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Abstract

In this paper, we derive necessary and sufficient conditions for the existence of
a weak solution to the Maxwell-Stokes type equation associated with slip-Navier
boundary condition. Our equation is nonlinear and contains, so called, p-curlcurl
system. Moreover, we give a result on the continuous dependence of the weak
solution on the data.
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1. INTRODUCTION

In this paper, we give necessary and sufficient conditions for the existence of a weak
solution to the Maxwell-Stokes type equation.

Amrouche and Seloula [3] considered the stationary Stokes equations:

−∆u+∇π = f and divu = 0 in Ω, (1.1)

where u is the velocity vector field, π is the pressure, f is the external force and Ω ⊂ R3

is a bounded possibly multi-connected domain with a boundary Γ. They imposed the
following slip-Navier boundary conditions (cf. Amrouche and Rejaiba [2]).

u · n = g and curlu× n = h× n on Γ, (1.2)

where n is the unit outward normal vector to Γ, g and h are given functions. They
derived that the compatibility conditions are necessary and sufficient for the existence
of a weak solution to (1.1) and the boundary conditions (1.2) plus some conditions
associated with the multi-connected property of Ω.
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We are interested in considering the following Maxwell-Stokes type system.

curl [St(x, |curlu|2)curlu] +∇π = f and divu = 0 in Ω, (1.3)

where S(x, t) is a Carathéodory function on Ω × [0,∞) satisfying some structure
conditions. In the particular case where S(x, t) = tp/2 (1 < p < ∞), the first equation
of (1.3) becomes, so called, p-curlcurl equation.

Such partial differential system involving the operator curl appear in many areas
in mathematical physics. For example, for the Bohn-Infeld model in nonlinear
electrodynamics, see Bohn and Infeld [9] and Yang [18]. For the several models in
the theory of superconductivity, see Bates and Pan [8] and Chapman [11].

From a mathematical point of view, since the first equation of (1.3) involves the operator
curl and is nonlinear, the system has special character that are quite different from
the first equation of (1.1). The existence of solutions of such systems are sensitive
from the nonlinearity. To show the existence of solutions of (1.1) with some boundary
conditions, the Inf-sup theorem fulfills an important role. However, we can not apply
this theorem to the system (1.3). To overcome it, we shall use a minimization problem
that is developed in the author’s previous paper Aramaki [6].

We impose the following boundary conditions.

u · n = g and St(x, |curlu|2)curlu× n = h× n on Γ. (1.4)

Moreover, since Ω may be multi-connected, if we assume that there exist cuts Σj

(j = 1, . . . , J) such that Ω◦ = Ω \ (∪Jj=1Σj) is simply connected, then we impose

〈u · n, 1〉Σj
= 0 for j = 1, . . . , J, (1.5)

where 〈·, ·〉Σj
denotes the duality bracket of W−1/p,p(Σj) and W 1/p,p′(Σj). In these

situations, we give necessary and sufficient conditions for the existence of a weak
solution to (1.3)-(1.5).

The paper is organized as follows. Section 2 consists of two subsections. In subsection
2.1, we give some preliminaries. In subsection 2.2, we give the main theorem (Theorem
2.6) that states necessary and sufficient conditions for the existence of the weak solution
to the problem (1.3)-(1.5). Section 3 is devoted to the proof of the main theorem. In
section 4, we consider the continuous dependence of the weak solution on the data. In
Appendix, we convince the Green type equality.
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2. PRELIMINARIES AND THE MAIN THEOREM

This section consists of two subsections. In subsection 2.1, we give some preliminaries
that are necessary later. In subsection 2.2, we give the notion of a weak solution for the
Maxwell-Stokes system (1.3)-(1.5) and state the main theorem (Theorem 2.6).

2.1. Preliminaries
Let Ω be a bounded domain in R3 with a C1,1 boundary Γ and let 1 < p < ∞. We
denote the conjugate exponent of p by p′, i.e., (1/p) + (1/p′) = 1. From now on we
use Lp(Ω), Wm,p(Ω) and W s,p(Γ) for the standard Lp and Sobolev spaces of functions
in Ω and Γ. For any Banach space B, we denote B × B × B by boldface character B.
Hereafter, we use this character to denote vector and vector-valued functions, and we
denote the standard Euclidean inner product of vectors a and b in R3 by a · b. For the
dual spaceB′ ofB, we write 〈·, ·〉B′,B for the duality bracket.

We assume that a Carathéodory function S(x, t) in Ω × [0,∞) satisfies the following
structure conditions. For a.e. x ∈ Ω, S(x, t) ∈ C2((0,∞)) ∩ C0([0,∞)), and there
exist positive constants 0 < λ ≤ Λ <∞ such that for a.e. x ∈ Ω,

S(x, 0) = 0 and λt(p−2)/2 ≤ St(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1a)

λt(p−2)/2 ≤ St(x, t) + 2tStt(x, t) ≤ Λt(p−2)/2 for t > 0, (2.1b)

If 1 < p < 2, Stt(x, t) < 0, and if p ≥ 2, Stt(x, t) ≥ 0 for t > 0, (2.1c)

where St = ∂S/∂t and Stt = ∂2S/∂t2. We note that from (2.1a), we have
2

p
λtp/2 ≤ S(x, t) ≤ 2

p
Λtp/2 for t ≥ 0. (2.2)

For a.e. x ∈ Ω, it follows from (2.1b) that the function G(t) = S(x, t2) is a strictly
convex function with respect to t ∈ [0,∞). Indeed, G′(t) = 2tSt(x, t

2) and so

G′′(t) = 2(St(x, t
2) + 2t2Stt(x, t

2) ≥ 2λtp−2 > 0 for t > 0.

Example 2.1. If S(x, t) = ν(x)tp/2, where ν is a measurable function in Ω and satisfies
0 < ν∗ ≤ ν(x) ≤ ν∗ <∞ for a.e. x ∈ Ω for some constants ν∗ and ν∗, then it follows
from elementary calculations that (2.1a)-(2.1c) hold. .

We give two lemmas on a monotonic property and a boundedness of St.

Lemma 2.2. There exists a constant c > 0 depending only on p and λ such that for all
a, b ∈ R3,

(St(x, |a|2)a−St(x, |b|2)b)·(a−b) ≥

{
c|a− b|p if p ≥ 2,

c(|a|+ |b|)p−2|a− b|2 if 1 < p < 2.
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In particular, St is strictly monotonic, that is,

(St(x, |a|2)a− St(x, |b|2)b) · (a− b) > 0 for a 6= b.

For the proof, see Aramaki [7, Lemma 3.6].

Lemma 2.3. There exists a constants C1 > 0 depending only on Λ and p such that for
any a, b ∈ R3,

|St(x, |a|2)a − St(x, |b|2)b| ≤

{
C1|a− b|p−1 if 1 < p < 2,

C1(|a|+ |b|)p−2|a− b| if p ≥ 2.

For the proof, see Aramaki [5]. Since we allow Ω to be a multi-connected domain in
R3, we assume that the domain Ω satisfies the following (O1) and (O2). (cf. Amrouche
and Seloula [4], Dautray and Lions [12] and Témam [16]). Let Ω ⊂ R3 be a bounded
domain with a C1,1 boundary Γ, and Ω be locally situated on one side of Γ.

(O1) Γ has a finite number of connected components Γ0,Γ1, . . . ,ΓI with Γ0 denoting
the boundary of the infinite connected component of R3 \ Ω.

(O2) There exist J connected open surfaces Σj, (j = 1, . . . , J), called cuts, contained
in Ω such that

(a) Σj is an open subset of a smooth manifoldMj .

(b) ∂Σj ⊂ Γ (j = 1, . . . , J), where ∂Σj denotes the boundary of Σj , and Σj is
non-tangential to Γ.

(c) Σj ∩ Σk = ∅ (j 6= k).

(d) The open set Ω◦ = Ω\ (∪Jj=1Σj) is simply connected and pseudo C1,1 class.

The number J is called the first Betti number and I the second Betti number. We say
that Ω is simply connected if J = 0, and Ω has no holes if I = 0. We define two spaces.

Kp
T (Ω) = {v ∈ Lp(Ω); curlv = 0, div v = 0 in Ω,v · n = 0 on Γ},

Kp
N(Ω) = {v ∈ Lp(Ω); curlv = 0, div v = 0 in Ω,v × n = 0 on Γ}.

Then it is well known that dimKp
T (Ω) = J and dimKp

N(Ω) = I . In the later, we need
the basis of Kp

T (Ω). Let qTj ∈ W 2,p(Ω◦) be a unique solution of the problem
−∆qTj = 0 in Ω◦,

∂nq
T
j = 0 on Γ,[

qTj
]

Σk
= const. and

[
∂nq

T
j

]
Σk

= 0 for k = 1, . . . , J,

〈∂nqTj , 1〉Σk
= δjk for k = 1, . . . , J,

(2.3)
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where
[
qTj
]

Σk
denotes the jump of qTj across Σk. Since ∇qTj ∈ Lp(Ω◦), it can be

extended to a function of Lp(Ω), and we denote it by ∇̃qTj . Then the space Kp
T (Ω) has

a basis {∇̃qTj }Jj=1 (cf. [4, Corollary 4.1]).

We introduce some spaces of vector functions. If we define

Xp(Ω) = {v ∈ Lp(Ω); curlv ∈ Lp(Ω), div v ∈ Lp(Ω)}

with the norm

‖v‖Xp(Ω) = ‖v‖Lp(Ω) + ‖curlv‖Lp(Ω) + ‖div v‖Lp(Ω),

then Xp(Ω) is a Banach space. Moreover, we define two closed subspace of Xp(Ω) by

Xp
T (Ω) = {v ∈ Xp(Ω);v · n = 0 on Γ},

Vp
T (Ω) = {v ∈ Xp

T (Ω); div v = 0 in Ω, 〈v · n, 1〉Σj
= 0 for j = 1, . . . , J},

where 〈·, ·〉Σj
denotes the duality of W−1/p,p(Σj) and W 1−1/p′,p′(Σj). The following

inequality is used frequently (cf. [4]). If we define

X1,p(Ω) = {v ∈ Xp(Ω);v · n ∈ W 1−1/p,p(Γ)},

then we can see that X1,p(Ω) ⊂W 1,p(Ω), and there exists a constant C > 0 depending
only on p and Ω such that for v ∈ X1,p(Ω),

‖v‖W 1,p(Ω) ≤ C(‖curlv‖Lp(Ω) + ‖div v‖Lp(Ω) + ‖v‖Lp(Ω)

+ ‖v · n‖W 1−1/p,p(Γ)). (2.4)

Moreover, we can deduce the following inequality (cf. [4, p. 40]), for every function
v ∈W 1,p(Ω) with v · n = 0 on Γ,

‖v‖Lp(Ω) + ‖∇v‖Lp(Ω) ≤ C(‖curlv‖Lp(Ω) + ‖div v‖Lp(Ω) +

J∑
j=1

|〈v · n, 1〉Σj |). (2.5)

Thus we have the following.

Lemma 2.4. The space Vp
T (Ω) is a reflexive Banach space with the norm

‖v‖Vp
T (Ω) = ‖curlv‖Lp(Ω)

which is equivalent to the norm ‖v‖W 1,p(Ω).
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2.2. The main theorem
In this subsection, we consider the following Maxwell-Stokes type system.

curl [St(x, |curlu|2)curlu] +∇π = f in Ω,

divu = 0 in Ω,

u · n = g on Γ,

St(x, |curlu|2)curlu× n = h× n on Γ,

〈u · n, 1〉Σj
= 0 j = 1, . . . J,

(2.6)

where f , g and h are given functions such that f ∈ Xp
T (Ω)′, g ∈ W 1−1/p,p(Γ) and

h × n ∈ W−1/p′,p′(Γ). When Ω is simply connected, the last conditions of (2.6) are
unnecesarry. For g ∈ W 1−1/p,p(Γ), define

Xp
T (g,Ω) = {v ∈ Xp(Ω);v · n = g}.

Then it follows from (2.4) that Xp
T (g,Ω) is a closed convex subset of W 1,p(Ω).

Moreover, define

Vp
T (g,Ω) = {v ∈ Xp

T (g,Ω) : div v = 0 in Ω, 〈v · n, 1〉Σj
= 0, j = 1, . . . J}.

We give the notion of a weak solution of the system (2.6).

Definition 2.5. We say that (u, π) ∈W 1,p(Ω)× Lp′(Ω)/R is a weak solution of (2.6),
if u ∈ Vp

T (g,Ω) and (u, π) satisfies∫
Ω

St(x, |curlu|2)curlu · curlvdx −
∫

Ω

πdiv vdx = 〈f ,v〉Ω + 〈h × n,v〉Γ (2.7)

for all v ∈ Xp
T (Ω), where

〈f ,v〉Ω = 〈f ,v〉Xp
T (Ω)′,Xp

T (Ω)

and
〈h× n,v〉Γ = 〈h× n,v〉W−1/p′,p′ (Γ),W 1−1/p,p(Γ).

We are in a position to state the main theorem.

Theorem 2.6. Let Ω be a bounded domain in R3 with a C1,1 boundary Γ satisfying
(O1) and (O2), and assume that a Carathéodory function S(x, t) satisfies the structure
conditions (2.1a)-(2.1c). Let f ∈ Xp

T (Ω)′, g ∈ W 1−1/p,p(Γ) and h×n ∈W−1/p′,p′(Γ).
Then the following compatibility conditions

〈f ,v〉Ω + 〈h× n,v〉Γ = 0 for all v ∈ Kp
T (Ω), (2.8)
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∫
Γ

gdS = 0, (2.9)

where dS denotes the surface measure on Γ are necessary and sufficient for the
existence of a weak solution (u, π) ∈ W 1,p(Ω) × Lp

′
(Ω)/R to the Maxwell-Stokes

problem (2.6). In this situation, the weak solution is unique and there exists a constant
C > 0 such that

‖u‖p
W 1,p(Ω)

+ ‖π‖p
′

Lp′ (Ω)/R

≤ C(‖f‖p
′

Xp
T (Ω)′

+ ‖g‖p
W 1−1/p,p(Γ)

+ ‖h× n‖p
′

W−1/p′,p′ (Γ)
). (2.10)

Remark 2.7. When S(x, t) = t, the system (2.6) becomes to the system (1.1), (1.2) and
(1.5). Thus in the case where p = 2, Theorem 2.6 is an extension of the result of [3,
Theorem 4.4]. In fact, the authors in [3] assumed that f ∈H2

0(div ,Ω)′, where

H2
0(div ,Ω) = {v ∈ L2(Ω); div v ∈ L2(Ω),v · n = 0 on Γ}.

However, since we can easily see that X2
T (Ω) ↪→ H2

0(div ,Ω), our result is also an
extension to the case where f ∈ X2

T (Ω)′.

3. PROOF OF THEOREM 2.6

In this section, we derive the proof of Theorem 2.6.

From now on, we write various positive constants depending only on p, λ,Λ and Ω by
C which may vary from line to line.

Before beginning to prove Theorem 2.6, we consider the case without the pressure,
under more stronger assumptions. Let f ∈ Lp

′
(Ω) satisfy div f = 0 in Ω, g ∈

W 1−1/p,p(Γ) and h × n ∈ W−1/p′,p′(Γ). We consider the following problem: Find
ξ ∈W 1,p(Ω) such that

curl [St(x, |curl ξ|2)curl ξ] = f in Ω,

div ξ = 0 in Ω,

ξ · n = g on Γ,

St(x, |curl ξ|2)curl ξ × n = h× n on Γ,

〈ξ · n, 1〉Σj
= 0 for j = 1, . . . , J.

(3.1)

We introduce the compatibility conditions.∫
Ω

f · vdx+ 〈h× n,v〉Γ = 0 for all v ∈ Kp
T (Ω), (3.2)
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∫
Γ

gdS = 0, (3.3)

f · n− div Γ(h× n) = 0 on Γ, (3.4)

where div Γ denotes the surface divergence (cf. Mitreau et al. [15, p. 143]).

We say ξ ∈ Vp
T (g,Ω) is a weak solution of (3.1), if ξ satisfies∫

Ω
St(x, |curl ξ|2)curl ξ · curlvdx =

∫
Ω
f · vdx + 〈h × n,v〉Γ for all v ∈ XpT (Ω). (3.5)

We have the following proposition.

Proposition 3.1. Assume that f ∈ Lp′(Ω) satisfies div f = 0 in Ω, g ∈ W 1−1/p,p(Γ)

and h×n ∈W−1/p′,p′(Γ). Then the compatibility conditions (3.2)-(3.4) are necessary
and sufficient for the existence of a weak solution to (3.1). In this situation, the solution
ξ is unique and there exists a constant C > 0 such that

‖ξ‖p
W 1,p(Ω)

≤ C(‖f‖p
′

Lp′ (Ω)
+ ‖g‖p

W 1−1/p,p(Γ)
+ ‖h× n‖p

′

W−1/p′,p′ (Γ)
).

Proof. Step 1 (Necessity)

Let ξ ∈ Vp
T (g,Ω) be a weak solution of (3.1). Since

curl [St(x, |curl ξ|2)curl ξ] = f ∈ Lp′(Ω)

and
div curl [St(x, |curl ξ|2)curl ξ] = 0 in Ω,

the normal trace

n · curl [St(x, |curl ξ|2)curl ξ] ∈ W−1/p′,p′(Γ)

is well defined. By [15, (4.5)], for any φ ∈ W 2,p(Ω), we have

〈f · n, φ〉W−1−1/p′,p′ (Γ),W 2−1/p,p(Γ)

= 〈n · curl [St(x, |curl ξ|2)curl ξ], φ〉W−1−1/p′,p′ (Γ),W 2−1/p,p(Γ)

= 〈div Γ(h× n, φ〉W−1−1/p′,p′ (Γ),W 1+1/p′,p(Γ).

Thus we have f · n = div Γ(h × n) in W−1−1/p′,p′(Γ). Since f ∈ Lp′(Ω) satisfies
div f = 0 in Ω, we have f · n ∈ W−1/p′,p′(Γ), so (3.4) holds in W−1/p′,p′(Γ). Since
div ξ = 0 in Ω and ξ · n = g on Γ, (3.3) easily follows from the divergence theorem.
To show (3.2), we consider the following Neumann problem{

∆θ = 0 in Ω,
∂θ
∂n

= g on Γ.
(3.6)
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Thanks to (3.3) and Girault and Raviart [14, Theorem 1.10], the problem (3.6) has a
unique solution θ ∈ W 2,p(Ω), up to an additive constant, with the estimate

‖θ‖W 2,p(Ω) ≤ C(p,Ω)‖g‖W 1−1/p,p(Γ). (3.7)

Define z = ξ − ∇θ ∈ W 1,p(Ω). Since curl z = curl ξ in Ω and z · n = 0 on Γ, z
satisfies the following system.

curl [St(x, |curl z|2)curl z] = f in Ω,

div z = 0 in Ω,

z · n = 0 on Γ,

St(x, |curl ξ|2)curl ξ × n = h× n on Γ.

(3.8)

Hence∫
Ω
St(x, |curl z|2)curl z · curlvdx =

∫
Ω
f · vdx + 〈h× n,v〉Γ for all v ∈ XpT (Ω). (3.9)

In particular, if we take v ∈ Kp
T (Ω) as a test function of (3.9), we see that (3.2) holds.

Step 2 (Sufficiency).

We assume that the compatibility conditions (3.2)-(3.4) hold. We show that (3.8) has a
unique weak solution z ∈W 1,p(Ω). Then if we define

ξ = z +∇θ −
J∑
j=1

〈(z +∇θ) · n, 1〉Σj
∇̃qTj , (3.10)

where θ is a unique solution of (3.6), up to an additive constant, then curl ξ = curlz in
Ω, div ξ = 0 in Ω, ξ · n = g on Γ, St(x, |curl ξ|2)curl ξ × n = h× n on Γ, and

〈ξ · n, 1〉Σk
= 〈(z +∇θ) · n, 1〉Σk

−
J∑
j=1

〈(z +∇θ) · n, 1〉Σj
〈n · ∇̃qTj , 1〉Σk

= 〈(z +∇θ) · n, 1〉Σk
−

J∑
j=1

δjk〈(z +∇θ) · n, 1〉Σj

= 0 for every k = 1, . . . , J.

Hence ξ is a weak solution of (3.1).

In order to show that (3.8) has a unique weak solution, we derive that the following
problem has a unique solution: Find z ∈ Vp

T (Ω) such that∫
Ω

St(x, |curl z|2)curl z · curlvdx =

∫
Ω

f · vdx+ 〈h× n,v〉Γ
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for all v ∈ Vp
T (Ω).

Though we use a minimization problem, taking the proof of Theorem 2.6 into
consideration, we introduce a more general minimization problem. We assume that
f ∈ Xp

T (Ω)′ and h×n ∈W−1/p′,p′(Γ). We note that if f ∈ Lp′(Ω), then f ∈ Xp
T (Ω)′.

Define a functional on Vp
T (Ω) by

F [v] =
1

2

∫
Ω

S(x, |curlv|2)dx− 〈f ,v〉Ω − 〈h× n,v〉Γ,

and put

f∗ = inf
v∈Vp

T (Ω)
F [v]. (3.11)

Lemma 3.2. Assume that f ∈ Xp
T (Ω)′ and h × n ∈ W−1/p′,p′(Γ). Then the

minimization problem (3.11) has a unique minimizer z ∈ Vp
T (Ω), that is,

F [z] = f∗ = inf
v∈Vp

T (Ω)
F [v].

The minimizer z is a unique solution of the following variational problem.∫
Ω

St(x, |curl z|2)curl z · curlvdx = 〈f ,v〉Ω + 〈h× n,v〉Γ (3.12)

for all v ∈ Vp
T (Ω).

Moreover, there exists a constant C > 0 such that

‖z‖pVp
T (Ω)
≤ C(‖f‖p

′

Xp
T (Ω)′

+ ‖h× n‖p
′

W−1/p′,p′ (Γ)
). (3.13)

Proof. From Lemma 2.4, we know that Vp
T (Ω) is a reflexive Banach space with the

norm

‖v‖Vp
T (Ω) = ‖curlv‖Lp(Ω) ≈ ‖v‖W 1,p(Ω).

For any v ∈ Vp
T (Ω), we have

|〈f ,v〉Ω| ≤ ‖f‖Xp
T (Ω)′‖v‖Xp

T (Ω) = ‖f‖Xp
T (Ω)′‖v‖Vp

T (Ω),

and

|〈h× n,v〉Γ| ≤ ‖h× n‖W−1/p′,p′ (Γ)‖v‖W 1−1/p,p(Γ)

≤ C‖h× n‖W−1/p′,p′ (Γ)‖v‖W 1,p(Ω)

≤ C‖h× n‖W−1/p′,p′ (Γ)‖v‖Vp
T (Ω)
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Thus
Vp
T (Ω) 3 v 7→ 〈f ,v〉Ω + 〈h× n,v〉Γ

defines a functional in Vp
T (Ω)′. Using the structure condition (2.1b), we see that F is

a strictly convex and proper functional. By Aramaki [6], we can see that F is lower
semi-continuous. So F is weakly lower semi-continuous. By (2.2) and the Young
inequality, for any ε > 0, we have

F [v] ≥ λ

p
‖v‖pVp

T (Ω)
− C(ε)(‖f‖p

′

Xp
T (Ω)′

+ ‖h× n‖p
′

W−1/p′,p′ (Γ)
)− ε‖v‖pVp

T (Ω)
.

If we choose ε > 0 so that ε < 2λ/p, then we can see that F is coercive. Thus it
follows from Ekeland and Témam [13, Proposition 1.2] that the minimization problem
has a unique minimizer z ∈ Vp

T (Ω). By the Euler-Lagrange equation, the minimizer
z ∈ Vp

T (Ω) satisfies (3.12). Taking v = z as a test function of (3.12) and using (2.1a),
we get the estimate (3.13). We note that from the strict monotonicity of St (Lemma
2.2), the solution of (3.12) is unique.

We continue the proof of Proposition 3.1. We show that we can extend the space Vp
T (Ω)

of test function of (3.12) to Xp
T (Ω), that is, it shows that z satisfies (3.9). In fact, for

any ṽ ∈ Xp
T (Ω), choose χ ∈ W 2,p(Ω) such that{

∆χ = div ṽ in Ω,
∂χ
∂n

= 0 on Γ.
(3.14)

Since
∫

Ω
div ṽdx =

∫
Γ
ṽ · ndS = 0, (3.14) has a unique solution χ ∈ W 2,p(Ω), up to

an additive constant, Define

v = ṽ −∇χ−
J∑
j=1

〈(ṽ −∇χ) · n, 1〉Σj
∇̃qTj ∈ Vp

T (Ω).

Since curlv = curl ṽ in Ω, and div f = 0 in Ω, we have∫
Ω

f · ∇χdx+ 〈h× n,∇χ〉Γ = 〈f · n− div Γ(h× n), χ〉Γ = 0

from (3.3), and ∫
Ω

f · ∇̃qTj dx+ 〈h× n, ∇̃qTj 〉Γ = 0

from (3.1), so we can see that z satisfies (3.9).

Step 3 (The uniqueness of a weak solution).
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Let ξ1 and ξ2 in Vp
T (g,Ω) be two weak solutions of (3.1). Then we can take ξ1 − ξ2 ∈

Vp
T (Ω) ⊂ Xp

T (Ω) as a test function of (3.5). Thus∫
Ω

St(x, |curl ξi|2)curl ξi ·curl (ξ1−ξ2)dx =

∫
Ω

f ·(ξ1−ξ2)dx+〈h×n, ξ1−ξ2〉Γ

for i = 1, 2. Hence∫
Ω

(
St(x, |curl ξ1|2)curl ξ1 − St(x, |curl ξ2|2)curl ξ2

)
· curl (ξ1 − ξ2)dx = 0.

From the strict monotonicity (Lemma 2.2), we have curl (ξ1 − ξ2) = 0 in Ω. Since
div (ξ1 − ξ2) = 0 in Ω, (ξ1 − ξ2) · n = 0 on Γ and 〈ξ1 − ξ2〉Σj

= 0 for j = 1, . . . , J ,
it follows from (2.5) that ξ1 = ξ2.

Step 4 (Estimate).

From (3.10) and (3.7), we have

‖ξ‖p
W 1,p(Ω)

≤ C(‖z‖p
W 1,p(Ω)

+ ‖∇θ‖p
W 1,p(Ω)

)

≤ C(‖z‖p
W 1,p(Ω)

+ ‖g‖p
W 1−1/p,p(Γ)

).

From (3.9) with v = z, we have

λ‖curl z‖pLp(Ω) ≤ C(ε)(‖f‖p
′

Lp′ (Ω)
+ ‖h× n‖p

′

W−1/p′,p′ (Γ)
) + ε‖z‖pVp

T (Ω)
.

If we choose ε = λ/2, then we have

λ

2
‖curl z‖pLp(Ω) ≤ C(ε)(‖f‖p

′

Lp′ (Ω)
+ ‖h× n‖p

′

W−1/p′,p′ (Γ)
).

Thus we get the estimate. This completes the proof of Proposition 3.1.

Proof of Theorem 2.6.

Step 1 (Necessity).

Let (u, π) ∈ Vp
T (g,Ω) × Lp′(Ω)/R be a weak solution of (2.6). Since divu = 0 in Ω

and u · n = g on Γ, it follows from the divergence theorem that (2.9) holds. For (2.8),
since (u, π) ∈ Vp

T (g,Ω) × Lp′(Ω)/R is a weak solution of (2.6), we can see that (2.7)
holds. If we choose v ∈ Kp

T (Ω) as a test function of (2.7), we get (2.8).

Step 2 (Sufficiency).

Assume that f ∈ Xp
T (Ω)′, g ∈ W 1−1/p,p(Γ) and h×n ∈W−1/p′,p′(Γ) satisfy (2.8) and

(2.9). For any v ∈ Vp
T (Ω),

|〈f ,v〉Ω| ≤ ‖f‖Xp
T (Ω)′‖v‖Xp

T (Ω) = ‖f‖Xp
T (Ω)′‖v‖Vp

T (Ω).
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We consider the following problem: Find z ∈ Vp
T (Ω) such that∫

Ω

St(x, |curl z|2)curl z · curlvdx = 〈f ,v〉Ω + 〈h× n,v〉Γ (3.15)

for all v ∈ Vp
T (Ω). It follows from Lemma 3.2 and (3.12) that (3.15) has a unique

solution z ∈ Vp
T (Ω), and there exists a constant C > 0 such that

‖z‖p
W 1,p(Ω)

≤ C(‖f‖p
′

Xp
T (Ω)′

+ ‖h× n‖p
′

W−1/p′,p′ (Γ)
). (3.16)

We extend the space Vp
T (Ω) of test functions in (3.15) to any ṽ ∈ Xp

T (Ω) with div ṽ = 0

in Ω. Indeed, for any ṽ ∈ Xp
T (Ω) with div ṽ = 0 in Ω, define

v = ṽ −
J∑
j=1

〈ṽ · n, 1〉Σj
∇̃qTj .

Then v ∈ Vp
T (Ω) and curlv = curl ṽ in Ω. From the compatibility condition (2.8), we

have
〈f , ∇̃qTj 〉Ω + 〈h× n, ∇̃qTj 〉Γ = 0.

Therefore, we have∫
Ω

St(x, |curl z|2)curl z · curl ṽdx = 〈f , ṽ〉Ω + 〈h× n, ṽ〉Γ (3.17)

for all ṽ ∈ Xp
T (Ω) with div ṽ = 0 in Ω. Taking φ ∈ Dσ(Ω) = {v ∈ D(Ω); div v =

0 in Ω}, where D(Ω) is the space of functions in C∞(Ω) with compact support in Ω,
as a space of test functions of (3.17), we have

〈curl [St(x, |curl z|2)curl z]− f ,φ〉D′(Ω),D(Ω) = 0 for all φ ∈Dσ(Ω).

for all φ ∈ Dσ(Ω). Hence, from the De Rham theorem (cf. Boyer and Fabrie [10,
Theorem IV.2.4]), there exists π ∈ Lp′(Ω) such that

curl [St(x, |curl z|2)curl z] +∇π = f in Ω.

Since ∇π ∈ Xp
T (Ω)′ from (A.1) in Appendix, we have

curl [St(x, |curl z|2)curl z] = f −∇π ∈ Xp
T (Ω)′.

Hence, for any v ∈ Xp
T (Ω) with div v = 0 in Ω, it follows from the Green formula (cf.

(A.2) in Appendix) that∫
Ω

St(x, |curl z|2)curl z · curlvdx

= 〈curl [St(x, |curl z|2)curl z],v〉Ω + 〈St(x, |curl z|2)curl z × n,v〉Γ
= 〈f ,v〉Ω − 〈∇π,v〉Ω + 〈St(x, |curl z|2)curl z × n,v〉Γ.
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Since 〈∇π,v〉Ω = 0 for any v ∈ Xp
T (Ω) with div v = 0 in Ω, from (3.17), we have

〈St(x, |curl z|2)curl z × n,v〉Γ = 〈h× n,v〉Γ

for all v ∈ Xp
T (Ω) with div v = 0 in Ω. This implies that

St(x, |curl z|2)curl z × n = h× n on Γ.

Thus (z, π) ∈W 1,p(Ω)× Lp′(Ω)/R is a weak solution of
curl [St(x, |curl z|2)curl z] +∇π = f in Ω,

div z = 0 in Ω,

z · n = 0 on Γ,

St(x, |curl z|2)curl z × n = h× n on Γ.

(3.18)

Define

u = z +∇θ −
J∑
j=1

〈(z +∇θ) · n, 1〉Σj
∇̃qTj , (3.19)

where θ ∈ W 2,p(Ω) is a solution of (3.6). Here we note that we use (2.9) for the
existence of solution θ. Then curlu = curlz in Ω, divu = 0 in Ω and u ·n = ∂θ

∂n
= g

on Γ. Since 〈n ·∇̃qTj , 1〉Σk
= δjk, we have 〈u ·n, 1〉Σk

= 0 for k = 1, . . . , J . Therefore,
(u, π) ∈W 1,p(Ω)× Lp′(Ω)/R is a weak solution of (2.6).

Step 3 (Uniqueness of a weak solution).

Let (u1, π1), (u2, π2) ∈ Vp
T (g,Ω) × Lp′(Ω)/R be two weak solutions of (2.6). Then,

from (2.7), we have∫
Ω

St(x, |curlui|2)curlui · curlvdx−
∫

Ω

πidiv vdx

= 〈f ,v〉Ω + 〈h× n,v〉Γ for all v ∈ Xp
T (Ω) and i = 1, 2. (3.20)

Since (ui, πi) satisfies the first equation of (2.6) in the distribution sense, we have{
∆πi = div f in Ω,
∂πi
∂n

= f · n− div Γ(h× n) on Γ,

hence, {
∆(π1 − π2) = 0 in Ω,
∂
∂n

(π1 − π2) = 0 on Γ.

Therefore, π1 − π2 is a constant, i.e., π1 = π2 in Lp′(Ω)/R. Moreover, we have∫
Ω

(π1 − π2)div vdx = const.

∫
Ω

div vdx = const.

∫
Γ

v · ndS = 0
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for all v ∈ Xp
T (Ω). Taking u1 − u2 ∈ Vp

T (Ω) ⊂ Xp
T (Ω) as a test function of (3.20), we

can see that∫
Ω

(
St(x, |curlu1|2)curlu1−St(x, |curlu2|2)curlu2

)
· (curlu1− curlu2)dx = 0

Since St is strictly monotone (Lemma 2.2), we have curl (u1 − u2) = 0 in Ω. Since
u1 − u2 ∈ Vp

T (Ω), we have u1 = u2 in Ω.

Step 4 (Estimate).

According to (3.19), we can write

u = z +∇θ −
J∑
j=1

〈(z +∇θ) · n, 1〉Σj
∇̃qTj ,

where z is a solution of (3.18) and θ is a solution of (3.6). Therefore, from (3.16) and
(3.7), we have

‖u‖p
W 1,p(Ω)

≤ C(‖f‖p
′

Xp
T (Ω)

+ ‖h× n‖p
′

W−1/p′,p′ (Γ)
+ ‖g‖p

W 1−1/p,p(Γ)
).

On the other hand, from Amrouche and Girault [1, p. 114], we can see that

‖π‖Lp′ (Ω)/R ≤ C‖∇π‖W−1,p′ (Ω).

Since Xp
T (Ω)′ ↪→ W−1,p′(Ω) and ∇π ∈ Xp

T (Ω)′, using the first equation of (2.6), we
have

‖π‖Lp′ (Ω)/R ≤ C(‖f‖W−1,p′ (Ω) + ‖curl [St(x, |curl z|2)curl z]‖W−1,p′ (Ω))

≤ C(‖f‖Xp
T (Ω)′ + ‖St(x, |curl z|2)curl z‖Lp′ (Ω))

≤ C(‖f‖Xp
T (Ω)′ + ‖z‖p−1

W 1,p(Ω)
).

Hence, using again (3.16), we can see that

‖π‖p
′

Lp′ (Ω)/R ≤ C(‖f‖p
′

Xp
T (Ω)′

+ ‖z‖p
W 1,p(Ω)

) ≤ C(‖f‖p
′

Xp
T (Ω)′

+ ‖h×n‖p
′

W−1/p′,p′ (Γ)
).

This completes the proof of Theorem 2.6.

Remark 3.3. If we suppose in Theorem 2.6 that f ∈ Lp′(Ω) with div f = 0 in Ω and
we add the compatibility conditions (3.4), then the pressure π is constant. Indeed, from
the first equation of (2.6), we have{

∆π = 0 in Ω,
∂π
∂n

= f · n− div Γ(h× n) = 0 on Γ.

This implies that π is a constant and the Maxwell-Stokes problem (2.6) in nothing other
than problem (3.1).
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Finally, let f ∈ Xp
T (Ω)′, g ∈ W 1−1/p,p(Γ),h × n ∈W 1−/p′,p′(Γ) and χ ∈ Lp(Ω). We

consider a slightly more general equation than (2.6).

curl [St(x, |curlu|2)curlu] +∇π = f in Ω,

divu = χ in Ω,

u · n = g on Γ,

St(x, |curlu|2)curlu× n = h× n on Γ,

〈u · n, 1〉Σj
= 0 j = 1, . . . , J.

(3.21)

We impose the compatibility conditions (2.8) and∫
Γ

gdS =

∫
Ω

χdx. (3.22)

Then we have the following proposition.

Proposition 3.4. Assume that f ∈ Xp
T (Ω)′, g ∈ W 1−1/p,p(Γ),h × n ∈ W−1/p′,p′(Γ)

and χ ∈ Lp(Ω). Then the compatibility conditions (2.8) and (3.22) are necessary and
sufficient for the existence of a weak solution (ũ, π) ∈ W 1,p(Ω) × Lp′(Ω)/R. In this
situation, the weak solution is unique, and there exists a constant C > 0 such that

‖ũ‖p
W 1,p(Ω)

+ ‖π‖p
′

Lp′ (Ω)

≤ C(‖f‖p
′

Xp
T (Ω)′

+ ‖h× n‖p
′

W−1/p′,p′ (Γ)
+ ‖χ‖pLp(Ω) + ‖g‖p

W 1−1/p,p(Γ)
).

Proof. According to the proof of Theorem 2.6, it suffices to prove the existence of a
weak solution. Let (u, π) be a unique solution of (2.6) with g = 0. Thanks to (3.22),
the following Neumann problem{

∆φ = χ in Ω,
∂φ
∂n

= g on Γ

has a unique solution φ ∈ W 2,p(Ω), up to an additive constant, and there exists a
constant C > 0 such that

‖φ‖W 2,p(Ω) ≤ C(‖χ‖Lp(Ω) + ‖g‖W 1−1/p,p(Γ)). (3.23)

Define

ũ = u+∇φ−
J∑
j=1

〈(u+∇φ) · n, 1〉Σj
∇̃qTj .

Then we have curl ũ = curlu in Ω, div ũ = divu+∆φ = χ in Ω, ũ·n = u·n+ ∂φ
∂n

= g

on Γ and 〈ũ · n, 1〉Σj
= 0 for j = 1, . . . , J . The estimate follows from Theorem 2.6

and (3.23).
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4. CONTINUOUS DEPENDENCE OF A WEAK SOLUTION ON THE DATA

In this section, we consult the continuous dependence of a weak solution of (2.6) on
the data. In order to do so, for every n = 0, 1, . . ., assume that S(n)(x, t) satisfies
(2.1a)-(2.1c) with the same constants λ and Λ. Moreover, assume that fn ∈ Xp

T (Ω)′,
gn ∈ W 1−1/p,p(Γ) and hn × n ∈ W−1/p′,p′(Γ) satisfy the compatibility conditions
(2.8) and (2.9) with f = fn, g = gn and h = hn for n = 0, 1, . . .. Let
(un, πn) ∈W 1,p(Ω)× Lp′(Ω)/R be a unique weak solution of (2.6), i.e.,

curl [S
(n)
t (x, |curlun|2)curlun] +∇πn = fn in Ω,

divun = 0 in Ω,

un · n = gn on Γ,

S
(n)
t (x, |curlun|2)curlun × n = hn × n on Γ,

〈un · n, 1〉Σj
= 0 j = 1, . . . , J.

(4.1)

for every n = 0, 1, . . .. Thus (un, πn) satisfies∫
Ω

S
(n)
t (x, |curlun|2)curlun · curlvdx−

∫
Ω

πndiv vdx

= 〈fn,v〉Ω + 〈hn × n,v〉Γ for all v ∈ Xp
T (Ω). (4.2)

Then we have the following theorem on the continuous dependence on the data.

Theorem 4.1. We assume that for every n = 0, 1, . . ., a Carathéodory function
S(n)(x, t) satisfies (2.1a)-(2.1c) with the same constants λ and Λ, and assume that
fn ∈ Xp

T (Ω)′, gn ∈ W 1−1/p,p(Ω) and hn × n ∈W−1/p′,p′(Γ) satisfy the compatibility
conditions (2.8) and (2.9) with f = fn, g = gn and h = hn. Let (un, πn) ∈
W 1,p(Ω)×Lp′(Ω)/R be a unique weak solution of (4.1). If S(n)

t (x, t)→ S
(0)
t (x, t) a.e.

in Ω× [0,∞), and fn → f 0 in Xp
T (Ω)′, gn → g0 in W 1−1/p,p(Γ) and hn×n→ h0×n

in W−1/p′,p′(Γ) as n → ∞, then un → u0 in W 1,p(Ω) and πn → π0 in Lp
′
(Ω)/R as

n→∞.

In the particular case where S(n)(x, t) = S(0)(x, t) for all n = 1.2, . . ., there exists a
constant C > 0 depending only on p, λ,Λ,Ω, ‖f 0‖Xp

T (Ω)′ and ‖h0×n‖W−1/p′,p′ (Γ) such
that for large n,

‖un − u0‖p∨p
′

W 1,p(Ω)
+ ‖πn − π0‖p∨p

′

Lp′ (Ω)/R

≤ C(‖fn − f‖
p′

Xp
T (Ω)′

+ ‖fn − f‖
p
Xp
T (Ω)′

+ ‖gn − g0‖p∨p
′

W 1−1/p,p(Γ)

+ ‖hn × n− h0 × n‖p
′

W−1/p′,p′ (Γ)
+ ‖hn × n− h0 × n‖p

W−1/p′,p′ (Γ)
),

where p ∨ p′ = max{p, p′}.
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Proof. First we consider the following system.

curl [S
(n)
t (x, |curlwn|2)curlwn] +∇πn = fn in Ω,

divwn = 0 in Ω,

wn · n = 0 on Γ,

S
(n)
t (x, |curlwn|2)curlwn × n = hn × n on Γ,

〈wn · n, 1〉Σj
= 0 j = 1, . . . , J.

(4.3)

By Theorem 2.6, the system (4.4) has a unique weak solution (wn, πn) ∈ W 1,p(Ω) ×
Lp
′
(Ω)/R satisfying (4.2). Taking v = wn−w0 ∈ Vp

T (Ω) ↪→ Xp
T (Ω) as a test function

of (4.2) and noting that div (wn −w0) = 0 in Ω, we have∫
Ω

(
S

(n)
t (x, |curlwn|2)curlwn − S(0)

t (x, |curlw0|2)curlw0

)
· curl (wn −w0)dx

= 〈fn − f 0,wn −w0〉Ω + 〈(hn − h0)× n,wn −w0〉Γ.

We write this equality into the form∫
Ω

(
S

(n)
t (x, |curlwn|2)curlwn

− S(n)
t (x, |curlw0|2)curlw0

)
· curl (wn −w0)dx = I1 − I2, (4.4)

where

I1 = 〈fn − f 0,wn −w0〉Ω + 〈(hn − h0)× n,wn −w0〉Γ,

I2 =

∫
Ω

(
S

(n)
t (x, |curlw0|2)curlw0

−S(0)
t (x, |curlw0|2)curlw0

)
· curl (wn −w0)dx.

We estimate |I1| and |I2| from above. We have

|I1| ≤ ‖fn − f 0‖Xp
T (Ω)′‖wn −w0‖Xp

T (Ω)

+‖(hn − h0)× n‖W−1/p′,p′ (Γ))‖wn −w0‖W 1−1/p,p(Γ)

≤ C(‖fn − f 0‖Xp
T (Ω)′ + ‖(hn − h0)× n‖W−1/p′,p′ (Γ))

×‖wn −w0‖Vp
T (Ω)

and

|I2| ≤ ‖S(n)
t (x, |curlw0|2)curlw0−S(0)

t (x, |curlw0|2)curlw0‖Lp′ (Ω)×‖wn−w0‖Vp
T (Ω).
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For the brevity of notation, we put

Gn = ‖fn − f 0‖Xp
T (Ω)′ + ‖(hn − h0)× n‖W−1/p′,p′ (Γ)

+ ‖S(n)
t (x, |curlw0|2)curlw0 − S(0)

t (x, |curlw0|2)curlw0‖Lp′ (Ω).

Thus we have

|I1|+ |I2| ≤ Gn‖wn −w0‖Vp
T (Ω).

Next we estimate the left hand side of (4.4) from below, using Lemma 2.2.

When p ≥ 2, we have

c

∫
Ω

|curl (wn −w0)|pdx ≤ |I1|+ |I2| ≤ Gn‖wn −w0‖Vp
T (Ω).

Hence we have

‖wn −w0‖pVp
T (Ω)
≤ CGp′

n . (4.5)

When 1 < p < 2, we have

c

∫
Ω

(|curlwn|+ |curlw0|)p−2|curl (wn −w0)|2dx ≤ Gn‖wn −w0‖Vp
T (Ω).

In this case, we use the reverse Hölder inequality (cf. Sobolev [17, p. 8]) with
0 < s = p/2 < 1 and s′ = p/(p− 2) < 0. Then we have∫

Ω

(
|curlwn|+ |curlw0|)p−2|curl (wn −w0)|2dx

≥ 2p−1(‖curlwn‖pLp(Ω) + ‖curlw0‖pLp(Ω))
(p−2)/p‖curl (wn −w0)‖2

Lp(Ω).

Thus using the estimate (2.10) of Theorem 2.6, we have

‖curl (wn −w0)‖2
Lp(Ω) ≤ C(‖curlwn‖pLp(Ω) + ‖curlw0‖pLp(Ω))

(2−p)/p

×Gn‖wn −w0‖Vp
T (Ω)

≤ C1(‖fn‖
p′

Xp
T (Ω)′

+ ‖f 0‖
p′

Xp
T (Ω)′

+ ‖hn × n‖p
′

W−1/p′,p′ (Γ)

+‖h0 × n‖p
′

W−1/p′,p′ (Γ)
)(2−p)/pGn‖wn −w0‖Vp

T (Ω).

Hence, for large n,

‖wn − w0)‖Vp
T (Ω) ≤ C(‖f 0‖

p′

Xp
T (Ω)′

+ ‖h0 × n‖p
′

W−1/p′,p′ (Γ)
+ 1)(2−p)/pGn. (4.6)
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On the other hand, from (4.2), we have∫
Ω

(
S

(n)
t (x, |curlwn|2)curlwn − S(0)

t (x, |curlw0|2)curlw0

)
· curlvdx

−
∫

Ω

(πn − π0)div vdx = 〈fn − f 0,v〉Ω + 〈(hn − h0)× n,v〉Γ (4.7)

for any v ∈ Xp
T (Ω). We write the mean value of a function ϕ by cϕ, i.e.,

cϕ =
1

|Ω|

∫
Ω

ϕdx.

For any v ∈ Xp
T (Ω), it follows from the divergence theorem that∫

Ω

(πn − π0 − cπn−π0)div vdx =

∫
Ω

(πn − π0)div vdx− cπn−π0
∫

Ω

div vdx

=

∫
Ω

(πn − π0)div vdx.

Thus we may assume that πn − π0 ∈ Lp
′

0 (Ω) where

Lp
′

0 (Ω) := {ϕ ∈ Lp′(Ω);

∫
Ω

ϕdx = 0}.

Hence, for any φ ∈ Lp(Ω), we see that∫
Ω

(πn − π0)φdx =

∫
Ω

(πn − π0)(φ− cφ)dx.

By [1, Corollary 3.1], there exists z ∈ W 1,p
0 (Ω) such that div z = φ − cφ, and there

exists a constant C > 0 depending only on p and Ω such that

‖z‖W 1,p
0 (Ω) ≤ C‖φ‖Lp(Ω).

Taking v = z ∈W 1,p
0 (Ω) ⊂ Xp

T (Ω) as a test function of (4.7),∫
Ω

(
S

(n)
t (x, |curlwn|2)curlwn − S(0)

t (x, |curlw0|2)curlw0

)
· curl zdx

−
∫

Ω

(πn − π0)φdx = 〈fn − f , z〉+ 〈(hn − h0)× n, z〉Γ.

We write this equality in the following form.∫
Ω

(πn − π0)φdx = J1 + J2 + J3. (4.8)
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where

J1 =

∫
Ω

(
S

(n)
t (x, |curlwn|2)curlwn

−S(n)
t (x, |curlw0|2)curlw0

)
· curl zdx,

J2 =

∫
Ω

(
S

(n)
t (x, |curlw0|2)curlw0

−S(0)
t (x, |curlw0|2)curlw0

)
· curl zdx,

J3 = −〈fn − f 0, z〉Ω − 〈(hn − h0)× n, z〉Γ.

We have

|J2| ≤ C‖S(n)
t (x, |curlw0|2)curlw0

−S(0)
t (x, |curlw0|2)curlw0‖Lp′ (Ω)‖z‖W 1,p

0 (Ω)

≤ CGn‖φ‖Lp(Ω),

Clearly we have

|J3| ≤ C(‖fn − f 0‖Xp
T (Ω)′ + ‖hn × n− h0 × n‖W−1/p′,p′ (Γ))‖φ‖Lp(Ω)

≤ CGn‖φ‖Lp(Ω).

When 1 < p < 2, using Lemma 2.3, the Hölder inequality and (4.7), we have

|J1| ≤ C

{∫
Ω

|curl (wn −w0)|p−1|curl z|dx

≤ C‖wn −w0‖p−1
Vp
T (Ω)
‖z‖W 1,p

0 (Ω)

≤ CGp−1
n ‖φ‖Lp(Ω).

When p ≥ 2, similarly, we have

|J1| ≤ C

{∫
Ω

|curlwn|+ |curlw0|)p−2|curl (wn −w0)||curl z|dx

≤ C(‖wn‖Vp
T (Ω) + ‖w0‖Vp

T (Ω))
p−2‖wn −w0‖Vp

T (Ω)‖z‖W 1,p
0 (Ω)

≤ CGp′/p
n ‖φ‖Lp(Ω).

Therefore, we have

‖πn − π0‖Lp′ (Ω)/R ≤

{
C4Gn + C5G

p−1
n if 1 < p < 2,

C4Gn + C5G
p′−1
n if p ≥ 2.

(4.9)
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Taking (4.7) into consideration, we have

‖wn −w0‖p∨p
′

Vp
T (Ω)

+ ‖πn − π0‖p∨p
′

Lp′ (Ω)/R ≤ C(Gp′

n +Gp
n).

We show that Gn → 0 as n → ∞ if fn → f 0 in Xp
T (Ω)′ and hn × n → h0 × n in

W−1/p′,p′(Γ) and S(n)
t (x, t)→ S

(0)
t (x, t), a.e. in Ω× [0,∞).

Since

|S(n)
t (x, |curlw0|2)curlw0 − S(0)

t (x, |curlw0|2)curlw0|p
′

≤ (2Λ)p
′|curlw0|p ∈ L1(Ω)

and S(n)
t (x, |curlw0|2)curlw0 → S

(0)
t (x, |curlw0|2)curlw0 a.e. in Ω, it follows from

the Lebesgue dominated theorem that

‖S(n)
t (x, |curlw0|2)curlw0 − S(0)

t (x, |curlw0|2)curlw0‖Lp′ (Ω) → 0

as n→∞. Hence we have Gn → 0 as n→∞.

End of the proof of Theorem 4.1.

Let (wn, πn) ∈ Vp
T (Ω) × Lp

′
(Ω)/R be a unique weak solution of (4.4). From the

compatibility condition (2.9) with g = gn, the following Neumann problem{
∆θn = 0 in Ω,
∂θn
∂n

= gn on Γ

has a unique solution θn ∈ W 2,p(Ω), up to an additive constant, and there exists a
constant C > 0 such that

‖θn‖W 2,p(Ω) ≤ C‖gn‖W 1−1/p,p(Γ).

Define

un = wn +∇θn −
J∑
j=1

〈(wn +∇θn) · n, 1〉Σj
∇̃qTj .

Since

un−u0 = wn−w0 +∇(θn− θ0)−
J∑
j=1

〈(wn−w0 +∇(θn− θ0)) ·n, 1〉Σj
∇̃qNj ,

we have

‖un − u0‖W 1,p(Ω) ≤ C(‖wn −w0‖W 1,p(Ω) + ‖θn − θ0‖W 2,p(Ω))

≤ C1(‖wn −w0‖Vp
T (Ω) + ‖gn − g0‖W 1−1/p,p(Γ)).

This completes the proof of Theorem 4.1.
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A. THE GREEN FORMULA

First, we show that if π ∈ Lp′(Ω)/R, then ∇π ∈ Xp
T (Ω)′ is well defined and

〈∇π,ϕ〉Ω = 〈∇π,ϕ〉Xp
T (Ω)′,Xp

T (Ω) = −
∫

Ω

πdivϕdx, for all ϕ ∈ Xp
T (Ω).

To show this, define a functional Tπ on Xp
T (Ω) by

〈Tπ,ϕ〉 = −
∫

Ω

πdivϕdx, for ϕ ∈ Xp
T (Ω).

Sinceϕ ·n = 0 on Γ, the above definition is independent of the choice of representative
of π ∈ Lp′(Ω)/R. Moreover, we have

|〈Tπ,ϕ〉| ≤ ‖π‖Lp′ (Ω)/R‖ϕ‖Xp
T (Ω).

Thus Tπ ∈ Xp
T (Ω)′ and

‖Tπ‖Xp
T (Ω)′ ≤ ‖π‖Lp′ (Ω)/R.

If π ∈D(Ω)/R, then we can clearly see that

〈Tπ,ϕ〉 = 〈∇π,ϕ〉 = −
∫

Ω

πdivϕdx for all ϕ ∈D(Ω).

Since D(Ω)/R is dense in Lp
′
(Ω)/R, Tπ is a unique extension of ∇π and we have

Tπ = ∇π in Xp
T (Ω)′. Thus

〈∇π,ϕ〉Ω = −
∫

Ω

πdivϕdx for ϕ ∈ Xp
T (Ω). (A.1)

Next, letw ∈ Lp′(Ω) and curlw ∈ Xp
T (Ω)′. For any ψ ∈W 1−1/p,p(Γ) with ψ ·n = 0

on Γ, there exists ψ̃ ∈W 1,p(Ω) such that ψ̃ = ψ on Γ, and

‖ψ̃‖W 1,p(Ω) ≤ C‖ψ‖W 1−1/p,p(Γ).

Define

〈w × n,ψ〉 = −〈curlw, ψ̃〉Ω +

∫
Ω

w · curl ψ̃dx.

Then we have

|〈w × n,ψ〉| ≤ (‖curlw‖Xp
T (Ω)′ + ‖w‖Lp′ (Ω))‖ψ̃‖Xp

T (Ω)

≤ C(‖curlw‖Xp
T (Ω)′ + ‖w‖Lp′ (Ω))‖ψ‖W 1−1/p,p(Γ).
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Thus w × n ∈ W−1/p′,p′(Γ) is well defined, and for any ϕ ∈ Xp
T (Ω), the following

Green formula holds.

〈curlw,ϕ〉Ω = −〈w × n,ϕ〉Γ +

∫
Ω

w · curlϕdx. (A.2)

Of course, if w ∈W 1,p′(Ω), we have∫
Ω

curlw ·ϕdx = −
∫

Γ

(w × n) ·ϕdS +

∫
Ω

w · curlϕdx for all ϕ ∈ Xp
T (Ω).
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