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Abstract

In this paper, we establish some new conditions for the existence and uniqueness
of solutions for a class of nonlinear Caputo fractional Volterra-Fredholm
integro-differential equations with mixed conditions. The desired results are proved
by using Banach and Krasnoselskii’s fixed point theorems. In addition, the
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1. INTRODUCTION

Recently it have been proved that the differential models involving nonlocal derivatives of
fractional order arise in many engineering and scientific disciplines as the mathematical
modeling of systems and processes in many fields, for instance, physics, chemistry,
aerodynamics, electrodynamics of complex medium, polymer rheology, and so forth
[2, 3, 4, 5, 6, 14, 17, 28].
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For instance, fractional differential equations are an excellent tool to describe hereditary
properties of viscoelastic materials and, in general, to simulate the dynamics of many
processes on anomalous media. Theory of fractional differential equations has been
extensively studied by several authors as Balachandran and Trujillo [9], Baleanu [1],
Kilbas et al. [17], Lakshmikantham and Rao [18], and also see [10, 11].

The stability theory for functional equations started with a problem related to the
stability of group homomorphisms that was considered by Ulam in 1940 [26].
Afterwards, Rassias [19] introduced new ideas e.g., by proposing to consider
unbounded right-hand sides in the involved inequalities, depending on certain functions,
introducing therefore the so-called Hyers-Ulam-Rassias stability. Equation stability is
an important subject in the applications. Many authors investigated different types of
stability of fractional integro-differential equations, for instance, see [20, 21, 22, 23, 27].

Subsequently several authors have investigated the problem for different types of
nonlinear differential equations and integro-differential equations including functional
differential equations in Banach spaces. Very recently N’Guer’ekata [24] discussed
the existence of solutions of fractional abstract differential equations with nonlocal
initial condition. The nonlocal Cauchy problem is discussed by authors in [2] using
the fixed-point concepts. Tidke [25] studied the fractional mixed Volterra-Fredholm
integro-differential equations with nonlocal conditions using Leray-Schauder Theorem.

Baleanu et al. [1], by using fixed-point methods, studied the existence and uniqueness
of a solution for the nonlinear fractional boundary value problem given by

cDνu(t) = A(t, u(t)), t ∈ J = [0, T ], 0 < ν < 1,

u(0) = u(T ), u(0) = β1u(η), u(T ) = β2u(η), 0 < η < T, 0 < β1 < β2 < 1.

Devi and Sreedhar [7] used the monotone iterative technique to the Caputo fractional
integro-differential equation of the type

cDνu(t) = A(t, u(t), Iνu(t)), t ∈ J = [0, T ], 0 < ν < 1,

u(0) = u0.

Wang and Zhou [27] studied the Ulam stability and data dependence for a Caputo
fractional differential given by

cDνu(t) = A(t, u(t)), t ∈ J = [a,+∞), 0 < ν < 1,

u(a) = ξ.

Dong et al. [8] established the existence and uniqueness of solutions via Banach and
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Schaude fixed point techniques for the problem given by

cDν
0+u(t) = A(t, u(t)) +

∫ t

0

B(t, s, u(s))ds, t ∈ J = [0, T ], 0 < ν ≤ 1,

u(0) = ξ,

Motivated by the above works, we will study a more general problem of
Caputo fractional integro-differential equations wich called Caputo fractional
Volterra-Fredholm integro-differential equation with mixed conditions in Banach
Space:

cDν+β
0+

u(t) = A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds+ cDν

0+F (t, u(t)), (1)

u(0) = u0, u′(0) = b

∫ η

0
u(s)ds, b ∈ R, 0 < η < 1, (2)

where cDν+β
0+ is the Caputo fractional derivative of order ν + β, 1 < ν + β ≤ 2, t ∈

J := [0, 1], A,F : J × X −→ X, and B,C : J × J × X −→ X are continuous
functions satisfying some conditions which will be stated later. cDν

0+ denotes the
Caputo fractional derivative of order ν.

The paper is organized as follows: Sect. 2, we present some notations, definitions
and results which are used throughout this paper. In Sect. 3, we use the fixed point
techniques to prove the existence and uniqueness results for the problem (1)-(2). In
Sect. 4, we establish the Hyers-Ulam stability of the problem (1)-(2) be also discussed.
Concluding remarks close the paper in Sect. 5.

2. PRELIMINARIES

Here, we present some notations, definitions and results which are used throughout this
paper, see [2, 12, 13, 14, 15, 16, 17, 18].

LetX , we denote the Banach space equipped with the norm ‖.‖ andC(J,X), Cn(J,X)

denotes respectively the Banach spaces of all continuous bounded functions and n times
continuously differentiable functions on J . In addition, we define the norm

‖u‖C = max
t∈J
|u(t)|

for any continuous function u : J −→ X.

Definition 2.1. [28] The left sided Riemann-Liouville fractional integral of order ν > 0

of a function u : J −→ X is defined as

Jν0+u(t) =
1

Γ(ν)

∫ t

0

(t− s)ν−1u(s)ds, t ∈ J,

where Γ denotes the Gamma function.
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Definition 2.2. [17] The left sided fractional derivative of u ∈ Cn(J,X) in the Caputo
sense is defined by

cDν
0+u(t) = Jm−ν0+ Dmu(t)

=


1

Γ(m−ν)

∫ t
0
(t− s)m−ν−1 ∂

mu(s)
∂sm

ds, m− 1 < ν < m,

∂mu(t)
∂tm

, ν = m, m ∈ N,
(3)

Hence, we have

1. Jν0+J
vu = Jν+v

0+ u, ν, v > 0.

2. Jν0+u
β = Γ(β+1)

Γ(β+ν+1)
uβ+ν ,

3. Dν
0+u

β = Γ(β+1)
Γ(β−ν+1)

uβ−ν , ν > 0, β > −1.

4. Jν0+D
ν
0+u(t) = u(t)− u(a), 0 < ν < 1.

5. Jν0+D
ν
0+u(t) = u(t)−

∑m−1
k=0 u

(k)(0+) (t−a)k

k!
, t > 0.

Definition 2.3. [28] The Riemann Liouville fractional derivative of order ν > 0 is
normally defined as

Dν
0+u(t) = Dm

0+J
m−ν
0+ u(t), m− 1 < ν ≤ m, m ∈ N. (4)

Theorem 2.1. [17] (Banach fixed point theorem). Let (S, ‖.‖) be a complete normed
space, and let the mapping F : S −→ S be a contraction mapping. Then F has exactly
one fixed point.

Theorem 2.2. [17] (Krasnoselskii fixed point theorem). Let w be bounded, closed and
convex subset in a Banach spaceX . If T1, T2 : w −→ w are two applications satisfying
the following conditions:
1) T1x+ T2y ∈ w for every x, y ∈ w;
2) T1 is a contraction;
3) T2 is compact and continuous.
Then there exists a ∈ w such that T1a+ T2a = a.

Lemma 2.1. [8] Let u(t), A(t), q(t) ∈ C(J,R+) and let n(t) ∈ C(J,R+) be
nondecreasing for which the inequality

u(t) ≤ n(t) +

∫ t

0

A(s)u(s)ds+

∫ t

0

A(s)

∫ s

0

q(r)u(r)drds,

holds for any t ∈ J. Then

u(t) ≤ n(t)
[
1 +

∫ t

0

A(s)
(∫ s

0

(A(r) + q(r))dr
)
ds
]
.
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3. EXISTENCE AND UNIQUENESS RESULTS

In this section, we shall give an existence and uniqueness results of Eq.(1), with the
condition (2). Before starting and proving the main results, we introduce the following
hypotheses:
(A1) Assume that A,B,C and F satisfy

|A(t, u((t)))| ≤ f1(t)g1(‖u‖),
|F (t, u(t))| ≤ f2(t)g2(‖u‖),
|B(t, s, u(t))| ≤ f3(s)g3(‖u‖),
|C(t, s, u(t))| ≤ f4(s)g4(‖u‖),

where fi ∈ C(J,R+), i = 1, 2, fj ∈ C(J × J,R+), j = 3, 4, with f =

max{f1, f2, f3, f4}, t, s ∈ J , u ∈ X and gi : R+ −→ R+ with g =

max{g1, g2, g3, g4}.
(A2) There exists a constant M > 0 such that M

‖f‖g(M)δ2+δ1
> 1.

δ =
2

Γ(ν + β + 1)
+

1

Γ(β + 1)
+

|b|
|1− η2

2
b|

( 2ην+β+1

Γ(ν + β + 2)
+

ηβ+1

Γ(β + 2)

)
.

δ1 = |u0|+
|F (0, u0)|
Γ(β + 1)

+
|b|

|1− η2

2
b|

( |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)
.

δ2 =
1

ν + β + 1
+

2

ν + β + 2
+

1

β + 1
+

|b|
|1− η2

2
b|

( ην+β+1

ν + β + 2
+

ηβ+1

β + 2
+

2ην+β+2

ν + β + 3

)
.

(A3) For any t ∈ J and u, v ∈ X , (t, s) ∈ G = {(t, s) : 0 ≤ s ≤ t ≤ 1}, there exist
positive constants L1, L2, L3 and L4 such that

‖A(t, u(t))− A(t, v(t))‖ ≤ L1‖u(t)− v(t)‖,
‖F (t, u(t))− F (t, v(t))‖ ≤ L2‖u(t)− v(t)‖,
‖B(t, s, u(t))−B(t, s, v(t))‖ ≤ L3‖u(t)− v(t)‖,
‖C(t, s, u(t))− C(t, s, v(t))‖ ≤ L4‖u(t)− v(t)‖,

with L = max{L1, L2, L3, L4}.
(A4) Assume that A,B,C and F satisfy

‖A(t, u((t)))‖ ≤ µ1(t)‖u(t)‖,
‖F (t, u(t))‖ ≤ µ2(t)‖u(t)‖,
‖B(t, s, u(t))‖ ≤ µ3(t)‖u(t)‖,
‖C(t, s, u(t))‖ ≤ µ4(t)‖u(t)‖,
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where µi ∈ L∞(J,R+), i = 1, 2, 3, 4, t ∈ J , u ∈ X and (t, s) ∈ G.

Lemma 3.1. Let 1 < ν + β < 2, b 6= 2
η2

and u ∈ C(J,X) is called a solution of the
problem (1)-(2) ⇐⇒ u satisfies

u(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0
B(s, r, u(r))dr +

∫ 1

0
C(s, r, u(r))dr

]
ds

+

∫ t

0

(t− s)β−1

Γ(β)
F (s, u(s))ds+ u0 −

F (0, u0)

Γ(β + 1)
tβ

+
bt

1− bη22

[ ∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
A(r, u(r)) +

∫ r

0
B(r, σ, u(σ))dσ +

∫ 1

0
C(r, σ, u(σ))dσ

)
dr

+

∫ η

0

(η − r)β

Γ(β + 1)
F (r, u(r))dr − F (0, u0)

Γ(β + 2)
ηβ+1 + ηu0

]
. (5)

Proof. Let u ∈ C(J,X) be a solution of the problem (1)-(2). Firstly, we show that u is
solution of integral equation (5). By Definition 2.2, we obtain

Iν+β
0+

cDν+β
0+ u(t) = u(t)− u(0)− u′(0)t. (6)

In addition, from equation in (1) and Definition 2.1, and use the assumption (4) of
Definition 2.2, we have

Iν+β
0+

cDν+β
0+ u(t)

= Iν+β
0+

(
A(t, u(t)) +

∫ t

0

B(t, s, u(s))ds+

∫ 1

0

C(t, s, u(s))ds+c Dν
0+F (t, u(t))

)
= Iν+β

0+

(
A(t, u(t)) +

∫ t

0

B(t, s, u(s))ds+

∫ 1

0

C(t, s, u(s))ds
)

+Iβ0+F (t, u(t))− F (0, u(0))

Γ(β + 1)
tβ. (7)

By substituting (7) in (6) with nonlocal condition in problem (5), we get the following
integral equation

u(t) = Iν+β
0+

(
A(t, u(t)) +

∫ t

0

B(t, s, u(s))ds+

∫ 1

0

C(t, s, u(s))ds
)

+Iβ0+F (t, u(t))− F (0, u0)

Γ(β + 1)
tβ + u0 + u′(0)t. (8)

From integral boundary condition of our problem with using Fubini’s theorem and after
some computations, we get:



Existence and stability results for fractional ... 223

u′(0) = b

∫ η

0

u(s)ds

= b

∫ η

0

[
Iν+β

0+

(
A(s, u(s)) +

∫ s

0

B(s, r, u(r))dr +

∫ 1

0

C(s, r, u(r))dr
)

+Iβ0+F (s, u(s))− F (0, u0)

Γ(β + 1)
sβ + u0 + u′(0)s

]
ds

= b

∫ η

0

[
Iν+β

0+

(
A(s, u(s)) +

∫ s

0

B(s, r, u(r))dr +

∫ 1

0

C(s, r, u(r))dr
)

+Iβ0+F (s, u(s))
]
ds− F (0, u0)

Γ(β + 2)
ηβ+1 + ηu0 +

η2

2
u′(0)

= bIν+β+1
0+

(
A(η, u(η)) +

∫ η

0

B(η, r, u(r))dr +

∫ 1

0

C(η, r, u(r))dr
)

+Iβ+1
0+ F (η, u(η))− F (0, u0)

Γ(β + 2)
ηβ+1 + ηu0 +

η2

2
u′(0),

that is

u′(0) =
b

1− bη2
2

[
Iν+β+1

0+

(
A(η, u(η)) +

∫ η

0

B(η, r, u(r))dr +

∫ 1

0

C(η, r, u(r))dr
)

+Iβ+1
0+ F (η, u(η))− F (0, u0)

Γ(β + 2)
ηβ+1 + ηu0

]
. (9)

Therefore, we get

u(t) = Iν+β
0+

(
A(t, u(t)) +

∫ t

0

B(t, s, u(s))ds+

∫ 1

0

C(t, s, u(s))ds
)

+Iβ0+F (t, u(t))− F (0, u0)

Γ(β + 1)
tβ + u0

tb

1− bη2
2

[
Iν+β+1

0+

(
A(η, u(η)) +

∫ η

0

B(η, r, u(r))dr +

∫ 1

0

C(η, r, u(r))dr
)

+Iβ+1
0+ F (η, u(η))− F (0, u0)

Γ(β + 2)
ηβ+1 + ηu0

]
.

Finally, by substituting (9) in (8) we find (5). Conversely, from 2.2 and by applying the
operator cDν+β

0+ on both sides of (5), we find

cDν+β
0+

u(t)

= cDν+β
0+

Iν+β
0+

(
A(s, u(s)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds+c Dν

0+I
ν
0+F (s, u(s))

)
ds

+cDν+β
0+

(u(0) + u′(0)t)

= A(t, u(t)) +

∫ t

0
B(t, s, u(s))ds+

∫ 1

0
C(t, s, u(s))ds+c Dν

0+F (t, u(t)), (10)
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this means that u satisfies the equation in the problem (1)-(2). Furthermore, by
substituting t by 0 in integral equation (5), we have clearly that the integral boundary
condition in (2) holds. Therefore, u is solution of problem (1)-(2), which completes the
proof.

Existence Result by using Leray-Schauder Nonlinear Alternative.

Theorem 3.1. Assume that the assumptions (A1) and (A2) are satisfied. Then the
problem (1)-(2) has at least one solution u(t) on J .

Proof. For r > 0, let

Br = {u ∈ C([0, 1],R) : ‖u‖ ≤ r},

be a bounded set in C([0, 1],R). We will show that Υ maps bounded sets into bounded
sets in C([0, 1],R). Then, by (A1), we have

‖Υu(t)‖ ≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
f1(s)g1(‖u(s)‖) +

∫ s

0
f3(s)g3(‖u(r)‖)dr

+

∫ 1

0
f4(s)g4(‖u(r)‖)dr

]
ds+

∫ t

0

(t− s)β−1

Γ(β)
f2(s)g2(‖u(s)‖)ds+ |u0|

−|F (0, u0)|
Γ(β + 1)

+
|b|

|1− bη22 |

[
η|u0| −

|F (0, u0)|
Γ(β + 1)

ηβ+1
]

+
|b|

|1− bη22 |

[ ∫ η

0

(η − r)β+1

Γ(β + 2)

(
f2(r)g2(‖u(r)‖)dr

+

∫ η

0

(η − r)ν+β+1

Γ(ν + β + 2)

[
f1(r)g1(‖u(r)‖) +

∫ r

0
f3(r)g3(‖u(σ)‖)dσ

+

∫ 1

0
f4(r)g4(‖u(σ)‖)dσ

]
dr
)

≤ ‖f‖g(‖u‖)
[ ∫ t

0

(t− s)ν+β−1

Γ(ν + β)
(1 + s)ds+

∫ t

0

(t− s)β−1

Γ(β)
ds

+
|b|

|1− bη22 |

(∫ η

0

(η − r)β+1

Γ(β + 2)
dr +

∫ η

0

(η − r)ν+β+1

Γ(ν + β + 2)
(1 + r)dr

)]
+
|F (0, u0)|
Γ(β + 1)

+ |u0|+
|b|

|1− bη22 |

( |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)

≤ ‖f‖g(‖u‖)
[ 1

ν + β + 1
+

2

ν + β + 2
+

1

β − 1

+
|b|

|1− bη22 |

( ην+β+1

ν + β + 2
+
ηβ+1

β + 2
+

2ην+β+2

ν + β + 3

]
|F (0, u0)|
Γ(β + 1)

+ |u0|+
|b|

|1− bη22 |

( |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)

= ‖f‖g(‖u‖)δ2 + δ1 < +∞. (11)



Existence and stability results for fractional ... 225

Let t1, t2 ∈ J with t1 < t2 and u ∈ Br, where Br is a bounded set of C([0, 1],R).
Then we have

‖(Υu)(t2)− (Υu)(t1)‖

≤
∫ t2

t1

(t2 − s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0

‖B(s, r, u(r))‖dr

+

∫ 1

0

‖C(s, r, u(r))‖dr
]
ds+

∫ t2

t1

(t2 − s)β−1

Γ(β)
‖F (s, u(s))‖ds

+

∫ t1

0

(t1 − s)ν+β−1 − (t2 − s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0

‖B(s, r, u(r))‖dr

+

∫ 1

0

‖C(s, r, u(r))‖dr
]
ds

+

∫ t1

0

(t1 − s)β−1 − (t2 − s)β−1

Γ(β)
‖F (s, u(s))‖ds+

|F (0, u0)|
Γ(β + 1)

(tβ2 − t
β
1 )

+
|b|(t2 − t1)

|1− bη2
2
|

[ |F (0, u0)|
Γ(β + 2)

ηβ+1 + ηu0 +

∫ η

0

(η − r)β

Γ(β + 1)
F (r, u(r))dr

+

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
‖A(r, u(r))‖+

∫ r

0

‖B(r, σ, u(σ))‖dσ

+

∫ 1

0

‖C(r, σ, u(σ))‖dσ
)
dr
]

≤ ‖f‖g(‖u‖)
[2(t2 − t1)ν+β − |tν+β

1 − tν+β
2 |

Γ(ν + β + 1)
+

2(t2 − t1)β − |tβ1 − t
β
2 |

Γ(β + 1)

+(t2 − t1)
|b|

|1− bη2
2
|

( ην+β+1

ν + β + 2
+

ηβ+1

β + 2
+

2ην+β+2

ν + β + 3

)]
+(tβ2 − t

β
1 )
|F (0, u0)|
Γ(β + 1)

+ (t2 − t1)
|b|

|1− bη2
2
|

[ |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
]

−→ 0 as t1 −→ t2, (12)

then Υ maps bounded sets into equi-continuous sets of C.

By Arzela-Ascoli theorem, we have Υ : C([0, 1],R) −→ C([0, 1],R) is completely
continuous.

We will apply the Leray-schauder nonlinear alternative once we establish the
boundedness of the set of all solutions to equation

u = εΥu for some ε ∈ (0, 1).

Let u be a solution of (1), then, by (11) we have

|u(x)| ≤ ‖f‖g(‖u‖)δ2 + δ1,
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which implies:
‖u‖

‖f‖g(‖u‖)δ2 + δ1

≤ 1.

Then by (A2), there exist M > 0 such that M 6= ‖u‖. Let us define a set

U = {u ∈ C([0, 1],R) : ‖u‖ < M},

and then

Υ : Ū −→ C([0, 1],R),

is completely continuous. From the choice of U , there is no t ∈ ∂U such that

u = εΥu for ε ∈ (0, 1),

then by the nonlinear Leray-Schauder type, we conclude that the operator Υ has a fixed
point u ∈ Ū which is solution of the problem (1)-(2).

Existence result by Krasnoselskii’s Fixed Point.

Theorem 3.2. Assume that the assumptions (A3) and (A4) are satisfied and if

K :=
‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞

Γ(ν + β + 2)

(ν + β + 1

ν + β + 2
+
|b|ην+β+1

|1− η2

2 b|

)
+
‖µ2‖L∞

β + 2

(β + 2

β + 1
+
|b|ηβ+1

|1− η2

2 b|

)
≤ 1,

and

LK1 :=
L|b|
|1− η2

2
b|

[ 2ην+β+1

ν + β + 2
+

ηβ+1

β + 2

]
≤ 1. (13)

Then the problem (1)-(2) has at least one solution u(t) on J .

Proof. For any function u ∈ C(J,X) we define the norm

‖u‖1 = max{e−t‖u(t)‖ : t ∈ J},

and consider the closed ball

Br = {u ∈ C(J,X) : ‖u‖1 ≤ r}.
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Next, let us define the operators Υ1, Υ2 on Br as follows

Υ1u(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, u(s)) +

∫ s

0

B(s, r, u(r))dr +

∫ 1

0

C(s, r, u(r))dr
]
ds

+

∫ t

0

(t− s)β−1

Γ(β)
F (s, u(s))ds+ u0 −

F (0, u0)

Γ(β + 1)
tβ

+
bt

1− bη2
2

[
ηu0 −

F (0, u0)

Γ(β + 2)
ηβ+1

]
, (14)

Υ2u(t) =
bt

1− bη2
2

[ ∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
A(r, u(r)) +

∫ r

0

B(r, σ, u(σ))dσ

+

∫ 1

0

C(r, σ, u(σ))dσ
)
dr +

∫ η

0

(η − r)β

Γ(β + 1)
F (r, u(r))dr

]
. (15)

For u, v ∈ Br, t ∈ J , by fixed r ≥ δ1
1−K , we use the estimations: es

et
≤ 1, er

et
≤

1, es−1
et
≤ 1, er−1

et
≤ 1, and by the assumption (A2) we find:

et‖Υ1u(t) + Υ2v(t)‖

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
µ1(s)‖u(s)‖+

∫ s

0

µ3(s)‖u(r)‖dr +

∫ 1

0

µ4(s)‖u(r)‖dr
]
ds

+

∫ t

0

(t− s)β−1

Γ(β)
µ2(s)‖u(s)‖ds+ |u0|+

|F (0, u0)|
Γ(β + 1)

+
|b|

|1− bη2
2
|

[
η|u0|+

|F (0, u0)|
Γ(β + 2)

ηβ+1
]

+
|b|

|1− bη2
2
|

[ ∫ η

0

(η − r)β

Γ(β + 1)
µ2(r)‖v(r)‖dr

+

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
µ1(r)‖v(r)‖+

∫ r

0

µ3(r)‖v(σ)‖dσ +

∫ 1

0

µ4(r)‖v(σ)‖dσ
)
dr
]

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖µ1‖∞L ‖u‖1e

s + ‖µ3‖∞L ‖u‖1(es − 1) + ‖µ4‖∞L ‖u‖1(es − 1)
]
ds

‖µ2‖∞L ‖u‖1

∫ t

0

(t− s)β−1

Γ(β)
esds+ |u0|+

|F (0, u0)|
Γ(β + 1)

+
|b|

|1− bη2
2
|

[
η|u0|+

|F (0, u0)|
Γ(β + 2)

ηβ+1
]

+
|b|

|1− bη2
2
|

[ ∫ η

0

(η − r)β

Γ(β + 1)
‖µ1‖∞L ‖v‖1e

rdr

+

∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
‖µ1‖∞L ‖v‖1e

r + ‖µ3‖∞L ‖v‖1(er − 1) + ‖µ4‖∞L ‖v‖1(er − 1)
)
dr
]
.
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Therefore,

‖Υ1u+ Υ2v‖1 ≤ r
[‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞

Γ(ν + β + 2)

(ν + β + 1

ν + β + 2
+
|b|ην+β+1

|1− η2

2
b|

)
+
‖µ2‖L∞

β + 2

(β + 2

β + 1
+
|b|ηβ+1

|1− η2

2
b|

)]
+|u0|+

|F (0, u0)|
Γ(β + 1)

+
|b|

|1− η2

2
b|

( |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)

= rK + δ1

≤ r.

This implies that (Υ1u+ Υ2v) ∈ Br.

Now, we establish that Υ2 is a contraction mapping. For u, v ∈ X and t ∈ J, we have:

et‖Υ2u(t)−Υ2v(t)‖

≤ |b|
|1− bη2

2
|

[ ∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
‖A(r, u(r))− A(r, v(r))‖

+

∫ r

0

‖B(r, σ, u(σ))−B(r, σ, v(σ))‖dσ +

∫ 1

0

‖C(r, σ, u(σ))− C(r, σ, v(σ))‖dσ
)
dr

+

∫ η

0

(η − r)β

Γ(β + 1)
‖F (r, u(r))− F (r, v(r))‖dr

]
≤ |b|L
|1− bη2

2
|

[ ∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
‖u− v‖1e

r

+‖u− v‖1(er − 1) + ‖u− v‖1(er − 1)
)
dr +

∫ η

0

(η − r)β

Γ(β + 1)
‖u− v‖1e

rdr
]

≤ |b|L
|1− η2

2
b|

[ 2ην+β+1

ν + β + 2
+

ηβ+1

β + 2

]
‖u− v‖1.

Thus,

‖Υ2u−Υ2v‖1 ≤ LK1‖u− v‖1

Then since LK1 ≤ 1, Υ2 is a contraction mapping.
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The continuity of the functions A,B,C and F implies that the operator Υ1 is
continuous. Also, Υ1Br ⊂ Br, for each u ∈ Br, i.e. Υ1 is uniformly bounded on
Br as

et‖Υ1u(t)‖

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖µ1‖L∞‖u‖1e

s + ‖µ3‖L∞‖u‖1(es − 1) + ‖µ4‖L∞‖u‖1(es − 1)
]
ds

+‖µ2‖L∞‖u‖1

∫ t

0

(t− s)β

Γ(β)
esds+ |u0|+

|F (0, u0)|
Γ(β + 1)

tβ

+
|b|t

|1− bη2
2
|

[
η|u0|+

|F (0, u0)|
Γ(β + 2)

ηβ+1
]
.

Thus,

‖Υ1u‖1 ≤ r
[‖µ1‖L∞ + ‖µ3‖L∞ + ‖µ4‖L∞

Γ(ν + β + 1)
+
‖µ2‖L∞

β + 1

]
+|u0|+

|F (0, u0)|
Γ(β + 1)

+
|b|

|1− η2

2
b|

( |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)

= rK + δ1

≤ r.

Finally, we will show that (Υ1Br) is equicontinuous. For this end, we define
A = sup(s,u)∈J×Br

‖A(s, u)‖, B = sup(s,r,u)∈G×Br

∫ s
0
‖B(s, r, u)‖dr, C =

sup(s,r,u)∈G×Br

∫ 1

0
‖C(s, r, u)‖dr, F = sup(s,u)∈J×Br

‖F (s, u)‖.

Let for any u ∈ Br and for each t1, t2 ∈ J with t1 ≤ t2, we have:

‖(Υ1u)(t2)− (Υ1u)(t1)‖

≤ A+B + C

Γ(ν + β + 1)

[
2|t2 − t1|ν+β + |tν+β

1 − tν+β
2 |

]
+

F

Γ(β + 1)

[
2|t2 − t1|β + |tβ1 − t

β
2 |
]

+(tβ2 − t
β
1 )
|F (0, u0)|
Γ(β + 1)

+ (t2 − t1)
|b|

|1− bη2
2
|

( |F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)

−→ 0 as t2 −→ t1,

which implies that (Υ1Br) is equi-continuous, then Υ1 is relatively compact on Br.
Hence by Arzela-Ascoli theorem, Υ1 is compact onBr. Now, all hypothesis of Theorem
2.2 hold, therefore the operator Υ has a fixed point on Br. So the problem (1)-(2) has
at least one solution on J . This proves the theorem.
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Theorem 3.3. Assume that the assumptions (A1) and (A3) are satisfied and if Lδ < 1.
Then the problem (1)-(2) has a unique solution on J .

Proof. Let the operator Υ as in Theorem 3.1. Define

Rψ = {u ∈ C(J,X) : ‖u‖ ≤ ψ}.

We fix ψ ≥ Nδ+δ1
1−Lδ , where N = max{N1, N2, N3, N4}, such that N1 =

supt∈J ‖A(t, 0)‖, N2 = supt∈J ‖F (t, 0)‖, N3 = supt∈J ‖
∫ s

0
B(t, s, 0)ds‖, N4 =

sup(t,s)∈G ‖
∫ 1

0
C(t, s, 0)ds‖.

Firstly, we will prove that ΥRψ ⊂ Rψ. For any u ∈ Rψ, we have

‖(Υu)(t)‖

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))‖+

∫ s

0

‖B(s, r, u(r))‖dr +

∫ 1

0

‖C(s, r, u(r))‖dr
]
ds

+

∫ t

0

(t− s)β−1

Γ(β)
‖F (s, u(s))‖ds+

|F (0, u0)|
Γ(β + 1)

+ |u0|+
|b|

|1− bη2
2
|

(∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

×
[
‖A(r, u(r))‖+

∫ r

0

‖B(r, σ, u(σ))‖dσ +

∫ 1

0

‖C(r, σ, u(σ))‖dσ
]
dr

+

∫ η

0

(η − r)β

Γ(β + 1)
‖F (r, u(r))‖dr +

|F (0, u0)|
Γ(β + 2)

ηβ+1 + η|u0|
)

≤ (Lψ +N)δ + δ1

≤ ψ.

Hence, ΥRψ ⊂ Rψ.
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Secondly, We shall show that Υ : Rψ −→ Rψ is a contraction. From the assumption
(A1) we have for any u, v ∈ Rψ and for each t ∈ J

‖(Υu)(t)− (Υv)(t)‖

≤
∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
‖A(s, u(s))−A(s, v(s))‖+

∫ s

0
‖B(s, r, u(r))−B(s, r, v(r))‖dr

+

∫ 1

0
‖C(s, r, u(r))− C(s, r, v(r))‖dr

]
ds+

∫ t

0

(t− s)β−1

Γ(β)
‖F (r, u(r))− F (r, v(r))‖ds

+
|b|

|1− bη22 |

(∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

[
‖A(r, u(r))−A(r, v(r))‖

+

∫ r

0
‖B(r, σ, u(σ))−B(r, σ, v(σ))‖dσ

+

∫ 1

0
‖C(r, σ, u(σ))− C(r, σ, v(σ))‖dσ

]
dr

+

∫ η

0

(η − r)β

Γ(β + 1)
‖F (r, u(r))− F (r, v(r))‖dr

)
≤ Lδ‖u− v‖.

Since Lδ < 1, it follows that Υ is a contraction, from Theorem 2.1, then there exists
u ∈ C(J,X) such that Υu = u, which is the unique solution of the problem (1)-(2) in
C(J,X). This proof is completed.

4. ULAM-HYERS STABILITY

In this section, we establish the Hyers-Ulam stability of the problem (1)-(2).

We say that the problem (1)- (2) has the Hyers-Ulam stability, if for all ε > 0 and all
function v ∈ C(J,X) satisfying

v(t) =

∫ t

0

(t− s)ν+β−1

Γ(ν + β)

[
A(s, v(s)) +

∫ s

0
B(s, r, v(r))dr +

∫ 1

0
C(s, r, v(r))dr

]
ds

+

∫ t

0

(t− s)β−1

Γ(β)
F (s, v(s))ds+ v0 −

F (0, v0)

Γ(β + 1)
tβ

+
bt

1− bη22

[ ∫ η

0

(η − r)ν+β

Γ(ν + β + 1)

(
A(r, v(r)) +

∫ r

0
B(r, σ, v(σ))dσ +

∫ 1

0
C(r, σ, v(σ))dσ

)
dr

+

∫ η

0

(η − r)β

Γ(β + 1)
F (r, v(r))dr − F (0, v0)

Γ(β + 2)
ηβ+1 + ηv0

]
. (16)

We define the nonlinear continuous operator ∆ : C(J,X) −→ C(J,X), as follows

∆v(t) =c Dν+β
0+ v(t)−cDν

0+F (t, v(t))−A(t, v(t))−
∫ t

0

B(t, s, v(s))ds−
∫ 1

0

C(t, s, v(s))ds.
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Definition 4.1. [22] For each ε > 0 and for each solution v of the problem (1)- (2),
such that

‖∆v‖ ≤ ε, (17)

the problem (1), is said to be Ulam-Hyers stable if we can find a positive real number
α and a solution u ∈ C(J,X) of the problem (1), satisfying the inequality

‖u(t)− v(t)‖ ≤ αε∗, (18)

where ε∗ is a positive real number depending on ε.

Definition 4.2. [23] Let m ∈ C(R+,R+) such that for each solution v of the problem
(1), we can find a solution u ∈ C(J,X) of the problem (1) such that

‖u(t)− v(t)‖ ≤ mε∗, t ∈ J. (19)

Then the problem (1), is said to be generalized Ulam-Hyers stable.

Definition 4.3. [22] For each ε > 0 and for each solution v of the problem (1) is called
Ulam-Hyers-Rassias stable with respect to Θ ∈ C(J,R+) if

‖∆v(t)‖ ≤ εΘ(t), t ∈ J, (20)

and there exist a real number α > 0 and a solution v ∈ C(J,X) of the problem (1)
such that

‖u(t)− v(t)‖ ≤ αε∗Θ(t), t ∈ J. (21)

where ε∗ is a positive real number depending on ε.

Theorem 4.1. Assume that (A1) holds, with LK < 1. The problem (1) is both
Ulam-Hyers and generalized Ulam-Hyers stable.

Proof. Let u ∈ C(J,X) be a solution of (1), satisfying (3) in the sense of Theorem 3.3
Let v be any solution satisfying (17). Lemma 3.1 implies the equivalence between
the operators ∆ and Υ – Id (where Id is the identity operator) for every solution
v ∈ C(J,X) of (1) satisfying LK < 1. Therefore, we deduce by the fixed-point
property of the operator Υ that:

‖v(t)− u(t)‖ = ‖v(t)−Υv(t) + Υv(t)− u(t)‖
= ‖v(t)−Υv(t) + Υv(t)−Υu(t)‖
≤ ‖Υv(t)−Υu(t)‖+ ‖Υv(t)− v(t)‖
≤ LK‖u− v‖+ ε,
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because LK < 1 and ε > 0, we find

‖u− v‖ ≤ ε

1− LK
.

Fixing ε∗ = ε
1−LK , and α = 1, we obtain the Ulam-Hyers stability condition. In

addition, the generalized Ulam-Hyers stability follows by taking mε = ε
1−LK .

Theorem 4.2. Assume that (A1) holds with L < 1
K

, and there exists a function Θ ∈
C(J,R+) satisfying the condition (20). Then the problem (1) is Ulam-Hyers-Rassias
stable with respect to Θ.

Proof. We have from the proof of Theorem 4.1,

‖u(t)− v(t)‖ ≤ ε∗Θ(t), t ∈ J.

where ε∗ = ε
1−LK . This completes the proof.

5. CONCLUDING REMARKS

In this paper, we studied the existence and uniqueness of solutions for a class of
nonlinear Caputo fractional Volterra-Fredholm integro-differential equations with the
integral conditions. In addition, the Ulam-Hyers stability and generalized Ulam-Hyers
stability for solutions of the given problem are also discussed. The desired results are
proved by using via using Banach and Krasnoselskii fixed point theorems.
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