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Abstract

In this paper, we consider the singularly perturbation of the Riccati
difference equation with two different delays. At first, we study the local
stability of the fixed points and its corresponding characteristic equation of
the linearized system. At second, we show that there is Hopf bifurcation
with restricted condition for occurrence. Then we get out the discretized
system by applying the method of steps. Local stability and bifurcation
analysis of the discretized system. We compare the results with the results
of the Riccati differential equation with two different delays. Finally,
numerical simulations including bifurcation diagram, Lyapunov exponent
and phase portraits are carried out to confirm the analytical findings .
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Bifurcation.

1. INTRODUCTION

The ordinary differential equation involving at least one delay term and the highest
derivative is multiplied by a small parameter namely singularly perturbed delay
differential equation [1, 2, 3, 4, 10, 8, 6]. In recent decades, the analysis and design
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theories for singularly perturbed systems with time-delay have been of considerable
concern. For example, Fridman has considered the effect of small delay on stability of
the singularly perturbed systems [7, 12, 15]. Two approaches to the asymptotic analysis
and solution of this problem are proposed. In the first approach, an asymptotic solution
of the singularly-perturbed system of functional-differential equations of Riccati type,
associated with the original problem by the sufficient conditions of the existence of its
solution, is constructed[13, 14]. Based on this asymptotic solution, conditions for the
existence of a solution of the original problem, independent of the small parameter of
singular perturbations, are derived [5, 16].
In this paper, we will discuss the dynamic behavior of the singularly perturbed Riccati
differential equation with two different delays given in the form

ε
dx

dt
= −x(t) + 1− ρx(t− 1)x(t− 2), t ∈ [0, T ],

x(t) = x0, t ≤ 0.
(1)

1.1. Stability and bifurcation

Consider the problem (1). Solving the equation ([11])

−x+ 1− ρx2 = 0,

we obtain the two fixed points,

(x1,2)
∗ = (

−1
2ρ

)(1±
√
1 + 4ρ).

At the neighborhood of (x1)∗ the linearized equation is

ε
dy

dt
= −y(t) + 1

2
(1 +

√
1 + 4ρ)y(t− 1) +

1

2
(1 +

√
1 + 4ρ)y(t− 2) (2)

where
y(t) = y(t)− ((

−1
2ρ

)(1 +
√

1 + 4ρ)).

Then the characteristic equation is

λ+
1

ε
− 1

2ε
(1 +

√
1 + 4ρ)e−λ − 1

2ε
(1 +

√
1 + 4ρ)e−2λ = 0. (3)

Theorem 1. When the parameter ρ passes through the critical value ρ = ρ∗ =
1
4
[(

1+ε2ω2
0−(cos(ω0)+εω0 sin(ω0)

cos(ω0)+εω0 sin(ω0)
)2 − 1], ω0 = tan(2ω0)(1 − s cos(ω0)) + s sin(ω0), there is

Hopf bifurcation from the equilibrium (x1)
∗ = (−1

2ρ
)(1 +

√
1 + 4ρ) to a periodic orbit.
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Proof. Let λ = iω0, ω0 ∈ R+ be a for (3) for ρ = ρ∗, then we obtain

iεω0 + 1− 1

2
(1 +

√
1 + 4ρ∗)e

−iω0 − 1

2
(1 +

√
1 + 4ρ∗)e

−2iω0 = 0,

then, 1− 1

2
(1 +

√
1 + 4ρ∗) cos(ω0)−

1

2
(1 +

√
1 + 4ρ∗) cos(2ω0) = 0,

εω0 −
1

2
(1 +

√
1 + 4ρ∗) sin(ω0)−

1

2
(1 +

√
1 + 4ρ∗) sin(2ω0) = 0,

let
1

2
(1 +

√
1 + 4ρ∗) = s,

then, 1− s cos(ω0)− s cos(2ω0) = 0, (4)

εω0 − s sin(ω0)− s sin(2ω0) = 0. (5)

By solving equation (4) and equation (5) We get,

s =
1 + ε2ω2

0

2(cos(ω0) + εω0 sin(ω0))
.

Then, ρ∗ =
1

4
[(
1 + ε2ω2

0 − (cos(ω0) + εω0 sin(ω0)

cos(ω0) + εω0 sin(ω0)
)2 − 1],

to get ω0,

εω0 − s sin(ω0)

1− s cos(ω0)
=

sin(2ω0)

cos(2ω0)
,

ω0 =
1

ε
[tan(2ω0)(1− s cos(ω0)) + s sin(ω0)].

Now, we are left with the condition d(Re(λ))
dρ

|ρ 6= 0. To show that this condition is
satisfied,
let λ = k(ρ) + iω(ρ) and using equation (3),
we get,

ε(k + iω) + 1− 1

2
(1 +

√
1 + 4ρ)e−k−iω − 1

2
(1 +

√
1 + 4ρ)e−2(k+iω) = 0,
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then, we have,

εk + 1− 1

2
(1 +

√
1 + 4ρ)e−k cos(ω)− 1

2
(1 +

√
1 + 4ρ)e−2k cos(2ω) = 0, (6)

εω +
1

2
(1 +

√
1 + 4ρ)e−k sin(ω) +

1

2
(1 +

√
1 + 4ρ)e−2k sin(2ω) = 0. (7)

differentiate equation(6) and equation (7) with respect to ρ, we get,

ε
dk

dρ
+

1

2
e−k cos(ω)

dk

dρ
+

1

2
e−k sin(ω)

dω

dρ

− 1

2
e−k cos(ω)

4

2
√
1 + 4ρ

+
1

2
(
√
1 + 4ρ)e−k cos(ω)

dk

dρ

+
1

2
(
√

1 + 4ρ)e−k sin(ω)
dω

dρ
+ e−2k cos(2ω)

dk

dρ

+ e−2k sin(2ω)
dω

dρ
+ (
√

1 + 4ρ)e−2k cos(2ω)
dk

dρ

+ (
√

1 + 4ρ)e−2k sin(2ω)
dω

dρ
− 1

2
e−2k

4

2
√
1 + 4ρ

cos(2ω) = 0,

=
dk

dρ
(ε+

1

2
e−k cos(ω) +

1

2
(
√

1 + 4ρ)e−k cos(ω) + e−2k cos(2ω) + (
√

1 + 4ρ)e−2k cos(2ω))

+
dω

dρ
(
1

2
e−k sin(ω) +

1

2
(
√

1 + 4ρ)e−k sin(ω) + e−2k sin(2ω) + (
√

1 + 4ρ)e−2k sin(2ω))

− e−k cos(ω)√
1 + 4ρ

− e−2k cos(2ω)√
1 + 4ρ

= 0.

(8)

ε
dω

dρ
− 1

2
e−k sin(ω)

dk

dρ
+

1

2
e−k cos(ω)

dω

dρ

+
1

2
e−k sin(ω)

4

2
√
1 + 4ρ

− 1

2
(
√
1 + 4ρ)e−k sin(ω)

dk

dρ

+
1

2
(
√

1 + 4ρ)e−k cos(ω)
dω

dρ
− e−2k sin(2ω)dk

dρ

+ e−2k cos(2ω)
dω

dρ
− (
√
1 + 4ρ)e−2k sin(2ω)

dk

dρ

+ (
√

1 + 4ρ)e−2k cos(2ω)
dω

dρ
+

1

2
e−2k

4

2
√
1 + 4ρ

sin(2ω) = 0,
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=
dk

dρ
(−1

2
e−k sin(ω)− 1

2
(
√

1 + 4ρ)e−k sin(ω)

− e−2k sin(2ω)− (
√

1 + 4ρ)e−2k cos(2ω))

+
dω

dρ
(ε+

1

2
e−k cos(ω) +

1

2
(
√
1 + 4ρ)e−k cos(ω)

+ e−2k cos(2ω) + (
√

1 + 4ρ)e−2k cos(2ω))

+
e−k sin(ω)√

1 + 4ρ
+
e−2k sin(2ω)√

1 + 4ρ
= 0.

(9)

Solving equation (8) and equation (9) for dk
dρ

, we obtain

d(Re(λ))

dρ
|ρ=ρ∗=

dk

dρ
|k=0,ω=ω0,ρ=ρ∗ 6= 0

1.2. The discretized system

By using the method of steps, we can get out the discrete-time version of The system
(1) by the following steps, the system can be written as ([12])

ε
dx

dt
= −x(t) + 1− ρx(t− 1)y(t− 1),

y(t) = x(t− 1),

x(t) = x0, t ≤ 0.

(10)

The discretized model of the system (1) is obtained via the method of steps as follows
let t ∈ (0, 1], then,

y1(t) = x0,

x1(t) = x0e
−t
ε +

1

ε

∫ t

0

e
s−t
ε (1− ρx(s− 1)y(s− 1))ds,

x1(t) = x0e
−t
ε + (1− ρx0y1)(1− e

−t
ε ).

let t −→ 1, then,
y1(1) = x0,

x1(1) = x0e
−1
ε + (1− ρx0y1)(1− e

−1
ε ).
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For t ∈ (1, 2], take x(t) = x1 = x1(1), y1(t) = y1(1) = y1, when t ≤ 1,

then, y2(t) = x1(t),

x2(t) = x1e
−(t−1)

ε +
1

ε

∫ t

1

e
s−t
ε (1− ρx1y1)ds,

= x1e
−(t−1
ε

) + (1− ρx1y1)(1− e
−(t−1)

ε ).

Let t −→ 2, then,
y2(1) = x1,

x2(2) = x1(1)e
−1
ε + (1− ρx1(1)y1(1))(1− e

−1
ε ).

For t ∈ (2, 3], take x(t) = x2 = x2(2), y2(t) = y2(2) = y2, when t ≤ 2,

then, y3(t) = x2(t),

x3(t) = x1e
−(t−1)

ε +
1

ε

∫ t

2

e
s−t
ε (1− ρx2y2)ds,

= x2e
−(t−2)

ε + (1− ρx1y2)(1− e
−(t−2)

ε ).

Let t −→ 3, then,
y3(3) = x2,

x3(3) = x2e
−1
ε + (1− ρx2y2(1))(1− e

−1
ε ).

Repeating the operation, we get that the solution of the system (10) is given by

yn+1(t) = xn(t),

xn+1(t) = xne
−(t−n)

ε + (1− ρxnyn)(1− e
−(t−n)

ε ).

Let t −→ n+ 1, then,

xn+1 = xne
−1
ε + (1− ρxnyn)(1− e

−1
ε ),

yn = xn.
(11)
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1.3. Local stability and bifurcation analysis of the discretized system

The system (11) has two fixed points (x∗1,2, y
∗
1,2) = (−1±

√
1+4ρ

2ρ
, −1±

√
1+4ρ

2ρ
).

Next, we calculate the Jacobian matrix at the first fixed point (x∗1, y
∗
1)

J(x∗, y∗) =

(
e

−1
ε − ρy∗(1− e−1

ε ) −ρx∗(1− e−1
ε )

1 0

)
.

Let us rename −ρx∗(1− e−1
ε ) = z , and e

−1
ε − ρy∗(1− e−1

ε ) = m.

The characteristic equation
λ2 −mλ− z = 0,

has two roots

λ1,2 =
m±

√
m2 + 4z

2
.

Lemma 2. [9] Let F (λ) = λ2 + Pλ + Q. Suppose that F (1) > 0, and F (λ) = 0 has
two roots λ1 and λ2. Then

1. F (−1) > 0 and Q < 1 if and only if |λ1| < 1 and |λ2| < 1 ;

2. F (−1) < 0 if and only if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1);

3. F (−1) > 0 and Q > 1 if and only if |λ1| > 1 and |λ2| > 1;

4. F (−1) = 0 and P 6= 0, 2 if and only if λ1 = −1 and |λ2| 6= 1;

5. P 2 − 4Q < 0 and Q = 1 if and only if λ1 and λ2 are complex and |λ1,2| = 1.

By applying (2), we get

F (λ) = λ2 −mλ− z = λ2 + Pλ+Q = 0. (12)

Then

P = −m,
Q = −z.
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We have

F (1) = 1−m− z > 0,

we should have 1 > m+ z.
(13)

By applying condition 1 of lemma (2)

Where, F (−1) = 1 +m− z > 0,

1 +m > z, (14)

Q < 1 V −z < 1, z > −1.

Where, −ρx∗(1− e
−1
ε ) = z,

substitute by the value of x∗, we get,

−ρ[−1 +
√
1 + 4ρ

2ρ
](1− e

−1
ε )

= (
1−
√
1 + 4ρ

2
)(1− e

−1
ε ) > −1. (15)

If (14) and (15) satisfied, then (x∗1, y
∗
1) is stable.

The seconed fixed point is the same way of first fixed point.

2. NUMERICAL SIMULATIONS

We confirm all the previous analytical findings with the help of numerical simulations
performed via Matlab. In all numerical simulations the initial condition is taken as
(x0, y0) = (0.4, 0.4) and the Bif. parameter is taken as ρ.
We have the following examples
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Figure 1: Bif.D. and the graph of Lyp.Ex. of system (11) as ε −→ 1 .

(a) (b)

Figure 2: Hopf Bif.D. and the graph of Lyp.Ex. of system (11) as ε −→ 0 .
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(a) ε = 0.1. (b) ε = 0.1.

(c) ε = 0.95. (d) ε = 0.95.

(e) ε = 0.9. (f) ε = 0.9.

Figure 3: Hopf Bif.D. and the graph of Lyp.Ex. of system (11) for different values of ε
.
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(a) (b)

(c) (d)

(e) (f)
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(g) (h)

(i) (j)

(k)

Figure 4: Phase portraits of system (11) for different ρ .

3. CONCLUSION

In this paper, we studied the dynamics of the S.P. Riccati difference equation with
two different delays. First of all, we obtained F.P. and discussed their local stability
by analyzing the corresponding characteristic equations of the linearized equations.
secondly, we show that the equation exhibits Hopf Bif. and we have reached explicit
conditions for its occurrence. Then, the method of steps is applied to obtain a discrete
analogue of the considered system. We investigated local stability conditions of the F.P.
of the discretized system. It is illustrated that the S.P. Riccati DDE with two delays
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behaves as the Riccati DDE with two delays. Finally, numerical simulations including
Lyp. Ex., Bif.D. and ph.P.s carried out to confirm the theoretical analysis obtained and
to illustrate more complex dynamics of the system.
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