Stability of a Quadratic Functional Equation

S. Karthikeyan1, G. Ganapathy2, P. Palani3, M. Suresh4 and S. Jaikumar5

1Department of Mathematics, R.M.K. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India.

2,4Department of Mathematics, R.M.D. Engineering College, Kavaraipettai - 601 206, Tamil Nadu, India.

3,5Department of Mathematics, Sri Vidya Mandir Arts and Science College, Uthangarai- 636 902, Tamil Nadu, India.

Abstract

This paper deals with the Ulam-Hyers stability of a quadratic functional equation

\[q\left(\frac{x - y + z}{2}\right) = \frac{1}{2} (q(x - z) + q(x - y)) - \frac{1}{4} q(z - y) \]

using direct and fixed point methods in fuzzy normed space.

Keywords and phrase: Fuzzy normed space, Quadratic functional equation, Generalized Hyers-Ulam-Rassias stability, Fixed point method

2010 Mathematics Subject Classification: 39B52, 39B82, 26E50, 46S50

1. INTRODUCTION

One of the most interesting questions in the theory of functional analysis concerning the Ulam stability problem of functional equations is as follows: when is it true that a mapping satisfying a functional equation approximately must be close to an exact solution of the given functional equation?

The functional equation
\[f(x + y) + f(x - y) = 2f(x) + 2f(y) \] (1.1)

is said to be quadratic functional equation because the quadratic function \(f(x) = ax^2 \) is a solution of the functional equation (1.1).

This paper established the Ulam-Hyers stability of a quadratic functional equation
\[q \left(x - \frac{y + z}{2} \right) = \frac{1}{2} (q(x - z) + q(x - y)) - \frac{1}{4} q(z - y) \] (1.2)

using the direct and fixed point methods in fuzzy normed space.

2. PRELIMINARIES

A.K. Katsaras [17] defined a fuzzy norm on a vector space to construct a fuzzy vector topological structure on the space. Some mathematicians have defined fuzzy norms on a vector space from various points of view [11, 19, 35]. In particular, T. Bag and S.K. Samanta [6], following S.C. Cheng and J.N. Mordeson [8], gave an idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil and Michalek type [18]. They established a decomposition theorem of a fuzzy norm into a family of crisp norms and investigated some properties of fuzzy normed spaces [7].

We use the definition of fuzzy normed spaces given in [6] and [22, 23, 24, 25].

Definition 2.1. Let \(X \) be a real linear space. A function \(N : X \times \mathbb{R} \rightarrow [0, 1] \)(the so-called fuzzy subset) is said to be a fuzzy norm on \(X \) if for all \(x, y \in X \) and all \(s, t \in \mathbb{R} \),

(F1) \(N(x, c) = 0 \) for \(c \leq 0 \);
(F2) \(x = 0 \) if and only if \(N(x, c) = 1 \) for all \(c > 0 \);
(F3) \(N(cx, t) = N \left(x, \frac{t}{|c|} \right) \) if \(c \neq 0 \);
(F4) \(N(x + y, s + t) \geq \min \{ N(x, s), N(y, t) \} \);
(F5) $N(x, \cdot)$ is a non-decreasing function on \mathbb{R} and $\lim_{t \to \infty} N(x, t) = 1$;
(F6) for $x \neq 0$, $N(x, \cdot)$ is (upper semi) continuous on \mathbb{R}.

The pair (X, N) is called a fuzzy normed linear space. One may regard $N(X, t)$ as the truth-value of the statement the norm of x is less than or equal to the real number t.

Example 2.2. Let $(X, \| \cdot \|)$ be a normed linear space. Then

$$N(x, t) = \begin{cases} \frac{t}{t + \|x\|}, & t > 0, \ x \in X, \\ 0, & t \leq 0, \ x \in X \end{cases}$$

is a fuzzy norm on X.

Definition 2.3. Let (X, N) be a fuzzy normed linear space. Let x_n be a sequence in X. Then x_n is said to be convergent if there exists $x \in X$ such that $\lim_{n \to \infty} N(x_n - x, t) = 1$ for all $t > 0$. In that case, x is called the limit of the sequence x_n and we denote it by $N \lim_{n \to \infty} x_n = x$.

Definition 2.4. A sequence x_n in X is called Cauchy if for each $\epsilon > 0$ and each $t > 0$ there exists n_0 such that for all $n \geq n_0$ and all $p > 0$, we have $N(x_{n+p} - x_n, t) > 1 - \epsilon$.

Definition 2.5. Every convergent sequence in a fuzzy normed space is Cauchy. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

Definition 2.6. A mapping $f : X \to Y$ between fuzzy normed spaces X and Y is continuous at a point x_0 if for each sequence $\{x_n\}$ covering to x_0 in X, the sequence $f\{x_n\}$ converges to $f(x_0)$. If f is continuous at each point of $x_0 \in X$ then f is said to be continuous on X.

The stability of various functional equations in fuzzy normed spaces were investigated in [3, 4, 15, 21, 22, 23, 24, 25, 29, 32].

Hereafter throughout this paper, assume that $X, (Z, N')$ and (Y, N') are linear space, fuzzy normed space and fuzzy Banach space, respectively. We use the following abbreviation for a given function $f : X \to Y$ by

$$D_q(x, y, z) = q \left(x - y + \frac{z}{2} \right) - \frac{1}{2} (q(x - z) + q(x - y)) + \frac{1}{4} q(z - y)$$

for all $x, y, z \in X$.
3. FUZZY STABILITY RESULTS: DIRECT METHOD

Now, we investigate the generalized Ulam-Hyers stability of the functional equation (1.2) in fuzzy normed space using direct method.

Theorem 3.1. Let \(\varsigma \in \{-1, 0, 1\} \) be fixed and let \(\vartheta : X^3 \to Z \) be a mapping with \(0 < \left(\frac{d}{4} \right)^\varsigma < 1 \)

\[
N(\vartheta(2^\varsigma x, 2^\varsigma y, 2^\varsigma z), r) \geq N(\vartheta(x, y, z), r) \tag{3.1}
\]

for all \(x, y, z \in X \) and all \(d > 0 \) and

\[
\lim_{n \to \infty} N'(\vartheta(2^{c_n} x, 2^{c_n} y, 2^{c_n} z), 4^{c_n} r) = 1 \tag{3.2}
\]

for all \(x, y, z \in X \) and all \(r > 0 \). Suppose that a mapping \(q : X \to Y \) satisfies the inequality

\[
N(D_q(x, y, z), r) \geq N'(\vartheta(x, y, z), r) \tag{3.3}
\]

for all \(x, y, z \in X \) and all \(r > 0 \). Then the limit

\[
Q(z) = N - \lim_{n \to \infty} \frac{q(2^{nc} z)}{4^{nc}} \tag{3.4}
\]

exists for all \(z \in X \) and all \(r > 0 \) and the mapping \(Q : X \to Y \) is a unique quadratic mapping satisfying (1.2) and

\[
N(q(z) - Q(z), r) \geq N'(\vartheta(0, -z, z), r|4 - d|) \tag{3.5}
\]

for all \(z \in X \) and all \(r > 0 \).

Proof. First assume \(\varsigma = 1 \). Replacing \((x, y, z)\) by \((0, -z, z)\) in (3.3), we get

\[
N(q(2z) - 4q(z), r) \geq N'(\vartheta(0, -z, z), r) \tag{3.6}
\]

for all \(z \in X \) and all \(r > 0 \). Replacing \(z \) by \(2^n z \) in (3.6), we obtain

\[
N\left(\frac{q(2^{n+1} z)}{2^2} - q(2^n z), \frac{r}{2^2}\right) \geq N'(\vartheta(0, -2^n z, 2^n z), r) \tag{3.7}
\]

for all \(z \in X \) and all \(r > 0 \). Using (3.1), \((F3)\) in (3.7), we arrive

\[
N\left(\frac{q(2^{n+1} z)}{2^2} - q(2^n z), \frac{r}{4}\right) \geq N'(\vartheta(0, -z, z), \frac{r}{d^n}) \tag{3.8}
\]
Stability of a quadratic functional equation...

for all \(z \in X \) and all \(r > 0 \). It is easy to verify from (3.8), that
\[
N \left(\frac{q(n+1)^2}{2^{2(n+1)}} - \frac{q(n)^2}{2^{2n}} - \frac{r}{2^2} \right) \geq N' \left(\vartheta(0, -z, z) \right)
\]
(3.9)
holds for all \(z \in X \) and all \(r > 0 \). Replacing \(r \) by \(d^n r \) in (3.9), we get
\[
N \left(\frac{q(n+1)^2}{2^{2(n+1)}} - \frac{q(n)^2}{2^{2n}} - \frac{d^n r}{2^{2(n+1)}} \right) \geq N' \left(\vartheta(0, -z, z), r \right)
\]
for all \(z \in X \) and all \(r > 0 \). It is easy to see that
\[
\frac{q(n)^2}{2^{2n}} - q(z) = \sum_{i=0}^{n-1} \left[\frac{q(2i+1)^2}{2^{2(i+1)}} - \frac{q(2i)^2}{2^{2i}} \right]
\]
(3.11)
for all \(z \in X \). From equations (3.10) and (3.11), we have
\[
N \left(\frac{q(n)^2}{2^{2n}} - q(z) \right) \geq \min \left\{ \frac{q(2i+1)^2}{2^{2(i+1)}} - \frac{q(2i)^2}{2^{2i}} : i \in \mathbb{N} \right\}
\]
\[
\geq \min \left\{ N' \left(\vartheta(0, -z, z), r \right) \right\}
\]
(3.12)
for all \(z \in X \) and all \(r > 0 \). Replacing \(z \) by \(2^m z \) in (3.12) and using (3.1), (F3), we obtain
\[
N \left(\frac{q(2n+m)^2}{2^{2(n+m)}} - \frac{q(2m)^2}{2^{2m}} \right) \geq N' \left(\vartheta(0, -z, z), \frac{r}{d^m} \right)
\]
(3.13)
for all \(z \in X \) and all \(r > 0 \) and all \(m, n \geq 0 \). Replacing \(r \) by \(d^m r \) in (3.13), we get
\[
N \left(\frac{q(2n+m)^2}{2^{2(n+m)}} - \frac{q(2m)^2}{2^{2m}} \right) \geq N' \left(\vartheta(0, -z, z), \frac{d^m r}{2^{2i}} \right)
\]
(3.14)
for all \(z \in X \) and all \(r > 0 \) and all \(m, n \geq 0 \). Using (F3) in (3.14), we obtain
\[
N \left(\frac{q(2n+m)^2}{2^{2(n+m)}} - \frac{q(2m)^2}{2^{2m}} \right) \geq N' \left(\vartheta(0, -z, z), \sum_{i=m}^{m+n-1} \frac{r}{2^{2i}} \right)
\]
(3.15)
for all \(z \in X \) and all \(r > 0 \) and all \(m, n \geq 0 \). Since \(0 < d < 2^2 \) and \(\sum_{i=0}^{n} \left(\frac{d}{2^2} \right)^i < \infty \),
the cauchy criterion for convergence and (F5) implies that \(\left\{ \frac{q(2^n z)}{2^{2n}} \right\} \) is a Cauchy
sequence in \((Y, N)\). Since \((Y, N)\) is a fuzzy Banach space, this sequence converges to some point \(Q(z) \in Y\). So one can define the mapping \(Q : X \rightarrow Y\) by

\[
Q(z) = N - \lim_{n \to \infty} \frac{q(2^n z)}{2^n}
\]

for all \(z \in X\). Letting \(m = 0\) in (3.15), we get

\[
N \left(\frac{q(2^n z)}{2^n} - q(z), r \right) \geq N' \left(\vartheta(0, -z, z), \frac{r}{\sum_{i=0}^{n-1} d_i} \right)
\]

for all \(z \in X\) and all \(r > 0\). Letting \(n \to \infty\) in (3.16) and using (F6), we arrive

\[
N \left(q(z) - Q(z), r \right) \geq N' \left(\vartheta(0, -z, z), r(2^a - d) \right)
\]

for all \(z \in X\) and all \(r > 0\). To prove \(Q\) satisfies the functional equation (1.2), replacing \((x, y, z)\) by \((2^n x, 2^n y, 2^n z)\) in (3.3), respectively, we obtain

\[
N \left(\frac{1}{2^n} D_q(2^n x, 2^n y, 2^n z), r \right) \geq N' \left(\vartheta(2^n x, 2^n y, 2^n z), 2^{2n} r \right)
\]

for all \(r > 0\) and all \(x, y, z \in X\). Now,

\[
N \left(\vartheta(x - \frac{y + z}{2}) - \frac{1}{2} (Q(x - z) + Q(x - y)) + \frac{1}{4} Q(z - y), r \right)
\]

\[
\geq \min \left\{ N \left(\vartheta(x - \frac{y + z}{2}) - \frac{1}{2^{2n} q} \left(2^n \left(x - \frac{y + z}{2} \right) \right), \frac{r}{5} \right), \right.
\]

\[
N \left(-\frac{1}{2} Q(x - z) + \frac{1}{2^{2n} q} \left(2^n (x - z) \right), \frac{r}{5} \right), \right.
\]

\[
N \left(-\frac{1}{2} Q(x - y) + \frac{1}{2^{2n} q} \left(2^n (x - y) \right), \frac{r}{5} \right), \right.
\]

\[
N \left(\frac{1}{4} Q(z - y) - \frac{1}{2^{2n} q} \left(2^n (z - y) \right), \frac{r}{5} \right), \right.
\]

\[
N \left(\frac{1}{2^{2n} q} \left(2^n \left(x - \frac{y + z}{2} \right) \right) - \frac{1}{2^{2n} q} \left(2^n (x - z) \right), \frac{r}{5} \right), \right.
\]

\[
-\frac{1}{2^{2n} q} \left(2^n (x - y) \right) + \frac{1}{2^{2n} q} \left(2^n (z - y) \right), \frac{r}{5} \right) \right\}
\]

(3.18)

for all \(x, y, z \in X\) and all \(r > 0\). Using (3.17) and (F5) in (3.18), we arrive

\[
N \left(\vartheta(x - \frac{y + z}{2}) - \frac{1}{2} (Q(x - z) + Q(x - y)) + \frac{1}{4} Q(z - y), r \right)
\]

\[
\geq \min \left\{ 1, 1, 1, 1, N' \left(\vartheta(2^n x, 2^n y, 2^n z), 2^{2n} r \right) \right\}
\]

\[
\geq N' \left(\vartheta(2^n x, 2^n y, 2^n z), 2^{2n} r \right)
\]

(3.19)
Stability of a quadratic functional equation... 1173

for all \(x, y, z \in X\) and all \(r > 0\). Letting \(n \to \infty\) in (3.19) and using (3.2), we see that
\[
N \left(Q \left(x - \frac{y + z}{2} \right) - \frac{1}{2} (Q(x - z) + Q(x - y)) + \frac{1}{4} Q(z - y), r \right) = 1 \tag{3.20}
\]
for all \(x, y, z \in X\) and all \(r > 0\). Using \((F2)\) in the above inequality gives
\[
Q \left(x - \frac{y + z}{2} \right) = \frac{1}{2} (Q(x - z) + Q(x - y)) - \frac{1}{4} Q(z - y)
\]
for all \(x, y, z \in X\). Hence, \(Q\) satisfies the quadratic functional equation (1.2). In order to prove \(Q\) is unique, let \(Q'\) be another quadratic functional equation satisfying (1.2) and (3.5). Hence,
\[
N (Q(z) - Q'(z), r) = N \left(\frac{Q(2^n z)}{2^{2n}} - \frac{Q'(2^n z)}{2^{2n}}, r \right)
\geq \min \left\{ N \left(\frac{Q(2^n z)}{2^{2n}} - \frac{q(2^n z)}{2^{2n}}, \frac{r}{2} \right), N \left(\frac{q(2^n z)}{2^{2n}} - \frac{Q'(2^n z)}{2^{2n}}, \frac{r}{2} \right) \right\}
\geq N' \left(\theta(0, -2^n z, 2^n z), r 2^{2n}(2^2 - d) \right)
\geq N' \left(\theta(0, -z, z), r 2^{2n}(2^2 - d) \right)
\]
for all \(z \in X\) and all \(r > 0\). Since
\[
\lim_{n \to \infty} \frac{r 2^{2n}(2^2 - d)}{2d^n} = \infty,
\]
we obtain
\[
\lim_{n \to \infty} N' \left(\theta(0, -z, z), \frac{r 2^{2n}(2^2 - d)}{2d^n} \right) = 1.
\]
Thus
\[
N (Q(z) - Q'(z), r) = 1
\]
for all \(z \in X\) and all \(r > 0\), hence \(Q(z) = Q'(z)\). Therefore \(Q(z)\) is unique.

For \(\varsigma = -1\), we can prove the result by a similar method. This completes the proof of the theorem.

From Theorem 3.1, we obtain the following corollaries concerning the Ulam-Hyers stability for the functional equation (1.2).

Corollary 3.2. Suppose that a mapping \(q : X \to Y\) satisfies the inequality
\[
N (D_q(x, y, z), r)
\geq \begin{cases}
N' (\epsilon, r), \\
N' (\epsilon \{ ||x||^s + ||y||^s + ||z||^s \}, r), & s \neq 2; \\
N' (\epsilon \{ ||x||^s ||y||^s ||z||^s + (||x||^{3s} + ||y||^{3s} + ||z||^{3s}) \}, r), & s \neq \frac{2}{3};
\end{cases} \tag{3.21}
\]
for all $x, y, z \in X$ and all $r > 0$, where ϵ, s are constants. Then there exists a unique quadratic mapping $Q : X \to Y$ such that

$$N(q(z) - Q(z), r) \geq \begin{cases} N'(\epsilon, 3r), \\ N'(2\epsilon ||z||^s, r|2^s - 2^s|), \\ N'(2\epsilon ||z||^{3s}, r|2^s - 2^{3s}|) \end{cases}$$

(3.22)

for all $z \in X$ and all $r > 0$.

4. FUZZY STABILITY RESULTS: FIXED POINT METHOD

In this section, the authors present the generalized Ulam-Hyers stability of the functional equation (1.2) in fuzzy normed space using fixed point method. Now we will recall the fundamental results in fixed point theory.

Theorem 4.1. (Banach’s contraction principle) Let (X, d) be a complete metric space and consider a mapping $T : X \to X$ which is strictly contractive mapping, that is

(A1) $d(Tx, Ty) \leq Ld(x, y)$ for some (Lipschitz constant) $L < 1$. Then,

(i) The mapping T has one and only fixed point $x^* = T(x^*)$;

(ii) The fixed point for each given element x^* is globally attractive, that is

(A2) $\lim_{n \to \infty} T^n x = x^*$, for any starting point $x \in X$;

(iii) One has the following estimation inequalities:

(A3) $d(T^n x, x^*) \leq \frac{1}{1-L} d(T^n x, T^{n+1} x), \forall \ n \geq 0, \forall \ x \in X$;

(A4) $d(x, x^*) \leq \frac{1}{1-L} d(x, x^*), \forall \ x \in X$.

Theorem 4.2. [20](The alternative of fixed point) Suppose that for a complete generalized metric space (X, d) and a strictly contractive mapping $T : X \to X$ with Lipschitz constant L. Then, for each given element $x \in X$, either

(B1) $d(T^n x, T^{n+1} x) = \infty$ $\forall \ n \geq 0$,

or

(B2) there exists a natural number n_0 such that:

(i) $d(T^n x, T^{n+1} x) < \infty$ for all $n \geq n_0$;

(ii) The sequence $(T^n x)$ is convergent to a fixed point y^* of T

(iii) y^* is the unique fixed point of T in the set $Y = \{y \in X : d(T^{n_0} x, y) < \infty\}$;

(iv) $d(y^*, y) \leq \frac{1}{1-L} d(y, Ty)$ for all $y \in Y$.

In order to prove the stability results we define the following:
\[\delta_i = \begin{cases} 2 & \text{if } i = 1, \\ \frac{1}{2} & \text{if } i = 0 \end{cases} \]
and \(\Omega \) is the set such that
\[\Omega = \{ g : g(z) = 0 \}. \]

Theorem 4.3. Let \(q : X \to Y \) be a mapping for which there exist a mapping \(\vartheta : X^3 \to Z \) with the condition
\[\lim_{n \to \infty} N'(\vartheta(\mu_i^n x, \mu_i^n y, \mu_i^n z), \mu_i^{2n} r) = 1 \] (4.1)
for all \(x, y, z \in X, r > 0 \) and satisfying the functional inequality
\[N(D_q(x, y, z), r) \geq N'(\vartheta(x, y, z), r) \] (4.2)
for all \(x, y, z \in X, r > 0 \). If there exists \(L = L(i) > 0 \) such that the function
\[z \to \gamma(z) = \vartheta\left(0, -\frac{z}{2}, \frac{z}{2}\right), \]
has the property
\[N'(\frac{L \gamma(\mu_i z)}{\mu_i^i}, r) = N'(\gamma(z), r), \forall z \in X, r > 0. \] (4.3)
Then there exists unique quadratic mapping \(Q : X \to Y \) satisfying the functional equation (1.2) and
\[N(q(z) - Q(z), r) \geq N'(\frac{L^{1-i}}{1-L} \gamma(z), r) \forall z \in X, r > 0. \] (4.4)

Proof. Let \(d \) be a general metric on \(\Omega \), such that
\[d(g, h) = \inf \{ K \in (0, \infty) | N(g(z) - h(z), r) \geq N'(\gamma(z), r), z \in X, r > 0 \}. \]
It is easy to see that \((\Omega, d) \) is complete. Define \(T : \Omega \to \Omega \) by \(Tg(z) = \frac{1}{\delta_i^2} g(\delta_i z) \), for all \(z \in X \). For \(g, h \in \Omega \), we have \(d(g, h) \leq K \)
\[\Rightarrow \quad N(g(z) - h(z), r) \geq N'(K \gamma(z), r), \forall z \in X, r > 0 \]
\[\Rightarrow \quad N\left(\frac{g(\delta_i z)}{\delta_i^i} - \frac{h(\delta_i z)}{\delta_i^i}, r\right) \geq N'(K \gamma(\delta_i z), \delta_i^2 r), \forall z \in X, r > 0 \]
\[\Rightarrow \quad N(Tg(z) - Th(z), r) \geq N'(KL\gamma(z), r), \forall z \in X, r > 0 \]
\[\Rightarrow \quad d(Tg(z), Th(z)) \leq KL, \forall z \in X \]
\[\Rightarrow \quad d(Tg, Th) \leq Ld(g, h) \] (4.5)
for all \(g, h \in \Omega \). Therefore \(T \) is strictly contractive mapping on \(\Omega \) with Lipschitz constant \(L \). Replacing \((x, y, z)\) by \((0, -z, z)\) in (4.2), we get

\[
N\left(\frac{q(2z)}{2^2} - q(z), r\right) \geq N'(\vartheta(0, -z, z), 2^2r) \tag{4.6}
\]

for all \(z \in X, r > 0 \). Using (F3) in (4.6), we arrive

\[
N\left(\frac{q(2z)}{2^2} - q(z), r\right) \geq N'(\vartheta(0, -z, z), 2^2r) \tag{4.7}
\]

for all \(z \in X, r > 0 \) with the help of (4.3) when \(i = 0 \), it follows from (4.7), we get

\[
\Rightarrow \quad N\left(\frac{q(2z)}{2^2} - q(z), r\right) \geq N'(L\gamma(z), r) \tag{4.8}
\]

Replacing \(z \) by \(\frac{z}{2} \) in (4.6), we obtain

\[
N\left(q(z) - 2^2q\left(\frac{z}{2}\right), r\right) \geq N'(\vartheta\left(0, -\frac{z}{2}, \frac{z}{2}\right), r) \tag{4.9}
\]

for all \(z \in X, r > 0 \) with the help of (4.3) when \(i = 1 \), it follows from (4.9), we get

\[
\Rightarrow \quad N\left(q(z) - 2^2q\left(\frac{z}{2}\right), r\right) \geq N'(\gamma(z), r) \tag{4.10}
\]

Then from (4.8) and (4.10), we can conclude

\[
d(q, Tq) \leq L^1 = L^{1-i}. \tag{4.11}
\]

Now from the fixed point alternative in both cases, it follows that there exists a fixed point \(Q \) of \(T \) in \(\Omega \) such that

\[
Q(z) = N - \lim_{k \to \infty} \frac{q(2^k z)}{2^{2k}}, \quad \forall z \in X, r > 0. \tag{4.12}
\]

Replacing \((x, y, z)\) by \((\delta_i x, \delta_i y, \delta_i z)\) in (4.2), we arrive

\[
N\left(\frac{1}{\delta_i^{2n}}D_q(\delta_i x, \delta_i y, \delta_i z), r\right) \geq N'(\vartheta(\delta_i x, \delta_i y, \delta_i z), \delta_i^{2n}r) \tag{4.13}
\]

for all \(r > 0 \) and all \(x, y, z \in X \)

By proceeding the same procedure as in the Theorem 3.1, we can prove the mapping, \(Q : X \to Y \) satisfies the functional equation (1.2).
Stability of a quadratic functional equation...

By fixed point alternative, since Q is unique fixed point of T in the set
\[\Delta = \{ q \in \Omega | d(q, Q) < \infty \} , \]
therefore Q is a unique function such that
\[N(q(z) - Q(z), r) \geq N'(K\gamma(z), r) \] \hspace{1cm} (4.13)
for all $z \in X, r > 0$ and $K > 0$. Again using the fixed point alternative, we obtain
\begin{align*}
&d(q, Q) \leq \frac{1}{1-L}d(q, Tq) \\
&\Rightarrow \quad d(q, Q) \leq L \left(\frac{1}{1-L} \right) \\
&\Rightarrow \quad N(q(z) - Q(z), r) \geq N'(\frac{L^{1-i}}{1-L}\gamma(z), r) \hspace{1cm} (4.14)
\end{align*}
for all $z \in X$ and $r > 0$. This completes the proof of the theorem. \(\square \)

From Theorem 4.3, we obtain the following corollary concerning the stability for the functional equation (1.2).

Corollary 4.4. Suppose that a mapping $q : X \rightarrow Y$ satisfies the inequality
\[N(D_q(x, y, z), r) \]
\begin{align*}
&\geq \left\{ \begin{array}{ll}
N'(\epsilon, r), \\
N'(\epsilon \{ ||x||^s + ||y||^s + ||z||^s \}, r), & s \neq 2; \\
N'(\epsilon \{ ||x||^s ||y||^s ||z||^s + (||x||^{3s} + ||y||^{3s} + ||z||^{3s}) \}, r), & s \neq \frac{2}{3};
\end{array} \right. \hspace{1cm} (4.15)
\end{align*}
for all $x, y, z \in X$ and all $r > 0$, where ϵ, s are constants. Then there exists a unique quadratic mapping $Q : X \rightarrow Y$ such that
\[N(q(z) - Q(z), r) \geq \left\{ \begin{array}{ll}
N'(\epsilon, 3r), \\
N'(2\epsilon||z||^s, |2^2 - 2^s||r), \\
N'(2\epsilon||z||^{3s}, |2^2 - 2^{3s}||r).
\end{array} \right. \hspace{1cm} (4.16)
\]
for all $z \in X$ and all $r > 0$.

Proof. Setting
\[\vartheta(x, y, z) = \left\{ \begin{array}{ll}
\epsilon, \\
\epsilon \{ ||x||^s + ||y||^s + ||z||^s \}, \\
\epsilon \{ ||x||^s ||y||^s ||z||^s + ||x||^{3s} + ||y||^{3s} + ||z||^{3s} \}.
\end{array} \right. \]
for all \(x, y, z \in X\). Then,
\[
N'(\partial(\delta^n_i x, \delta^n_i y, \delta^n_i z), \delta^{2n}_i r)
\]
\[
= \begin{cases}
N'(\frac{\epsilon}{\delta^n_i}, r), \\
N'(\frac{\epsilon}{\delta^{2n}_i} (||\delta^n_i x||^s + ||\delta^n_i y||^s + ||\delta^n_i z||^s), r), \\
N'(\frac{\epsilon}{\delta^{2n}_i} \{||\delta^n_i x||^s ||\delta^n_i y||^s + ||\delta^n_i z||^s + ||\mu^n_i x||^{3s} + ||\mu^n_i y||^{3s} + ||\mu^n_i z||^{3s}\}, r),
\end{cases}
\]
\[
= \begin{cases}
\to 1 \text{ as } n \to \infty, \\
\to 1 \text{ as } n \to \infty, \\
\to 1 \text{ as } n \to \infty.
\end{cases}
\]
Thus, (4.1) holds. But we have \(\gamma(z) = \partial \left(0, \frac{z}{2}, \frac{z}{2}\right)\) has the property
\[
N'\left(L \frac{1}{\delta^n_i} \gamma(\delta_i z), r\right) \geq N'(\gamma(z), r) \quad \forall z \in X, r > 0.
\]
Hence
\[
N'(\gamma(z), r) = N'(\partial \left(0, \frac{z}{2}, \frac{z}{2}\right), r) = \begin{cases}
N'(\epsilon, r), \\
N'(\epsilon 2^{1-s} ||z||^s, r), \\
N'(\epsilon 2^{1-3s} ||z||^{3s}, r).
\end{cases}
\]
Now,
\[
N'\left(\frac{1}{\delta^n_i} \gamma(\delta_i z), r\right) = \begin{cases}
N'(\frac{\epsilon}{\delta^n_i}, r), \\
N'(\frac{\epsilon}{\delta^{2n}_i} \frac{2}{2} ||\delta_i z||^s, r), \\
N'(\frac{\epsilon}{\delta^{2n}_i} \frac{2}{2} ||\delta_i z||^{3s}, r),
\end{cases}
\]
\[
= \begin{cases}
N'\left(\delta_i^{-2} \gamma(x), r\right), \\
N'\left(\delta_i^{-s} \gamma(z), r\right), \\
N'\left(\delta_i^{3s-2} \gamma(z), r\right).
\end{cases}
\]
for all \(z \in X\) and all \(r > 0\). Hence the inequality (4.3) holds either, \(L = 2^{s-2}\) for \(s < 2\)
if \(i = 0\) and \(L = 2^{2-s}\) for \(s > 0\) if \(i = 1\).

Case 1: \(L = 2^{s-2}\) for \(s < 2\) if \(i = 0\)
\[
N(\rho(z) - Q(z), r) \geq N'\left(\frac{2^{s-2}}{1 - 2^{s-2}}, \gamma(z), r\right) = N'\left(2\epsilon ||z||^s, \frac{r}{2^{2-2s}}, r\right).
\]

Case 2: \(L = 2^{2-s}\) for \(s > 2\) if \(i = 1\)
\[
N(\rho(z) - Q(z), r) \geq N'\left(\frac{1}{1 - 2^{2-s}}, \gamma(z), r\right) = N'\left(2\epsilon ||z||^s, \frac{r}{2^{2-2}}, r\right).
\]
Similarly, the inequality (4.3) holds either, \(L = 2^{-2}\) if \(i = 0\) and \(L = 2^{2}\) if \(i = 1\) for
condition (i) and also the inequality (4.3) holds either \(L = 2^{3s-2}\) for \(s < \frac{2}{3}\) if \(i = 0\) and
\(L = 2^{2-3s}\) for \(s > \frac{2}{3}\) if \(i = 1\) for condition (iii). Hence the proof is complete.
REFERENCES

