-1}(V)$ is closed (resp. clopen) in (Y, σ). Since f is continuous, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is closed (resp. clopen) in (X, τ). Hence $g \circ f$ is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$- continuous).

(iii) Let V be any closed set in (Z, η). Since every closed set is $\psi^* \alpha$-closed, V is $\psi^* \alpha$-closed set in (Z, η). Since g is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$ - continuous), $g^{-1}(V)$ is closed (resp. clopen) in (Y, σ). Since f is quasi $\psi^* \alpha$- continuous (resp. perfectly $\psi^* \alpha$ - continuous), $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi^* \alpha$-closed in (X, τ). Hence $g \circ f$ is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$- continuous).

(iv) Since every closed set is $\psi^* \alpha$ - closed, the result follows.

(v) Let V be any $\psi^* \alpha$ - closed set in (Z, η). Then $g^{-1}(V)$ is closed (resp. clopen) in (Y, σ) as g is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$ - continuous). Since every closed set is $\psi^* \alpha$ - closed, $g^{-1}(V)$ is $\psi^* \alpha$ - closed in (Y, σ). Since f is quasi $\psi^* \alpha$- continuous (resp. perfectly $\psi^* \alpha$ - continuous), $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is closed (resp. clopen) in (X, τ) and hence $g \circ f$ is quasi $\psi^* \alpha$ - continuous (resp. perfectly $\psi^* \alpha$- continuous).

(vi) Let V be any closed set in (Z, η). Since g is $\psi^* \alpha$ - continuous, $g^{-1}(V)$ is $\psi^* \alpha$ - closed in (Y, σ). Since f is $\psi^* \alpha$ - irresolute, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi^* \alpha$ - closed in X. Hence $g \circ f$ is $\psi^* \alpha$ - continuous.

(vii) Let V be any closed set in (Z, η). Since g is continuous (resp. α - continuous), $g^{-1}(V)$ is closed (resp. α - closed) in (Y, σ). Since every closed (resp. α - closed) set is $\psi^* \alpha$ - closed, $g^{-1}(V)$ is $\psi^* \alpha$ - closed. Since f is $\psi^* \alpha$ - irresolute, $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$ is $\psi^* \alpha$ - closed in (X, τ). Therefore $g \circ f$ is $\psi^* \alpha$ - continuous.
(viii) Let \(V \) be any \(\psi^*\alpha \)-closed set in \((Z, \eta)\). Since \(g \) is \(\psi^*\alpha \)-irresolute, \(g\\undi g(V) \) is \(\psi^*\alpha \)-closed in \((Y, \sigma)\). Since \(f \) is \(\psi^*\alpha \)-irresolute, \((g\\undi f)\\undi g(V) = f\\undi (g\\undi g(V))\) is \(\psi^*\alpha \)-closed in \((X, \tau)\). Therefore \(g\\undi f \) is \(\psi^*\alpha \)-irresolute.

(ix) Let \(V \) be any \(\psi^*\alpha \)-closed set in \((Z, \eta)\). Then \(g\\undi g(V) \) is closed (resp. clopen) in \((Y, \sigma)\) as \(g \) is quasi \(\psi^*\alpha \)-continuous (resp. perfectly \(\psi^*\alpha \)-continuous). Since \(f \) is \(\psi^*\alpha \)-continuous, \((g\\undi f)\\undi g(V) = f\\undi (g\\undi g(V))\) is \(\psi^*\alpha \)-closed in \((X, \tau)\). Therefore \(g\\undi f \) is \(\psi^*\alpha \)-irresolute.

REFERENCES

