Existence and Stability Results for Fractional Volterra-Fredholm Integro-Dierential Equation with Mixed Conditions

Ismael Y.A. Alasadi¹ and Ahmed A. Hamoud²§

¹Department of Applied Mathematics, Faculty of Mathematical Sciences, University of Tabriz, Iran. and Department of Mathematics, Thi Qar Directorates of Education, Ministry of Education, Iraq.

²Department of Mathematics, Taiz University, Taiz, Yemen.

Abstract

In this paper, we establish some new conditions for the existence and uniqueness of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm integro-differential equations with mixed conditions. The desired results are proved by using Banach and Krasnoselskii's fixed point theorems. In addition, the Ulam-Hyers stability and Ulam-Hyers-Rassias stability for solutions of the given problem are also discussed.

Keywords: Fractional Volterra-Fredholm integro-differential equation, Caputo sense, Generalized Ulam stability, Fixed point method.

AMS Subject Classification: 45J05, 34A12, 34A08, 34D20.

1. INTRODUCTION

Recently it have been proved that the differential models involving nonlocal derivatives of fractional order arise in many engineering and scientific disciplines as the mathematical modeling of systems and processes in many fields, for instance, physics, chemistry, aerodynamics, electrodynamics of complex medium, polymer rheology, and so forth [2, 3, 4, 5, 6, 14, 17, 28].

For instance, fractional differential equations are an excellent tool to describe hereditary properties of viscoelastic materials and, in general, to simulate the dynamics of many processes on anomalous media. Theory of fractional differential equations has been extensively studied by several authors as Balachandran and Trujillo [9], Baleanu [1], Kilbas et al. [17], Lakshmikantham and Rao [18], and also see [10, 11].

The stability theory for functional equations started with a problem related to the stability of group homomorphisms that was considered by Ulam in 1940 [26]. Afterwards, Rassias [19] introduced new ideas e.g., by proposing to consider unbounded right-hand sides in the involved inequalities, depending on certain functions, introducing therefore the so-called Hyers-Ulam-Rassias stability. Equation stability is an important subject in the applications. Many authors investigated different types of stability of fractional integro-differential equations, for instance, see [20, 21, 22, 23, 27].

Subsequently several authors have investigated the problem for different types of nonlinear differential equations and integro-differential equations including functional differential equations in Banach spaces. Very recently N'Guer'ekata [24] discussed the existence of solutions of fractional abstract differential equations with nonlocal initial condition. The nonlocal Cauchy problem is discussed by authors in [2] using the fixed-point concepts. Tidke [25] studied the fractional mixed Volterra-Fredholm integro-differential equations with nonlocal conditions using Leray-Schauder Theorem.

Baleanu et al. [1], by using fixed-point methods, studied the existence and uniqueness of a solution for the nonlinear fractional boundary value problem given by

$$^{c}D^{\nu}u(t) = A(t, u(t)), \ t \in J = [0, T], \ 0 < \nu < 1,$$

$$u(0) = u(T), u(0) = \beta_{1}u(\eta), u(T) = \beta_{2}u(\eta), \ 0 < \eta < T, \ 0 < \beta_{1} < \beta_{2} < 1.$$

Devi and Sreedhar [7] used the monotone iterative technique to the Caputo fractional integro-differential equation of the type

$$^{c}D^{\nu}u(t) = A(t, u(t), I^{\nu}u(t)), \ t \in J = [0, T], \ 0 < \nu < 1,$$

 $u(0) = u_{0}.$

Wang and Zhou [27] studied the Ulam stability and data dependence for a Caputo fractional differential given by

$$^{c}D^{\nu}u(t) = A(t, u(t)), \ t \in J = [a, +\infty), \ 0 < \nu < 1,$$

 $u(a) = \xi.$

Dong et al. [8] established the existence and uniqueness of solutions via Banach and

Schaude fixed point techniques for the problem given by

$$^{c}D_{0+}^{\nu}u(t) = A(t, u(t)) + \int_{0}^{t} B(t, s, u(s))ds, \ t \in J = [0, T], \ 0 < \nu \le 1,$$

 $u(0) = \xi,$

Motivated by the above works, we will study a more general problem of Caputo fractional integro-differential equations wich called Caputo fractional Volterra-Fredholm integro-differential equation with mixed conditions in Banach Space:

$${}^{c}D_{0+}^{\nu+\beta}u(t) = A(t, u(t)) + \int_{0}^{t} B(t, s, u(s))ds + \int_{0}^{1} C(t, s, u(s))ds + {}^{c}D_{0+}^{\nu}F(t, u(t)), \quad (1)$$

$$u(0) = u_{0}, \quad u'(0) = b \int_{0}^{\eta} u(s)ds, \quad b \in \mathbb{R}, \quad 0 < \eta < 1, \quad (2)$$

where $^cD^{\nu+\beta}_{0+}$ is the Caputo fractional derivative of order $\nu+\beta,\ 1<\nu+\beta\leq 2,\ t\in J:=[0,1],\ A,F:J\times X\longrightarrow X,$ and $B,C:J\times J\times X\longrightarrow X$ are continuous functions satisfying some conditions which will be stated later. $^cD^{\nu}_{0+}$ denotes the Caputo fractional derivative of order ν .

The paper is organized as follows: Sect. 2, we present some notations, definitions and results which are used throughout this paper. In Sect. 3, we use the fixed point techniques to prove the existence and uniqueness results for the problem (1)-(2). In Sect. 4, we establish the Hyers-Ulam stability of the problem (1)-(2) be also discussed. Concluding remarks close the paper in Sect. 5.

2. PRELIMINARIES

Here, we present some notations, definitions and results which are used throughout this paper, see [2, 12, 13, 14, 15, 16, 17, 18].

Let X, we denote the Banach space equipped with the norm $\|.\|$ and C(J,X), $C^n(J,X)$ denotes respectively the Banach spaces of all continuous bounded functions and n times continuously differentiable functions on J. In addition, we define the norm

$$||u||_C = \max_{t \in J} |u(t)|$$

for any continuous function $u: J \longrightarrow X$.

Definition 2.1. [28] The left sided Riemann-Liouville fractional integral of order $\nu > 0$ of a function $u: J \longrightarrow X$ is defined as

$$J_{0+}^{\nu}u(t) = \frac{1}{\Gamma(\nu)} \int_{0}^{t} (t-s)^{\nu-1} u(s) ds, t \in J,$$

where Γ denotes the Gamma function.

Definition 2.2. [17] The left sided fractional derivative of $u \in C^n(J, X)$ in the Caputo sense is defined by

$${}^{c}D_{0+}^{\nu}u(t) = J_{0+}^{m-\nu}D^{m}u(t)$$

$$= \begin{cases} \frac{1}{\Gamma(m-\nu)} \int_{0}^{t} (t-s)^{m-\nu-1} \frac{\partial^{m}u(s)}{\partial s^{m}} ds, & m-1 < \nu < m, \\ \frac{\partial^{m}u(t)}{\partial t^{m}}, & \nu = m, & m \in N, \end{cases}$$

$$(3)$$

Hence, we have

1.
$$J_{0+}^{\nu} J^{\nu} u = J_{0+}^{\nu+\nu} u, \quad \nu, \nu > 0.$$

2.
$$J_{0+}^{\nu}u^{\beta} = \frac{\Gamma(\beta+1)}{\Gamma(\beta+\nu+1)}u^{\beta+\nu}$$
,

3.
$$D_{0+}^{\nu}u^{\beta} = \frac{\Gamma(\beta+1)}{\Gamma(\beta-\nu+1)}u^{\beta-\nu}, \quad \nu > 0, \quad \beta > -1.$$

4.
$$J_{0+}^{\nu}D_{0+}^{\nu}u(t) = u(t) - u(a), \ 0 < \nu < 1.$$

5.
$$J_{0+}^{\nu}D_{0+}^{\nu}u(t) = u(t) - \sum_{k=0}^{m-1} u^{(k)}(0^+) \frac{(t-a)^k}{k!}, \quad t > 0.$$

Definition 2.3. [28] The Riemann Liouville fractional derivative of order $\nu > 0$ is normally defined as

$$D_{0^{+}}^{\nu}u(t) = D_{0^{+}}^{m}J_{0^{+}}^{m-\nu}u(t), \qquad m-1 < \nu \le m, \quad m \in \mathbb{N}.$$
(4)

Theorem 2.1. [17] (Banach fixed point theorem). Let (S, ||.||) be a complete normed space, and let the mapping $F: S \longrightarrow S$ be a contraction mapping. Then F has exactly one fixed point.

Theorem 2.2. [17] (Krasnoselskii fixed point theorem). Let w be bounded, closed and convex subset in a Banach space X. If $T_1, T_2 : w \longrightarrow w$ are two applications satisfying the following conditions:

- 1) $T_1x + T_2y \in w$ for every $x, y \in w$;
- 2) T_1 is a contraction;
- 3) T_2 is compact and continuous.

Then there exists $a \in w$ such that $T_1a + T_2a = a$.

Lemma 2.1. [8] Let $u(t), A(t), q(t) \in C(J, \mathbb{R}_+)$ and let $n(t) \in C(J, \mathbb{R}_+)$ be nondecreasing for which the inequality

$$u(t) \le n(t) + \int_0^t A(s)u(s)ds + \int_0^t A(s)\int_0^s q(r)u(r)drds,$$

holds for any $t \in J$. Then

$$u(t) \le n(t) \left[1 + \int_0^t A(s) \left(\int_0^s (A(r) + q(r)) dr \right) ds \right].$$

3. EXISTENCE AND UNIQUENESS RESULTS

In this section, we shall give an existence and uniqueness results of Eq.(1), with the condition (2). Before starting and proving the main results, we introduce the following hypotheses:

(A1) Assume that A, B, C and F satisfy

$$|A(t, u((t)))| \le f_1(t)g_1(||u||),$$

$$|F(t, u(t))| \le f_2(t)g_2(||u||),$$

$$|B(t, s, u(t))| \le f_3(s)g_3(||u||),$$

$$|C(t, s, u(t))| \le f_4(s)g_4(||u||),$$

where $f_i \in C(J, \mathbb{R}_+)$, i = 1, 2, $f_j \in C(J \times J, \mathbb{R}_+)$, j = 3, 4, with $f = \max\{f_1, f_2, f_3, f_4\}$, $t, s \in J$, $u \in X$ and $g_i : \mathbb{R}_+ \longrightarrow \mathbb{R}_+$ with $g = \max\{g_1, g_2, g_3, g_4\}$.

(A2) There exists a constant M>0 such that $\frac{M}{\|f\|g(M)\delta_2+\delta_1}>1$.

$$\delta = \frac{2}{\Gamma(\nu + \beta + 1)} + \frac{1}{\Gamma(\beta + 1)} + \frac{|b|}{|1 - \frac{\eta^2}{2}b|} \Big(\frac{2\eta^{\nu + \beta + 1}}{\Gamma(\nu + \beta + 2)} + \frac{\eta^{\beta + 1}}{\Gamma(\beta + 2)} \Big).$$

$$\delta_1 = |u_0| + \frac{|F(0, u_0)|}{\Gamma(\beta + 1)} + \frac{|b|}{|1 - \frac{\eta^2}{2}b|} \Big(\frac{|F(0, u_0)|}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta |u_0| \Big).$$

$$\delta_2 = \frac{1}{\nu + \beta + 1} + \frac{2}{\nu + \beta + 2} + \frac{1}{\beta + 1} + \frac{|b|}{|1 - \frac{\eta^2}{2}b|} \Big(\frac{\eta^{\nu + \beta + 1}}{\nu + \beta + 2} + \frac{\eta^{\beta + 1}}{\beta + 2} + \frac{2\eta^{\nu + \beta + 2}}{\nu + \beta + 3} \Big).$$

(A3) For any $t \in J$ and $u, v \in X$, $(t, s) \in G = \{(t, s) : 0 \le s \le t \le 1\}$, there exist positive constants L_1, L_2, L_3 and L_4 such that

$$||A(t, u(t)) - A(t, v(t))|| \le L_1 ||u(t) - v(t)||,$$

$$||F(t, u(t)) - F(t, v(t))|| \le L_2 ||u(t) - v(t)||,$$

$$||B(t, s, u(t)) - B(t, s, v(t))|| \le L_3 ||u(t) - v(t)||,$$

$$||C(t, s, u(t)) - C(t, s, v(t))|| \le L_4 ||u(t) - v(t)||,$$

with $L = \max\{L_1, L_2, L_3, L_4\}$.

(A4) Assume that A, B, C and F satisfy

$$||A(t, u((t)))|| \le \mu_1(t)||u(t)||,$$

$$||F(t, u(t))|| \le \mu_2(t)||u(t)||,$$

$$||B(t, s, u(t))|| \le \mu_3(t)||u(t)||,$$

$$||C(t, s, u(t))|| \le \mu_4(t)||u(t)||,$$

where $\mu_i \in L^{\infty}(J, \mathbb{R}_+), i = 1, 2, 3, 4, t \in J, u \in X \text{ and } (t, s) \in G.$

Lemma 3.1. Let $1 < \nu + \beta < 2$, $b \neq \frac{2}{\eta^2}$ and $u \in C(J,X)$ is called a solution of the problem (1)-(2) \iff u satisfies

$$u(t) = \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[A(s,u(s)) + \int_{0}^{s} B(s,r,u(r))dr + \int_{0}^{1} C(s,r,u(r))dr \Big] ds$$

$$+ \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} F(s,u(s))ds + u_{0} - \frac{F(0,u_{0})}{\Gamma(\beta+1)} t^{\beta}$$

$$+ \frac{bt}{1-b\frac{\eta^{2}}{2}} \Big[\int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \Big(A(r,u(r)) + \int_{0}^{r} B(r,\sigma,u(\sigma))d\sigma + \int_{0}^{1} C(r,\sigma,u(\sigma))d\sigma \Big) dr$$

$$+ \int_{0}^{\eta} \frac{(\eta-r)^{\beta}}{\Gamma(\beta+1)} F(r,u(r))dr - \frac{F(0,u_{0})}{\Gamma(\beta+2)} \eta^{\beta+1} + \eta u_{0} \Big]. \tag{5}$$

Proof. Let $u \in C(J, X)$ be a solution of the problem (1)-(2). Firstly, we show that u is solution of integral equation (5). By Definition 2.2, we obtain

$$I_{0+}^{\nu+\beta} {}^{c}D_{0+}^{\nu+\beta}u(t) = u(t) - u(0) - u'(0)t.$$
(6)

In addition, from equation in (1) and Definition 2.1, and use the assumption (4) of Definition 2.2, we have

$$I_{0+}^{\nu+\beta} {}^{c}D_{0+}^{\nu+\beta}u(t)$$

$$= I_{0+}^{\nu+\beta} \left(A(t, u(t)) + \int_{0}^{t} B(t, s, u(s))ds + \int_{0}^{1} C(t, s, u(s))ds + {}^{c}D_{0+}^{\nu}F(t, u(t)) \right)$$

$$= I_{0+}^{\nu+\beta} \left(A(t, u(t)) + \int_{0}^{t} B(t, s, u(s))ds + \int_{0}^{1} C(t, s, u(s))ds \right)$$

$$+ I_{0+}^{\beta}F(t, u(t)) - \frac{F(0, u(0))}{\Gamma(\beta+1)}t^{\beta}. \tag{7}$$

By substituting (7) in (6) with nonlocal condition in problem (5), we get the following integral equation

$$u(t) = I_{0+}^{\nu+\beta} \Big(A(t, u(t)) + \int_0^t B(t, s, u(s)) ds + \int_0^1 C(t, s, u(s)) ds \Big)$$

+
$$I_{0+}^{\beta} F(t, u(t)) - \frac{F(0, u_0)}{\Gamma(\beta + 1)} t^{\beta} + u_0 + u'(0)t.$$
 (8)

From integral boundary condition of our problem with using Fubini's theorem and after some computations, we get:

$$\begin{split} u'(0) &= b \int_0^{\eta} u(s) ds \\ &= b \int_0^{\eta} \left[I_{0^+}^{\nu + \beta} \Big(A(s, u(s)) + \int_0^s B(s, r, u(r)) dr + \int_0^1 C(s, r, u(r)) dr \Big) \right. \\ &+ I_{0^+}^{\beta} F(s, u(s)) - \frac{F(0, u_0)}{\Gamma(\beta + 1)} s^{\beta} + u_0 + u'(0) s \Big] ds \\ &= b \int_0^{\eta} \left[I_{0^+}^{\nu + \beta} \Big(A(s, u(s)) + \int_0^s B(s, r, u(r)) dr + \int_0^1 C(s, r, u(r)) dr \Big) \right. \\ &+ I_{0^+}^{\beta} F(s, u(s)) \Big] ds - \frac{F(0, u_0)}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta u_0 + \frac{\eta^2}{2} u'(0) \\ &= b I_{0^+}^{\nu + \beta + 1} \Big(A(\eta, u(\eta)) + \int_0^{\eta} B(\eta, r, u(r)) dr + \int_0^1 C(\eta, r, u(r)) dr \Big) \\ &+ I_{0^+}^{\beta + 1} F(\eta, u(\eta)) - \frac{F(0, u_0)}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta u_0 + \frac{\eta^2}{2} u'(0), \end{split}$$

that is

$$u'(0) = \frac{b}{1 - b\frac{\eta^{2}}{2}} \Big[I_{0+}^{\nu+\beta+1} \Big(A(\eta, u(\eta)) + \int_{0}^{\eta} B(\eta, r, u(r)) dr + \int_{0}^{1} C(\eta, r, u(r)) dr \Big) + I_{0+}^{\beta+1} F(\eta, u(\eta)) - \frac{F(0, u_{0})}{\Gamma(\beta + 2)} \eta^{\beta+1} + \eta u_{0} \Big].$$

$$(9)$$

Therefore, we get

$$\begin{split} u(t) &= I_{0+}^{\nu+\beta} \Big(A(t,u(t)) + \int_0^t B(t,s,u(s)) ds + \int_0^1 C(t,s,u(s)) ds \Big) \\ &+ I_{0+}^\beta F(t,u(t)) - \frac{F(0,u_0)}{\Gamma(\beta+1)} t^\beta + u_0 \\ &\qquad \frac{tb}{1 - b \frac{\eta^2}{2}} \Big[I_{0+}^{\nu+\beta+1} \Big(A(\eta,u(\eta)) + \int_0^\eta B(\eta,r,u(r)) dr + \int_0^1 C(\eta,r,u(r)) dr \Big) \\ &\qquad + I_{0+}^{\beta+1} F(\eta,u(\eta)) - \frac{F(0,u_0)}{\Gamma(\beta+2)} \eta^{\beta+1} + \eta u_0 \Big]. \end{split}$$

Finally, by substituting (9) in (8) we find (5). Conversely, from 2.2 and by applying the operator $^cD_{0^+}^{\nu+\beta}$ on both sides of (5), we find

$${}^{c}D_{0+}^{\nu+\beta}u(t)$$

$$= {}^{c}D_{0+}^{\nu+\beta}I_{0+}^{\nu+\beta}\left(A(s,u(s)) + \int_{0}^{t}B(t,s,u(s))ds + \int_{0}^{1}C(t,s,u(s))ds + {}^{c}D_{0+}^{\nu}I_{0+}^{\nu}F(s,u(s))\right)ds + {}^{c}D_{0+}^{\nu+\beta}(u(0) + u'(0)t)$$

$$= A(t,u(t)) + \int_{0}^{t}B(t,s,u(s))ds + \int_{0}^{1}C(t,s,u(s))ds + {}^{c}D_{0+}^{\nu}F(t,u(t)), \tag{10}$$

this means that u satisfies the equation in the problem (1)-(2). Furthermore, by substituting t by 0 in integral equation (5), we have clearly that the integral boundary condition in (2) holds. Therefore, u is solution of problem (1)-(2), which completes the proof.

Existence Result by using Leray-Schauder Nonlinear Alternative.

Theorem 3.1. Assume that the assumptions (A1) and (A2) are satisfied. Then the problem (1)-(2) has at least one solution u(t) on J.

Proof. For r > 0, let

$$Br = \{u \in C([0,1], \mathbb{R}) : ||u|| \le r\},\$$

be a bounded set in $C([0,1],\mathbb{R})$. We will show that Υ maps bounded sets into bounded sets in $C([0,1],\mathbb{R})$. Then, by (A1), we have

$$\begin{split} \|\Upsilon u(t)\| & \leq \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[f_{1}(s)g_{1}(\|u(s)\|) + \int_{0}^{s} f_{3}(s)g_{3}(\|u(r)\|) dr \\ & + \int_{0}^{1} f_{4}(s)g_{4}(\|u(r)\|) dr \Big] ds + \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} f_{2}(s)g_{2}(\|u(s)\|) ds + |u_{0}| \\ & - \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big[\eta|u_{0}| - \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} \eta^{\beta+1} \Big] \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big[\int_{0}^{\eta} \frac{(\eta-r)^{\beta+1}}{\Gamma(\beta+2)} \Big(f_{2}(r)g_{2}(\|u(r)\|) dr \\ & + \int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta+1}}{\Gamma(\nu+\beta+2)} \Big[f_{1}(r)g_{1}(\|u(r)\|) + \int_{0}^{r} f_{3}(r)g_{3}(\|u(\sigma)\|) d\sigma \\ & + \int_{0}^{1} f_{4}(r)g_{4}(\|u(\sigma)\|) d\sigma \Big] dr \Big) \\ & \leq \|f\|g(\|u\|) \Big[\int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} (1+s) ds + \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} ds \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big(\int_{0}^{\eta} \frac{(\eta-r)^{\beta+1}}{\Gamma(\beta+2)} dr + \int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta+1}}{\Gamma(\nu+\beta+2)} (1+r) dr \Big) \Big] \\ & + \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} + |u_{0}| + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big(\frac{|F(0,u_{0})|}{\Gamma(\beta+2)} \eta^{\beta+1} + \eta|u_{0}| \Big) \\ & \leq \|f\|g(\|u\|) \Big[\frac{1}{\nu+\beta+1} + \frac{2}{\nu+\beta+2} + \frac{1}{\beta-1} \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big(\frac{\eta^{\nu+\beta+1}}{\nu+\beta+2} + \frac{\eta^{\beta+1}}{\beta+2} + \frac{2\eta^{\nu+\beta+2}}{\nu+\beta+3} \Big] \\ & \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} + |u_{0}| + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big(\frac{|F(0,u_{0})|}{\Gamma(\beta+2)} \eta^{\beta+1} + \eta|u_{0}| \Big) \\ & = \|f\|g(\|u\|) \delta_{2} + \delta_{1} < + \infty. \end{split}$$

Let $t_1, t_2 \in J$ with $t_1 < t_2$ and $u \in B_r$, where B_r is a bounded set of $C([0, 1], \mathbb{R})$. Then we have

$$\begin{split} &\|(\Upsilon u)(t_{2}) - (\Upsilon u)(t_{1})\| \\ &\leq \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\nu + \beta - 1}}{\Gamma(\nu + \beta)} \Big[\|A(s, u(s))\| + \int_{0}^{s} \|B(s, r, u(r))\| dr \\ &+ \int_{0}^{1} \|C(s, r, u(r))\| dr \Big] ds + \int_{t_{1}}^{t_{2}} \frac{(t_{2} - s)^{\beta - 1}}{\Gamma(\beta)} \|F(s, u(s))\| ds \\ &+ \int_{0}^{t_{1}} \frac{(t_{1} - s)^{\nu + \beta - 1} - (t_{2} - s)^{\nu + \beta - 1}}{\Gamma(\nu + \beta)} \Big[\|A(s, u(s))\| + \int_{0}^{s} \|B(s, r, u(r))\| dr \\ &+ \int_{0}^{1} \|C(s, r, u(r))\| dr \Big] ds \\ &+ \int_{0}^{t_{1}} \frac{(t_{1} - s)^{\beta - 1} - (t_{2} - s)^{\beta - 1}}{\Gamma(\beta)} \|F(s, u(s))\| ds + \frac{|F(0, u_{0})|}{\Gamma(\beta + 1)} (t_{2}^{\beta} - t_{1}^{\beta}) \\ &+ \frac{|b|(t_{2} - t_{1})}{|1 - b\frac{\eta^{2}}{2}|} \Big[\frac{|F(0, u_{0})|}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta u_{0} + \int_{0}^{\eta} \frac{(\eta - r)^{\beta}}{\Gamma(\beta + 1)} F(r, u(r)) dr \\ &+ \int_{0}^{\eta} \frac{(\eta - r)^{\nu + \beta}}{\Gamma(\nu + \beta + 1)} \Big(\|A(r, u(r))\| + \int_{0}^{r} \|B(r, \sigma, u(\sigma))\| d\sigma \\ &+ \int_{0}^{1} \|C(r, \sigma, u(\sigma))\| d\sigma \Big) dr \Big] \\ &\leq \|f\|g(\|u\|) \Big[\frac{2(t_{2} - t_{1})^{\nu + \beta} - |t_{1}^{\nu + \beta} - t_{2}^{\nu + \beta}|}{\Gamma(\nu + \beta + 1)} + \frac{2(t_{2} - t_{1})^{\beta} - |t_{1}^{\beta} - t_{2}^{\beta}|}{\Gamma(\beta + 1)} \\ &+ (t_{2} - t_{1}) \frac{|b|}{|1 - b\frac{\eta^{2}}{2}|} \Big(\frac{\eta^{\nu + \beta + 1}}{\nu + \beta + 2} + \frac{\eta^{\beta + 1}}{\beta + 2} + \frac{2\eta^{\nu + \beta + 2}}{\nu + \beta + 3} \Big) \Big] \\ &+ (t_{2}^{\beta} - t_{1}^{\beta}) \frac{|F(0, u_{0})|}{\Gamma(\beta + 1)} + (t_{2} - t_{1}) \frac{|b|}{|1 - b\frac{\eta^{2}}{2}|} \Big[\frac{|F(0, u_{0})|}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta |u_{0}| \Big] \\ &\rightarrow 0 \quad \text{as} \quad t_{1} \longrightarrow t_{2}, \end{split}$$

then Υ maps bounded sets into equi-continuous sets of C.

By Arzela-Ascoli theorem, we have $\Upsilon:C([0,1],\mathbb{R})\longrightarrow C([0,1],\mathbb{R})$ is completely continuous.

We will apply the Leray-schauder nonlinear alternative once we establish the boundedness of the set of all solutions to equation

$$u = \epsilon \Upsilon u$$
 for some $\epsilon \in (0, 1)$.

Let u be a solution of (1), then, by (11) we have

$$|u(x)| \le ||f||g(||u||)\delta_2 + \delta_1,$$

which implies:

$$\frac{\|u\|}{\|f\|g(\|u\|)\delta_2 + \delta_1} \le 1.$$

Then by (A2), there exist M>0 such that $M\neq \|u\|.$ Let us define a set

$$U = \{ u \in C([0, 1], \mathbb{R}) : ||u|| < M \},\$$

and then

$$\Upsilon: \bar{U} \longrightarrow C([0,1], \mathbb{R}),$$

is completely continuous. From the choice of U, there is no $t \in \partial U$ such that

$$u = \epsilon \Upsilon u \text{ for } \epsilon \in (0, 1),$$

then by the nonlinear Leray-Schauder type, we conclude that the operator Υ has a fixed point $u \in \bar{U}$ which is solution of the problem (1)-(2).

Existence result by Krasnoselskii's Fixed Point.

Theorem 3.2. Assume that the assumptions (A3) and (A4) are satisfied and if

$$K:=\frac{\|\mu_1\|_{L^\infty}+\|\mu_3\|_{L^\infty}+\|\mu_4\|_{L^\infty}}{\Gamma(\nu+\beta+2)}\Big(\frac{\nu+\beta+1}{\nu+\beta+2}+\frac{|b|\eta^{\nu+\beta+1}}{|1-\frac{\eta^2}{2}b|}\Big)+\frac{\|\mu_2\|_{L^\infty}}{\beta+2}\Big(\frac{\beta+2}{\beta+1}+\frac{|b|\eta^{\beta+1}}{|1-\frac{\eta^2}{2}b|}\Big)\leq 1,$$

and

$$LK_1 := \frac{L|b|}{|1 - \frac{\eta^2}{2}b|} \left[\frac{2\eta^{\nu + \beta + 1}}{\nu + \beta + 2} + \frac{\eta^{\beta + 1}}{\beta + 2} \right] \le 1.$$
 (13)

Then the problem (1)-(2) has at least one solution u(t) on J.

Proof. For any function $u \in C(J, X)$ we define the norm

$$||u||1 = \max\{e^{-t}||u(t)||: t \in J\},$$

and consider the closed ball

$$B_r = \{ u \in C(J, X) : ||u|| 1 < r \}.$$

Next, let us define the operators Υ_1 , Υ_2 on B_r as follows

$$\Upsilon_{1}u(t) = \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[A(s,u(s)) + \int_{0}^{s} B(s,r,u(r))dr + \int_{0}^{1} C(s,r,u(r))dr \Big] ds
+ \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} F(s,u(s))ds + u_{0} - \frac{F(0,u_{0})}{\Gamma(\beta+1)} t^{\beta}
+ \frac{bt}{1-b\frac{\eta^{2}}{2}} \Big[\eta u_{0} - \frac{F(0,u_{0})}{\Gamma(\beta+2)} \eta^{\beta+1} \Big],$$
(14)
$$\Upsilon_{2}u(t) = \frac{bt}{1-b\frac{\eta^{2}}{2}} \Big[\int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \Big(A(r,u(r)) + \int_{0}^{r} B(r,\sigma,u(\sigma))d\sigma
+ \int_{0}^{1} C(r,\sigma,u(\sigma))d\sigma \Big) dr + \int_{0}^{\eta} \frac{(\eta-r)^{\beta}}{\Gamma(\beta+1)} F(r,u(r))dr \Big].$$
(15)

For $u,v\in B_r, t\in J$, by fixed $r\geq \frac{\delta_1}{1-K}$, we use the estimations: $\frac{e^s}{e^t}\leq 1, \quad \frac{e^r}{e^t}\leq 1, \quad \frac{e^s-1}{e^t}\leq 1, \quad \frac{e^s-1}{e^t}\leq 1,$ and by the assumption (A2) we find:

$$\begin{split} & e^{t} \| \Upsilon_{1} u(t) + \Upsilon_{2} v(t) \| \\ & \leq \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[\mu_{1}(s) \|u(s)\| + \int_{0}^{s} \mu_{3}(s) \|u(r)\| dr + \int_{0}^{1} \mu_{4}(s) \|u(r)\| dr \Big] ds \\ & + \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} \mu_{2}(s) \|u(s)\| ds + |u_{0}| + \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big[\eta |u_{0}| + \frac{|F(0,u_{0})|}{\Gamma(\beta+2)} \eta^{\beta+1} \Big] \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big[\int_{0}^{\eta} \frac{(\eta-r)^{\beta}}{\Gamma(\beta+1)} \mu_{2}(r) \|v(r)\| dr \\ & + \int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \Big(\mu_{1}(r) \|v(r)\| + \int_{0}^{r} \mu_{3}(r) \|v(\sigma)\| d\sigma + \int_{0}^{1} \mu_{4}(r) \|v(\sigma)\| d\sigma \Big) dr \Big] \\ & \leq \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[\|\mu_{1}\|_{L}^{\infty} \|u\|_{1} e^{s} + \|\mu_{3}\|_{L}^{\infty} \|u\|_{1} (e^{s}-1) + \|\mu_{4}\|_{L}^{\infty} \|u\|_{1} (e^{s}-1) \Big] ds \\ & \|\mu_{2}\|_{L}^{\infty} \|u\|_{1} \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} e^{s} ds + |u_{0}| + \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big[\eta |u_{0}| + \frac{|F(0,u_{0})|}{\Gamma(\beta+2)} \eta^{\beta+1} \Big] \\ & + \frac{|b|}{|1-b\frac{\eta^{2}}{2}|} \Big[\int_{0}^{\eta} \frac{(\eta-r)^{\beta}}{\Gamma(\beta+1)} \|\mu_{1}\|_{L}^{\infty} \|v\|_{1} e^{r} dr \\ & + \int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \Big(\|\mu_{1}\|_{L}^{\infty} \|v\|_{1} e^{r} + \|\mu_{3}\|_{L}^{\infty} \|v\|_{1} (e^{r}-1) + \|\mu_{4}\|_{L}^{\infty} \|v\|_{1} (e^{r}-1) \Big) dr \Big]. \end{split}$$

Therefore,

$$\begin{split} \|\Upsilon_{1}u + \Upsilon_{2}v\|_{1} & \leq r \Big[\frac{\|\mu_{1}\|_{L^{\infty}} + \|\mu_{3}\|_{L^{\infty}} + \|\mu_{4}\|_{L^{\infty}}}{\Gamma(\nu + \beta + 2)} \Big(\frac{\nu + \beta + 1}{\nu + \beta + 2} + \frac{|b|\eta^{\nu + \beta + 1}}{|1 - \frac{\eta^{2}}{2}b|} \Big) \\ & + \frac{\|\mu_{2}\|_{L^{\infty}}}{\beta + 2} \Big(\frac{\beta + 2}{\beta + 1} + \frac{|b|\eta^{\beta + 1}}{|1 - \frac{\eta^{2}}{2}b|} \Big) \Big] \\ & + |u_{0}| + \frac{|F(0, u_{0})|}{\Gamma(\beta + 1)} + \frac{|b|}{|1 - \frac{\eta^{2}}{2}b|} \Big(\frac{|F(0, u_{0})|}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta |u_{0}| \Big) \\ & = rK + \delta_{1} \\ & \leq r. \end{split}$$

This implies that $(\Upsilon_1 u + \Upsilon_2 v) \in B_r$.

Now, we establish that Υ_2 is a contraction mapping. For $u, v \in X$ and $t \in J$, we have:

$$\begin{split} &e^{t} \| \Upsilon_{2} u(t) - \Upsilon_{2} v(t) \| \\ &\leq \frac{|b|}{|1 - b\frac{\eta^{2}}{2}|} \Big[\int_{0}^{\eta} \frac{(\eta - r)^{\nu + \beta}}{\Gamma(\nu + \beta + 1)} \Big(\|A(r, u(r)) - A(r, v(r)) \| \\ &+ \int_{0}^{r} \|B(r, \sigma, u(\sigma)) - B(r, \sigma, v(\sigma)) \| d\sigma + \int_{0}^{1} \|C(r, \sigma, u(\sigma)) - C(r, \sigma, v(\sigma)) \| d\sigma \Big) dr \\ &+ \int_{0}^{\eta} \frac{(\eta - r)^{\beta}}{\Gamma(\beta + 1)} \|F(r, u(r)) - F(r, v(r)) \| dr \Big] \\ &\leq \frac{|b|L}{|1 - b\frac{\eta^{2}}{2}|} \Big[\int_{0}^{\eta} \frac{(\eta - r)^{\nu + \beta}}{\Gamma(\nu + \beta + 1)} \Big(\|u - v\|_{1} e^{r} \\ &+ \|u - v\|_{1} (e^{r} - 1) + \|u - v\|_{1} (e^{r} - 1) \Big) dr + \int_{0}^{\eta} \frac{(\eta - r)^{\beta}}{\Gamma(\beta + 1)} \|u - v\|_{1} e^{r} dr \Big] \\ &\leq \frac{|b|L}{|1 - \frac{\eta^{2}}{2}b|} \Big[\frac{2\eta^{\nu + \beta + 1}}{\nu + \beta + 2} + \frac{\eta^{\beta + 1}}{\beta + 2} \Big] \|u - v\|_{1}. \end{split}$$

Thus,

$$\|\Upsilon_2 u - \Upsilon_2 v\|_1 \le LK_1 \|u - v\|_1$$

Then since $LK_1 \leq 1$, Υ_2 is a contraction mapping.

The continuity of the functions A, B, C and F implies that the operator Υ_1 is continuous. Also, $\Upsilon_1B_r \subset B_r$, for each $u \in B_r$, i.e. Υ_1 is uniformly bounded on B_r as

$$\begin{split} &e^{t} \|\Upsilon_{1}u(t)\| \\ &\leq \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[\|\mu_{1}\|_{L^{\infty}} \|u\|_{1} e^{s} + \|\mu_{3}\|_{L^{\infty}} \|u\|_{1} (e^{s}-1) + \|\mu_{4}\|_{L^{\infty}} \|u\|_{1} (e^{s}-1) \Big] ds \\ &+ \|\mu_{2}\|_{L^{\infty}} \|u\|_{1} \int_{0}^{t} \frac{(t-s)^{\beta}}{\Gamma(\beta)} e^{s} ds + |u_{0}| + \frac{|F(0,u_{0})|}{\Gamma(\beta+1)} t^{\beta} \\ &+ \frac{|b|t}{|1-b\frac{\eta^{2}}{2}|} \Big[\eta |u_{0}| + \frac{|F(0,u_{0})|}{\Gamma(\beta+2)} \eta^{\beta+1} \Big]. \end{split}$$

Thus,

$$\begin{split} \|\Upsilon_{1}u\|_{1} & \leq r \Big[\frac{\|\mu_{1}\|_{L^{\infty}} + \|\mu_{3}\|_{L^{\infty}} + \|\mu_{4}\|_{L^{\infty}}}{\Gamma(\nu + \beta + 1)} + \frac{\|\mu_{2}\|_{L^{\infty}}}{\beta + 1} \Big] \\ & + |u_{0}| + \frac{|F(0, u_{0})|}{\Gamma(\beta + 1)} + \frac{|b|}{|1 - \frac{\eta^{2}}{2}b|} \Big(\frac{|F(0, u_{0})|}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta |u_{0}| \Big) \\ & = rK + \delta_{1} \\ & \leq r. \end{split}$$

Finally, we will show that $\overline{(\Upsilon_1B_r)}$ is equicontinuous. For this end, we define $\overline{A}=\sup_{(s,u)\in J\times B_r}\|A(s,u)\|, \ \overline{B}=\sup_{(s,r,u)\in G\times B_r}\int_0^s\|B(s,r,u)\|dr, \ \overline{C}=\sup_{(s,r,u)\in G\times B_r}\int_0^1\|C(s,r,u)\|dr, \ \overline{F}=\sup_{(s,u)\in J\times B_r}\|F(s,u)\|.$

Let for any $u \in B_r$ and for each $t_1, t_2 \in J$ with $t_1 \le t_2$, we have:

$$\begin{split} & \| (\Upsilon_{1}u)(t_{2}) - (\Upsilon_{1}u)(t_{1}) \| \\ & \leq \frac{\overline{A} + \overline{B} + \overline{C}}{\Gamma(\nu + \beta + 1)} \Big[2|t_{2} - t_{1}|^{\nu + \beta} + |t_{1}^{\nu + \beta} - t_{2}^{\nu + \beta}| \Big] + \frac{\overline{F}}{\Gamma(\beta + 1)} \Big[2|t_{2} - t_{1}|^{\beta} + |t_{1}^{\beta} - t_{2}^{\beta}| \Big] \\ & + (t_{2}^{\beta} - t_{1}^{\beta}) \frac{|F(0, u_{0})|}{\Gamma(\beta + 1)} + (t_{2} - t_{1}) \frac{|b|}{|1 - b\frac{\eta^{2}}{2}|} \Big(\frac{|F(0, u_{0})|}{\Gamma(\beta + 2)} \eta^{\beta + 1} + \eta |u_{0}| \Big) \\ & \longrightarrow 0 \text{ as } t_{2} \longrightarrow t_{1}, \end{split}$$

which implies that $\overline{(\Upsilon_1 B_r)}$ is equi-continuous, then Υ_1 is relatively compact on B_r . Hence by Arzela-Ascoli theorem, Υ_1 is compact on B_r . Now, all hypothesis of Theorem 2.2 hold, therefore the operator Υ has a fixed point on B_r . So the problem (1)-(2) has at least one solution on J. This proves the theorem.

Theorem 3.3. Assume that the assumptions (A1) and (A3) are satisfied and if $L\delta < 1$. Then the problem (1)-(2) has a unique solution on J.

Proof. Let the operator Υ as in Theorem 3.1. Define

$$R_{\psi} = \{ u \in C(J, X) : ||u|| \le \psi \}.$$

We fix $\psi \geq \frac{N\delta + \delta_1}{1 - L\delta}$, where $N = \max\{N_1, N_2, N_3, N_4\}$, such that $N_1 = \sup_{t \in J} \|A(t,0)\|$, $N_2 = \sup_{t \in J} \|F(t,0)\|$, $N_3 = \sup_{t \in J} \|\int_0^s B(t,s,0) ds\|$, $N_4 = \sup_{(t,s) \in G} \|\int_0^1 C(t,s,0) ds\|$.

Firstly, we will prove that $\Upsilon R_{\psi} \subset R_{\psi}$. For any $u \in R_{\psi}$, we have

$$\begin{split} & \| (\Upsilon u)(t) \| \\ & \leq \int_0^t \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[\| A(s,u(s)) \| + \int_0^s \| B(s,r,u(r)) \| dr + \int_0^1 \| C(s,r,u(r)) \| dr \Big] ds \\ & + \int_0^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} \| F(s,u(s)) \| ds + \frac{|F(0,u_0)|}{\Gamma(\beta+1)} + |u_0| + \frac{|b|}{|1-b\frac{\eta^2}{2}|} \Big(\int_0^\eta \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \\ & \times \Big[\| A(r,u(r)) \| + \int_0^r \| B(r,\sigma,u(\sigma)) \| d\sigma + \int_0^1 \| C(r,\sigma,u(\sigma)) \| d\sigma \Big] dr \\ & + \int_0^\eta \frac{(\eta-r)^\beta}{\Gamma(\beta+1)} \| F(r,u(r)) \| dr + \frac{|F(0,u_0)|}{\Gamma(\beta+2)} \eta^{\beta+1} + \eta |u_0| \Big) \\ & \leq (L\psi+N)\delta + \delta_1 \\ & \leq \psi. \end{split}$$

Hence, $\Upsilon R_{\psi} \subset R_{\psi}$.

Secondly, We shall show that $\Upsilon: R_{\psi} \longrightarrow R_{\psi}$ is a contraction. From the assumption (A1) we have for any $u, v \in R_{\psi}$ and for each $t \in J$

$$\begin{split} &\|(\Upsilon u)(t) - (\Upsilon v)(t)\| \\ &\leq \int_0^t \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[\|A(s,u(s)) - A(s,v(s))\| + \int_0^s \|B(s,r,u(r)) - B(s,r,v(r))\| dr \\ &+ \int_0^1 \|C(s,r,u(r)) - C(s,r,v(r))\| dr \Big] ds + \int_0^t \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} \|F(r,u(r)) - F(r,v(r))\| ds \\ &+ \frac{|b|}{|1-b\frac{\eta^2}{2}|} \Big(\int_0^\eta \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \Big[\|A(r,u(r)) - A(r,v(r))\| \\ &+ \int_0^r \|B(r,\sigma,u(\sigma)) - B(r,\sigma,v(\sigma))\| d\sigma \\ &+ \int_0^1 \|C(r,\sigma,u(\sigma)) - C(r,\sigma,v(\sigma))\| d\sigma \Big] dr \\ &+ \int_0^\eta \frac{(\eta-r)^\beta}{\Gamma(\beta+1)} \|F(r,u(r)) - F(r,v(r))\| dr \Big) \\ &\leq L\delta \|u-v\|. \end{split}$$

Since $L\delta < 1$, it follows that Υ is a contraction, from Theorem 2.1, then there exists $u \in C(J,X)$ such that $\Upsilon u = u$, which is the unique solution of the problem (1)-(2) in C(J,X). This proof is completed.

4. ULAM-HYERS STABILITY

In this section, we establish the Hyers-Ulam stability of the problem (1)-(2).

We say that the problem (1)- (2) has the Hyers-Ulam stability, if for all $\epsilon > 0$ and all function $v \in C(J, X)$ satisfying

$$v(t) = \int_{0}^{t} \frac{(t-s)^{\nu+\beta-1}}{\Gamma(\nu+\beta)} \Big[A(s,v(s)) + \int_{0}^{s} B(s,r,v(r))dr + \int_{0}^{1} C(s,r,v(r))dr \Big] ds$$

$$+ \int_{0}^{t} \frac{(t-s)^{\beta-1}}{\Gamma(\beta)} F(s,v(s))ds + v_{0} - \frac{F(0,v_{0})}{\Gamma(\beta+1)} t^{\beta}$$

$$+ \frac{bt}{1-b\frac{\eta^{2}}{2}} \Big[\int_{0}^{\eta} \frac{(\eta-r)^{\nu+\beta}}{\Gamma(\nu+\beta+1)} \Big(A(r,v(r)) + \int_{0}^{r} B(r,\sigma,v(\sigma))d\sigma + \int_{0}^{1} C(r,\sigma,v(\sigma))d\sigma \Big) dr$$

$$+ \int_{0}^{\eta} \frac{(\eta-r)^{\beta}}{\Gamma(\beta+1)} F(r,v(r))dr - \frac{F(0,v_{0})}{\Gamma(\beta+2)} \eta^{\beta+1} + \eta v_{0} \Big]. \tag{16}$$

We define the nonlinear continuous operator $\Delta: C(J,X) \longrightarrow C(J,X)$, as follows

$$\Delta v(t) = {^c}D_{0^+}^{\nu+\beta}v(t) - {^c}D_{0^+}^{\nu}F(t,v(t)) - A(t,v(t)) - \int_0^t B(t,s,v(s))ds - \int_0^1 C(t,s,v(s))ds.$$

Definition 4.1. [22] For each $\epsilon > 0$ and for each solution v of the problem (1)- (2), such that

$$\|\Delta v\| \le \epsilon,\tag{17}$$

the problem (1), is said to be Ulam-Hyers stable if we can find a positive real number α and a solution $u \in C(J, X)$ of the problem (1), satisfying the inequality

$$||u(t) - v(t)|| \le \alpha \epsilon^*, \tag{18}$$

where ϵ^* is a positive real number depending on ϵ .

Definition 4.2. [23] Let $m \in C(\mathbb{R}^+, \mathbb{R}^+)$ such that for each solution v of the problem (1), we can find a solution $u \in C(J, X)$ of the problem (1) such that

$$||u(t) - v(t)|| \le m\epsilon^*, \ t \in J. \tag{19}$$

Then the problem (1), is said to be generalized Ulam-Hyers stable.

Definition 4.3. [22] For each $\epsilon > 0$ and for each solution v of the problem (1) is called Ulam-Hyers-Rassias stable with respect to $\Theta \in C(J, \mathbb{R}^+)$ if

$$\|\Delta v(t)\| < \epsilon \Theta(t), \ t \in J, \tag{20}$$

and there exist a real number $\alpha > 0$ and a solution $v \in C(J, X)$ of the problem (1) such that

$$||u(t) - v(t)|| \le \alpha \epsilon_* \Theta(t), \ t \in J.$$
 (21)

where ϵ_* is a positive real number depending on ϵ .

Theorem 4.1. Assume that (A1) holds, with LK < 1. The problem (1) is both Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let $u \in C(J,X)$ be a solution of (1), satisfying (3) in the sense of Theorem 3.3 Let v be any solution satisfying (17). Lemma 3.1 implies the equivalence between the operators Δ and Υ – Id (where Id is the identity operator) for every solution $v \in C(J,X)$ of (1) satisfying LK < 1. Therefore, we deduce by the fixed-point property of the operator Υ that:

$$\begin{aligned} \|v(t) - u(t)\| &= \|v(t) - \Upsilon v(t) + \Upsilon v(t) - u(t)\| \\ &= \|v(t) - \Upsilon v(t) + \Upsilon v(t) - \Upsilon u(t)\| \\ &\leq \|\Upsilon v(t) - \Upsilon u(t)\| + \|\Upsilon v(t) - v(t)\| \\ &\leq LK\|u - v\| + \epsilon, \end{aligned}$$

because LK < 1 and $\epsilon > 0$, we find

$$||u-v|| \le \frac{\epsilon}{1-LK}.$$

Fixing $\epsilon_* = \frac{\epsilon}{1-LK}$, and $\alpha = 1$, we obtain the Ulam-Hyers stability condition. In addition, the generalized Ulam-Hyers stability follows by taking $m\epsilon = \frac{\epsilon}{1-LK}$.

Theorem 4.2. Assume that (A1) holds with $L < \frac{1}{K}$, and there exists a function $\Theta \in C(J, \mathbb{R}^+)$ satisfying the condition (20). Then the problem (1) is Ulam-Hyers-Rassias stable with respect to Θ .

Proof. We have from the proof of Theorem 4.1,

$$||u(t) - v(t)|| \le \epsilon_* \Theta(t), \ t \in J.$$

where $\epsilon_* = \frac{\epsilon}{1-LK}$. This completes the proof.

5. CONCLUDING REMARKS

In this paper, we studied the existence and uniqueness of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm integro-differential equations with the integral conditions. In addition, the Ulam-Hyers stability and generalized Ulam-Hyers stability for solutions of the given problem are also discussed. The desired results are proved by using via using Banach and Krasnoselskii fixed point theorems.

Acknowledgement

The authors acknowledge the valuable comments and suggestions from the editors and referees for their valuable suggestions and comments that improved this paper.

REFERENCES

- [1] Baleanu, D., Rezapour, S. and Mohammadi, H. (2013), Some existence results on nonlinear fractional differential equations, Phil. Trans. R. Soc. A, pp. 1-7.
- [2] Balachandran, K. and Park, J.Y. (2009), Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear Anal. Theory Meth. Applic. 71(10), pp. 4471-4475.
- [3] Bani Issa, M., Hamoud, A. and Ghadle, K. (2021), Numerical solutions of fuzzy integro-differential equations of the second kind, Journal of Mathematics and Computer Science, 23, pp. 67-74.

- [4] Bani Issa, M. and Hamoud, A., (2020), Solving systems of Volterra integro-differential equations by using semi-analytical techniques, Technol. Rep. Kansai Univ., 62, pp. 685-690.
- [5] Dawood, L., Sharif, A. and Hamoud, A. (2020), Solving higher-order integro-differential equations by VIM and MHPM, International Journal of Applied Mathematics, 33, pp. 253-264.
- [6] Dawood, L., Hamoud, A. and Mohammed, N. (2020). Laplace discrete decomposition method for solving nonlinear Volterra-Fredholm integro-differential equations, Journal of Mathematics and Computer Science, 21(2), pp. 158-163.
- [7] Devi, J. and Sreedhar, C. (2016), Generalized Monotone Iterative Method for Caputo Fractional Integro-differential Equation, Eur. J. Pure Appl. Math. 9(4), pp. 346-359.
- [8] Dong, L., Hoa, N. and Vu, H. (2020), Existence and Ulam stability for random fractional integro-differential equation, Afr. Mat. pp. 1-12.
- [9] Balachandran, K., and Trujillo, J. (2010), The nonlocal Cauchy problem for nonlinear fractional integro-differential equations in Banach spaces, Nonlinear Anal. Theory Meth. Applic. 72, pp. 4587-4593.
- [10] Hamoud, A. and Ghadle, K. (2019), Some new existence, uniqueness and convergence results for fractional Volterra-Fredholm integro-differential equations, J. Appl. Comput. Mech. 5(1), pp. 58-69.
- [11] Hamoud, A. and Ghadle, K. (2018), Usage of the homotopy analysis method for solving fractional Volterra-Fredholm integro-differential equation of the second kind, Tamkang J. Math. 49(4), pp. 301-315.
- [12] Hamoud, A. (2020), Existence and uniqueness of solutions for fractional neutral Volterra-Fredholm integro-differential equations, Advances in the Theory of Nonlinear Analysis and its Application, 4(4), pp. 321-331.
- [13] Hamoud, A. and Ghadle, K. (2018), Existence and uniqueness of solutions for fractional mixed Volterra-Fredholm integro-differential equations, Indian J. Math. 60, pp. 375-395.
- [14] Hamoud, A., Mohammed, N. and Ghadle, K. (2021), Some powerful techniques for solving nonlinear Volterra-Fredholm integral equations, Journal of Applied Nonlinear Dynamics, 10(3), pp. 461-469.

- [15] Hamoud, A., Sharif, A. and Ghadle, K. (2021), Existence, uniqueness and stability results of fractional Volterra-Fredholm integro differential equations of ψ -Hilfer type, Discontinuity, Nonlinearity, and Complexity, 10(3), pp. 535-545.
- [16] Hamoud, A. (2021), Uniqueness and stability results for Caputo fractional Volterra-Fredholm integro-differential equations, J. Sib. Fed. Univ. Math. Phys., 2021, 14(3), pp. 313-325.
- [17] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006), Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam.
- [18] V. Lakshmikantham, and M. Rao, Theory of Integro-Differential Equations, Gordon & Breach, London, 1995.
- [19] Rassias, TH.M. (1978), On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72, pp. 297-300.
- [20] Rassias, TH.M. (2000), On the stability of functional equations and a problem of Ulam, Acta Appl. Math. 62, pp. 23-130.
- [21] Rus, I.A. (2010), Gronwall lemma approach to the Hyers-Ulam-Rassias stability of an integral equation, Springer Optim. Appl. pp. 147-152.
- [22] Sousa, CJ., Capelas, de Oliveira E. (2018), Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation, Appl Math Lett. 81, pp. 50-56.
- [23] Sousa, CJ., Oliveira, E. (2018), On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the Ψ -Hilfer operator, J. Fixed Point Theory Appl. 20(3), pp. 96-113.
- [24] N'Guer'ekata, G.M. (2006), Existence and uniqueness of an integral solution to some Cauchy problem with nonlocal conditions, in Differential & Difference Equations and Applications, Hindawi, pp. 843-849.
- [25] Tidke, H.L. (2009), Existence of global solutions to nonlinear mixed Volterra-Fredholm integro-differential equations with nonlocal conditions, Electronic Journal of Differential Equations, 2009(55), pp. 1-7.
- [26] Ulam, S.M. (1960), Problems in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York.
- [27] Wang, J. and Zhou, L. (2011), Ulam stability and data dependence for fractional differential equations with Caputo derivative, Electron. J. Qual. Theory Differ. Equ. 63, pp. 1-10.

[28] Zhou, Y. (2014), Basic Theory of Fractional Differential Equations, vol. 6. World Scientific, Singapore.