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Abstract

In this paper, we derive necessary and sufficient conditions for the existence of
a weak solution to the Maxwell-Stokes type equation associated with slip-Navier
boundary condition. Our equation is nonlinear and contains, so called, p-curlcurl
system. Moreover, we give a result on the continuous dependence of the weak

solution on the data.
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1. INTRODUCTION

In this paper, we give necessary and sufficient conditions for the existence of a weak
solution to the Maxwell-Stokes type equation.

Amrouche and Seloula [3] considered the stationary Stokes equations:
—Au+ Vr = fanddivu = 0in 2, (1.1)

where w is the velocity vector field, 7 is the pressure, f is the external force and €2 C R3
is a bounded possibly multi-connected domain with a boundary I'. They imposed the

following slip-Navier boundary conditions (cf. Amrouche and Rejaiba [2]).
u-n=gandcurlu xn=h xnonl, (1.2)

where n is the unit outward normal vector to I', g and h are given functions. They
derived that the compatibility conditions are necessary and sufficient for the existence
of a weak solution to (1.1) and the boundary conditions (1.2) plus some conditions

associated with the multi-connected property of (2.
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We are interested in considering the following Maxwell-Stokes type system.
curl [Sy(z, |curl w|*)curlu] + V7 = f and divu = 0in , (1.3)

where S(z,t) is a Carathéodory function on €2 X [0,00) satisfying some structure
conditions. In the particular case where S(z,t) = /2 (1 < p < o), the first equation

of (1.3) becomes, so called, p-curlcurl equation.

Such partial differential system involving the operator curl appear in many areas
in mathematical physics. For example, for the Bohn-Infeld model in nonlinear
electrodynamics, see Bohn and Infeld [9] and Yang [18]. For the several models in

the theory of superconductivity, see Bates and Pan [8] and Chapman [11].

From a mathematical point of view, since the first equation of (1.3) involves the operator
curl and is nonlinear, the system has special character that are quite different from
the first equation of (1.1). The existence of solutions of such systems are sensitive
from the nonlinearity. To show the existence of solutions of (1.1) with some boundary
conditions, the Inf-sup theorem fulfills an important role. However, we can not apply
this theorem to the system (1.3). To overcome it, we shall use a minimization problem
that is developed in the author’s previous paper Aramaki [6].

We impose the following boundary conditions.
w-n = gand S;(z,|curlu|*)curlu x n = h x nonT. (1.4)

Moreover, since {2 may be multi-connected, if we assume that there exist cuts X;
(j=1,...,J) such that Q° = Q\ (Uj_,%;) is simply connected, then we impose

(u-n, 1)y, =0forj=1,...,J, (1.5)

where (-, -)s;, denotes the duality bracket of W~1/P?(%;) and W'/P7 (). In these
situations, we give necessary and sufficient conditions for the existence of a weak
solution to (1.3)-(1.5).

The paper is organized as follows. Section 2 consists of two subsections. In subsection
2.1, we give some preliminaries. In subsection 2.2, we give the main theorem (Theorem
2.6) that states necessary and sufficient conditions for the existence of the weak solution
to the problem (1.3)-(1.5). Section 3 is devoted to the proof of the main theorem. In
section 4, we consider the continuous dependence of the weak solution on the data. In

Appendix, we convince the Green type equality.
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2. PRELIMINARIES AND THE MAIN THEOREM

This section consists of two subsections. In subsection 2.1, we give some preliminaries
that are necessary later. In subsection 2.2, we give the notion of a weak solution for the
Maxwell-Stokes system (1.3)-(1.5) and state the main theorem (Theorem 2.6).

2.1. Preliminaries

Let ) be a bounded domain in R*® with a C'"! boundary " and let 1 < p < co. We
denote the conjugate exponent of p by p/, i.e., (1/p) + (1/p’) = 1. From now on we
use LP(Q), W™P(€Q2) and W*P(I") for the standard L? and Sobolev spaces of functions
in 2 and I". For any Banach space B, we denote B x B x B by boldface character B.
Hereafter, we use this character to denote vector and vector-valued functions, and we
denote the standard Euclidean inner product of vectors a and b in R? by a - b. For the

dual space B’ of B, we write (-, -) g g for the duality bracket.

We assume that a Carathéodory function S(x,t) in 2 x [0, c0) satisfies the following
structure conditions. For a.e. x € Q, S(z,t) € C*((0,00)) N C°([0,0)), and there

exist positive constants 0 < A < A < oo such that for a.e. x € €2,

S(x,0) =0and AP 2/2 < S(x,t) < AtP D2 fort > 0, (2.1a)
MP=D/2 <G (1) + 2tSy(z,t) < AtPD/2 fort > 0, (2.1b)
If1 <p<2 Sy(x,t) <0, andifp > 2, Sy(x,t) > 0fort > 0, (2.1¢)
where S; = 9S/0t and Sy = 925/0t?. We note that from (2.1a), we have
2 2
“MP2 < S(x,t) < ZAP 2 for t > 0. (2.2)
b p

For a.e. z € €, it follows from (2.1b) that the function G(t) = S(z,?) is a strictly
convex function with respect to ¢ € [0, o). Indeed, G’(t) = 2tS;(z, t*) and so

G"(t) = 2(Sy(z, 1) + 262 Sy (z,1?) > 2072 > 0 for t > 0.

Example 2.1. If S(x,t) = v(2)t?/?, where v is a measurable function in ) and satisfies
0 <v. <v(r) <v* < ooforae x € for some constants v, and v*, then it follows

from elementary calculations that (2.1a)-(2.1¢) hold. .

We give two lemmas on a monotonic property and a boundedness of S;.

Lemma 2.2. There exists a constant ¢ > 0 depending only on p and \ such that for all
a,beR3

cla —bf? ifp>2,

2\, 2 Aa—
(Si(z,|a|”)a—Si(z,|b]")b)-(a—b) > { c(|a| + ]b|)p*2|a—b|2 ifl<p<2.
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In particular, S, is strictly monotonic, that is,

(Si(z,|al*)a — Si(z,|b/*)b) - (a — b) > 0 fora #b.

For the proof, see Aramaki [7, Lemma 3.6].

Lemma 2.3. There exists a constants Cy > 0 depending only on A and p such that for
any a,b € R?,

Cila — bP~t ifl<p<?2,

Sz, lalP)a — Sz, |bl*)b] <

For the proof, see Aramaki [5]. Since we allow (2 to be a multi-connected domain in
R3, we assume that the domain () satisfies the following (O1) and (02). (cf. Amrouche
and Seloula [4], Dautray and Lions [12] and Témam [16]). Let Q C R? be a bounded

domain with a C*! boundary T', and 2 be locally situated on one side of T".

(O1) I has a finite number of connected components 'y, 'y, ..., ['; with ['y denoting
the boundary of the infinite connected component of R? \ Q.

(02) There exist J connected open surfaces ¥;, (j =1, ..., J), called cuts, contained
in €2 such that

(a) X; is an open subset of a smooth manifold M.

(b) 0¥, CcI' (j=1,...,J), where 90X, denotes the boundary of ;, and X; is
non-tangential to I'.

© S;NEr=0(j #k).
(d) The open set Q° = Q\ (U7_,%;) is simply connected and pseudo C"! class.

The number J is called the first Betti number and / the second Betti number. We say
that €2 is simply connected if J = 0, and €2 has no holes if I = 0. We define two spaces.

KL(Q2) = {ve LP(Q);curlv =0,dive=0inQ,v-n=0o0nT},
K%5(Q) = {ve LP(Q);curlv =0,divo =0inQ,v xn=0onT}.
Then it is well known that dim K7.(©2) = J and dim K%,(Q2) = I. In the later, we need
the basis of K/(2). Let ¢/ € W??(Q°) be a unique solution of the problem
—A¢" =0 in Q°,
8nqu =0 onT",
[a]] s, = const. and [Ond!] g, =0 fork=1..1/
<3nq]T, Ds, = ik fork=1,...,J,

(2.3)
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where [qJT] 5, denotes the jump of qu across 2. Since quT € LP(Q°), it can be
extended to a function of L”(€2), and we denote it by %q]T Then the space K%.(Q2) has
a basis {%qu 7J_, (cf. [4, Corollary 4.1]).

We introduce some spaces of vector functions. If we define
XP(Q) = {v € LP(Q);curlv € LP(Q),dive € LP(Q)}
with the norm
[vllxe@) = [[vllLr@) + l[curlv]|Lre) + [[div vl @),
then XP(2) is a Banach space. Moreover, we define two closed subspace of X?(2) by

X0(Q) = {veXP(Q);v-n=00nT},
Vi) = {veXi(Q):dive=0inQ,(v-n,1)y, =0forj=1,...,J},

where (-, )y, denotes the duality of W~1/P?(3;) and W'~1/7'#(5;). The following
inequality is used frequently (cf. [4]). If we define

XMP(Q) = {v € XP(Q);v-n e WP},

then we can see that X'7(Q2) ¢ W'?(Q), and there exists a constant C' > 0 depending
only on p and 2 such that for v € X'?(Q),

[v][wir) < C(lleurlv|| e @) + [|div || L) + [|v]lzr @)
_I_ H/U . n|ywl—1/p,p(r‘)). (2.4)

Moreover, we can deduce the following inequality (cf. [4, p. 40]), for every function
veEWP(Q)withv-n=0onT,

J

[vllze) + IVOlLr) < Clleurlol o) + Idivollmg) + Y [(v - n, L)), (2.5
j=1

Thus we have the following.
Lemma 2.4. The space V7.(Q) is a reflexive Banach space with the norm
[ollve @) = llewrl ]| Lro)

which is equivalent to the norm ||v||y 1.0 (q)-
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2.2. The main theorem
In this subsection, we consider the following Maxwell-Stokes type system.

P

curl [Sy(x, [curlu|*)curlu] + Vr = f inQ,
divu =0 in Q,
u-n=4g onl’, (2.6)
Si(x, |curlu)?)curlu x n =h xn onT,
[ (u-m,1)s, =0 j=1,...J,

where f,g and h are given functions such that f € X2.(Q),g € W!=1/PP(T") and
h x n € W~YP"P(T'). When  is simply connected, the last conditions of (2.6) are
unnecesarry. For g € W'=1/PP(T), define

X7(9,Q) = {v eX*(Q);v-n = g}.

Then it follows from (2.4) that X%.(g,€) is a closed convex subset of W'?(Q).
Moreover, define

Vi(g,9Q) ={v € X[(g,Q) :dive =0in Q, (v -n,1)s, =0, =1,... J}.

We give the notion of a weak solution of the system (2.6).
Definition 2.5. We say that (u, ) € W?(Q) x L” (Q)/R is a weak solution of (2.6),
ifu € Vi.(g,9Q) and (u, ) satisfies

/ Sy(z, |curl u|?)curl u - curl vdr — / ndivvdr = (f,v)q + (h x n,v)r (2.7)
0 Q
for all v € XI.(Q)), where

(f,v)a=(f, U>X§(Q)',XI;(Q)
and

<h X n, 'U>F = <h X n, 'U>W71/p’.,p’(F)’Wlfl/PxP(F)'

We are in a position to state the main theorem.

Theorem 2.6. Let ) be a bounded domain in R® with a CY' boundary T satisfying
(01) and (02), and assume that a Carathéodory function S(x,t) satisfies the structure
conditions (2.1a)-(2.1c). Let f € Xb(Q), g € W'"V/PP(T') and h x n € WY/7# (1),
Then the following compatibility conditions

(f,v)ao+ (h x n,v)r = 0forall v e KL(Q), (2.8)
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/ gdS =0, (2.9)
N

where dS denotes the surface measure on I' are necessary and sufficient for the
existence of a weak solution (u,7) € W'P(Q) x L¥ (Q)/R to the Maxwell-Stokes
problem (2.6). In this situation, the weak solution is unique and there exists a constant
C > 0 such that

D v
[ . HWHL?'(Q)/R

< C(Hf”éjgg(g)/ + HgH{j{/ul/p,p(p) + Hh X n”ivq/p/,p/(m)- (2.10)
Remark 2.7. When S(xz,t) = t, the system (2.6) becomes to the system (1.1), (1.2) and

(1.5). Thus in the case where p = 2, Theorem 2.6 is an extension of the result of [3,
Theorem 4.4]. In fact, the authors in [3] assumed that f € H%(div ,Q)', where

H(div,Q) = {v € L*(Q);divv € L*(Q),v-n=00nT}.

However; since we can easily see that X2.(Q) < Hp(div, ), our result is also an

extension to the case where f € X24(Q)’.

3. PROOF OF THEOREM 2.6
In this section, we derive the proof of Theorem 2.6.

From now on, we write various positive constants depending only on p, A, A and €2 by

C which may vary from line to line.

Before beginning to prove Theorem 2.6, we consider the case without the pressure,
under more stronger assumptions. Let f € Lp/(Q) satisfy divf = 01in Q, g €
Wi-1/p() and h x n € W~Y?"P(I"). We consider the following problem: Find
¢ € W'P(Q) such that

([ curl [Sy(z, [curl €2)curl €] = f in €,
dive =0 inQ,
En=yg onl’, 3.1
Si(x, |curl€]?)curlé x n=h xn onT,

| (€ n,1)s, =0 forj=1,...,J.

We introduce the compatibility conditions.

/Qf -vdz + (h x n,v)r = 0 forall v € K%(Q), (3.2)
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/ gdS =0, (3.3)
r

f-n—divp(hxn)=0onT, (3.4)
where div r denotes the surface divergence (cf. Mitreau et al. [15, p. 143]).

We say &€ € VI.(g,Q) is a weak solution of (3.1), if £ satisfies

/ Si(z, [curl €[*)curl € - curl vde = / f-vdx + (h x n,v)p forallv € XL.(Q). (3.5)
Q Q

We have the following proposition.

Proposition 3.1. Assume that f € Lp/(Q) satisfies div f = 0in Q, g € W=1/P2(T)
and h xn € W_l/p/’p/(l“). Then the compatibility conditions (3.2)-(3.4) are necessary
and sufficient for the existence of a weak solution to (3.1). In this situation, the solution

& is unique and there exists a constant C' > 0 such that
||£||I‘7/{/1’P(Q) S C(Hf”ip'(g) + ||g||€[/171/p,p(1“) + ||h X n”Z‘J;Vfl/p’,p’(F))'

Proof. Step 1 (Necessity)
Let £ € V%.(g,Q) be a weak solution of (3.1). Since

curl [Sy(x, |curl €)?)curl €] = f € LP (Q)
and

div curl [S;(, |curl €|*)curl €] = 0 in €,

the normal trace
n - curl [S;(x, [curl £|*)curl €] € WL ()

is well defined. By [15, (4.5)], for any ¢ € W?2?(Q), we have

(f "n, ¢>W—1—1/p’,p/ (I),W2-1/p.p(I)
= (n - curl [S(z, |curl£\2)curl &l ¢>W7171/p’,p’(F),szl/p,p(p)

= (divr(h X 10, @) 11/ () w1/ ()

Thus we have f - n = divp(h x n) in W=V7#(T). Since f € L” () satisfies
div f = 0in Q, we have f - n € W=YP"?(T'), so (3.4) holds in W~/?"#(T"). Since
divg =0in Qand £ - n = g on I, (3.3) easily follows from the divergence theorem.

To show (3.2), we consider the following Neumann problem

" (3.6)

A =0 in(Q,
m =9 onl.
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Thanks to (3.3) and Girault and Raviart [14, Theorem 1.10], the problem (3.6) has a
unique solution § € W??(Q), up to an additive constant, with the estimate

10llwzr0) < Cp, D llgllwr-1/0.0(r)- (3.7)

Define z = £ — VO € WP(Q). Since curlz = curlé inQand z-m = Oon T, 2
satisfies the following system.

curl [Sy(z, |curl z|?)curl 2] = f in Q,
divz =0 in €2, (3.8)
z-n=>0 onl’,

Si(z, |curl é]*)curlé x n=h xn onT.

Hence
/ Sy(z, |curl z|?)curl z - curl vdx = / f-vdz + (h x n,v)r forallv € XJ.(Q). (3.9)
Q Q

In particular, if we take v € K%.(Q) as a test function of (3.9), we see that (3.2) holds.
Step 2 (Sufficiency).

We assume that the compatibility conditions (3.2)-(3.4) hold. We show that (3.8) has a
unique weak solution z € W'?(Q). Then if we define

J
E=2z+V0-> ((z+V0) -n,1)5 Vg, (3.10)
j=1

where 6 is a unique solution of (3.6), up to an additive constant, then curl £ = curl z in
0, diveE=0inQ, €-n=gonT, Sz, |curl£*)curlé x n = h x nonT, and

€ n s, = ((z+V0)-n,l)y — Z<(z +V0)-n, 1)y (n- Vgl s,
= ((z+V0)-n, L)y, — Y dpl(z+V0) n, 1)y,

= Oforeveryk=1,...,J.

Hence £ is a weak solution of (3.1).

In order to show that (3.8) has a unique weak solution, we derive that the following
problem has a unique solution: Find z € VZ.(€2) such that

/ Sy(z, |curl z|*)curl z - curl vdr = / f-vdr+ (h xn,v)r
Q Q
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for all v € VI.(Q).

Though we use a minimization problem, taking the proof of Theorem 2.6 into
consideration, we introduce a more general minimization problem. We assume that
feXb(Q)and h xn € W™VPP(T). We note that if f € L” (Q), then f € X(Q)'.
Define a functional on V%.(2) by

1
Flv] = 3 / S(z, |cur1'v|2)d:1: —{(f,v)qg — (h x n,v)r,
Q
and put
fo= inf F[o]. (3.11)
veEVE(Q)

Lemma 3.2. Assume that f € X0(Q) and h x n € W YP?(I'). Then the

minimization problem (3.11) has a unique minimizer z € V4.(QQ), that is,

Flz] = fo= inf Fluvl.

veVh(Q)

The minimizer z is a unique solution of the following variational problem.
/ Sy(z, |curl z|*)curl z - curlvdr = (f,v)q + (h x n,v)r (3.12)
Q

forallv € VE.(Q).

Moreover, there exists a constant C' > 0 such that
121 ) < CULF Iy + W X ) (3.13)

Proof. From Lemma 2.4, we know that V7.(Q) is a reflexive Banach space with the

norm
“v“V’%(Q) = HCUII,UHLP(Q) ~ H'UHWLP(Q).

For any v € V%.(§2), we have

[(f,v)al < Hfog(Q)'HUHX’;(Q) = Hfﬂxg(ﬂ)'HUHw;(Q),

and
[(h xm,v)r| < [|hx gy Vw1
< Cllhx nlly s o 10wy
<

Cllh x n”W*l/P’,p’(F)||’U||V1}(Q)
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Thus
ng(Q) SV <fav>ﬂ + <h’ X na”)F

defines a functional in VZ.(Q2)". Using the structure condition (2.1b), we see that F is
a strictly convex and proper functional. By Aramaki [6], we can see that F' is lower
semi-continuous. So F' is weakly lower semi-continuous. By (2.2) and the Young
inequality, for any € > 0, we have

A

Flo] 2 Slfoll o) — CEIF Iy + I8 ml, —ello]

) p
-1/p".7"(I) VE(Q)"

If we choose ¢ > 0 so that ¢ < 2)\/p, then we can see that F is coercive. Thus it
follows from Ekeland and Témam [13, Proposition 1.2] that the minimization problem
has a unique minimizer z € V7.(€2). By the Euler-Lagrange equation, the minimizer
z € V() satisfies (3.12). Taking v = z as a test function of (3.12) and using (2.1a),
we get the estimate (3.13). We note that from the strict monotonicity of S; (Lemma
2.2), the solution of (3.12) is unique. L]

We continue the proof of Proposition 3.1. We show that we can extend the space V7.(Q)
of test function of (3.12) to X%.(£2), that is, it shows that z satisfies (3.9). In fact, for
any v € X%.(Q), choose x € W?P(Q) such that

{ Ax =divo in{, (3.14)

S—X:(J onl.
mn

Since [, divode = [, -ndS = 0, (3.14) has a unique solution x € W*P(Q2), up to
an additive constant, Define

J
v=0-Vx—) (®-Vx) -nl)s Vg €ViQ)

Jj=1

Since curl v = curlw in Q, and div f = 0 in 0, we have

/f-dex—l— (h xn,Vx)r=(f -n—divr(h xn),x)r =0
Q
from (3.3), and
/ f- %qudx + (h x n,%qu)p =0
Q
from (3.1), so we can see that z satisfies (3.9).

Step 3 (The uniqueness of a weak solution).
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Let &, and &, in VZ.(g, Q) be two weak solutions of (3.1). Then we can take &, — &, €
VE2.(2) C X7.(Q) as a test function of (3.5). Thus

/St(x, lcurl &;*)curl §;-curl (€, —&,)dx = / (& —&)de+(hxn, & —&)r
Q

for 7 = 1, 2. Hence

/ (Si(z, [curl & [*)curl &€, — Sy (, [curl &,]*)curl &,) - curl (&, — &,)dz = 0.
Q

From the strict monotonicity (Lemma 2.2), we have curl (§; — &,) = 0 in §2. Since
div(§; — &) =0inQ, (&, —&,) - n=0onT"and (§; — &,)s, =0forj=1,...,J,
it follows from (2.5) that §; = &,.

Step 4 (Estimate).
From (3.10) and (3.7), we have
||€||W1p S (HZHWlp + HVQHWlP )
S (Hszl,p(Q) + Hgle—l/p,P(F)»
From (3.9) with v = z, we have
Neurl 20y < CEFIL g + 1 X By ) + 221

If we choose ¢ = \/2, then we have

A /

5 chrl szLl”( ( )(”fHLp (Q + Hh X nHi‘/fl/p’,p/(F))'
Thus we get the estimate. This completes the proof of Proposition 3.1. U
Proof of Theorem 2.6.

Step 1 (Necessity).

Let (u, ) € Vh.(g,Q) x L’ (Q)/R be a weak solution of (2.6). Since divu = 0 in Q
and u - n = g on I, it follows from the divergence theorem that (2.9) holds. For (2.8),
since (u, ) € V5.(g,9Q) x LP (Q)/R is a weak solution of (2.6), we can see that (2.7)
holds. If we choose v € K%.(2) as a test function of (2.7), we get (2.8).

Step 2 (Sufficiency).
Assume that f € X2.(Q), g € W'"V/22(T') and h x n € W~??(I) satisfy (2.8) and
(2.9). For any v € V/.(Q),

[(f;v)al < ||f||xg(ﬂ)/||v||xf;(ﬂ) = ||f||xg(sz)/||’v||w;(sz)



Necessary and sufficient conditions for the existence... 145

We consider the following problem: Find z € V2.(2) such that
/ Sy(z, |curl z|*)curl z - curlvdr = (f,v)q + (h x n,v)r (3.15)
0

for all v € VL.(Q). It follows from Lemma 3.2 and (3.12) that (3.15) has a unique

solution z € V%.(£2), and there exists a constant C' > 0 such that

#0510y < CUF W+ Wb X RI, ) (3.16)

We extend the space V%.(€2) of test functions in (3.15) to any v € XZ.(Q2) with divo = 0
in Q. Indeed, for any v € XZ(Q) with divo = 0 in 2, define

J
v="v— Z(E -n, 1>2j§qu.

7j=1
Then v € V4(Q2) and curl v = curl v in Q. From the compatibility condition (2.8), we
have

(f, VQ%Q + (h X n, quT)p = 0.

Therefore, we have
/ Sy(z, |curl z|*)curl z - curlvdr = (f,0)q + (h x n,V)r (3.17)
0

for all v € XZ(Q) with divo = 0 in Q. Taking ¢ € D,(Q) = {v € D(Q);divev =
0 in Q}, where D(Q) is the space of functions in C'*°(€2) with compact support in €,
as a space of test functions of (3.17), we have

(curl [Sy(z, [curl z[*)curl 2] — f, @) pr).py = 0 for all ¢ € D,(12).

for all ¢ € D,(2). Hence, from the De Rham theorem (cf. Boyer and Fabrie [10,
Theorem IV.2.4]), there exists 7 € L” () such that

curl [Sy(z, |curl z|*)curl 2] + Va = £ in Q.
Since Vr € X7.(Q) from (A.1) in Appendix, we have
curl [S(z, |curl z|*)curl 2] = f — Vr € X5.(Q)'.

Hence, for any v € X?F(Q) with divv = 0 in ), it follows from the Green formula (cf.
(A.2) in Appendix) that

/ Sy(z, |curl z|*)curl z - curl vdw
Q

= {(curl [Sy(z, |curl z|*)curl 2], v)q + (Si(x, |curl z|*)curl z X n, V)

= (f,v)q — (VT,v)q + (Si(z, |curl z|*)curl z x n, v)r.
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Since (Vm,v)q = 0 for any v € X%.(Q2) with divw = 0 in €, from (3.17), we have
(Sy(z, |curl z|*)curl z x n,v)pr = (h x n,v)p
for all v € X/.(Q) with dive = 0 in . This implies that
Sy(z, |curl z|*)curlz x n =h xnonT.
Thus (z,7) € WP(Q) x LP () /R is a weak solution of

curl [S;(z, [curl z]*)curl 2] + V7 = f  in Q,

divz =0 in €2, (3.18)
z-n=>0 onl’,
Si(z, |curl z|*)curlz x n = h X n onT.
Define
J o~
u=2z+V0-> ((z+V0) n,1)5Vq (3.19)
j=1
where 6 € W?2P(Q) is a solution of (3.6). Here we note that we use (2.9) for the

existence of solution 8. Then curlu = curlzin ), dive =0inQand u-n = % =g

onI'. Since <n'6qu, L)y, = 0ji, wehave (u-m, 1)y, =0fork =1,...,J. Therefore,
(u,7) € W(Q) x L (Q)/R is a weak solution of (2.6).

Step 3 (Uniqueness of a weak solution).

Let (w1, 7), (ug, ™) € VE(g,Q) x L¥(Q)/R be two weak solutions of (2.6). Then,
from (2.7), we have

/ Sy(z, |curl u;|*)curl w; - curl vdr — / mdiv vdx
0 0

=(f,v)o+ (h xn,v)rforallv € X}, (Q) andi = 1,2. (3.20)

Since (u;, ;) satisfies the first equation of (2.6) in the distribution sense, we have

A, =div f in €2,
%:f-n—di\/p(hxn) onT,

hence,

A(my —m) =0 in§,
%(71—71'2):0 onl.

. . . /
Therefore, m, — 7 is a constant, i.e., m; = 7o in LP (2) /R. Moreover, we have

/(m — 7g)div vdx = const. / div vdz = const. / v-ndS =0
Q Q r



Necessary and sufficient conditions for the existence... 147

for all v € X%.(Q2). Taking u; — us € V4.(Q) C X% () as a test function of (3.20), we
can see that

/ (Si(z, [eurlwy [*)eurl uy — Si(z, [curl us[*)curl uy) - (curl uy — curlug)dz = 0
0

Since S; is strictly monotone (Lemma 2.2), we have curl (u; — uy) = 0 in 2. Since

u; — up € VE(Q), we have u; = us in (2.
Step 4 (Estimate).

According to (3.19), we can write
J o~
u=2z+ Vel — Z((z + V) - n, 1>ngqJT,
j=1
where z is a solution of (3.18) and 6 is a solution of (3.6). Therefore, from (3.16) and
(3.7), we have

) < CUF Iy + 1B X I s + 100
On the other hand, from Amrouche and Girault [1, p. 114], we can see that

17l o @y < CIVT g1 ()

Since X5.(Q) — W= (Q) and Vrr € X5 (Q)', using the first equation of (2.6), we

have

IN

C(Hf”w—lm’(g) + ||curl [St(x, ]Cur1z|2)curl Zle—l,p/(Q))
< CUlfllxzy + [15:(=, lcurlzP)curleLp/(Q))

< Cl iy + 12150 q))-

Hence, using again (3.16), we can see that

H7T||Lp’(sz)/R

118 0y < CUF N+ 12I5n0g0y) < CUSF Nn o + 1B T[S 1/t )
This completes the proof of Theorem 2.6.
Remark 3.3. If we suppose in Theorem 2.6 that f € L* /(Q) with div f = 0 in Q and

we add the compatibility conditions (3.4), then the pressure 7 is constant. Indeed, from
the first equation of (2.6), we have
Ar =0 in ),
=f-n—divr(hxn)=0 onT.
This implies that 7 is a constant and the Maxwell-Stokes problem (2.6) in nothing other
than problem (3.1).
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Finally, let f € X2.(Q),g € W'=V/P?(T), h x n € W'/P"#(I') and x € L?(Q). We
consider a slightly more general equation than (2.6).

[ curl [S,(z, |curl w|?)curlu] + VA = £ inQ,
divu = x in €2,
u-n=4g onl’, (3.21)
Si(x, |curlu)?)curlu X n =h xn onT,

[ (u-m,1)s, =0 j=1,...,J

We impose the compatibility conditions (2.8) and

/gdS—/de. (3.22)
r Q

Then we have the following proposition.

Proposition 3.4. Assume that f € X0.(Q), g € W'=V/rP(I') h x n € W™V/P7(T)
and x € LP(Q)). Then the compatibility conditions (2.8) and (3.22) are necessary and
sufficient for the existence of a weak solution (w,7) € W'P(Q) x L” (Q)/R. In this
situation, the weak solution is unique, and there exists a constant C' > 0 such that

[l

p Y
Wl,p(Q) + ”ﬂ-HLp/(Q)

< OIS W ey + X Gy Xy + N1 11 0 )-
Proof. According to the proof of Theorem 2.6, it suffices to prove the existence of a

weak solution. Let (u, ) be a unique solution of (2.6) with ¢ = 0. Thanks to (3.22),
the following Neumann problem

Ap=x in{),
g—i:g onI

has a unique solution ¢ € W?2P(2), up to an additive constant, and there exists a
constant C' > 0 such that

pllw2r) < Clxllr) + lgllwi-1/per))- (3.23)
Define
J o~
u=u+ Vo — Z((u + Vo) -n, 1),V .
=1

Then we have curlu = curlwin Q, divu = divu+A¢ = xinQ, u-n = u~n+g—z =g
onTand (u-n,1)s, = 0forj = 1,...,.J. The estimate follows from Theorem 2.6
and (3.23). O
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4. CONTINUOUS DEPENDENCE OF A WEAK SOLUTION ON THE DATA

In this section, we consult the continuous dependence of a weak solution of (2.6) on
the data. In order to do so, for every n = 0,1,..., assume that S(")(:p,t) satisfies
(2.1a)-(2.1c) with the same constants A and A. Moreover, assume that f,, € X}.(Q),
gn € WIZV/PP(T) and h,, x n € WYP(I) satisfy the compatibility conditions
(2.8) and (29) with f = f,, 9 = g, and h = h, forn = 0,1,.... Let
(U, ™) € WHP(Q) x LP (Q) /R be a unique weak solution of (2.6), i.e.,

;

curl [S™ (2, |curl wp|?)curl w,] + Vi, = £, in €,
divu, =0 in €2,
U, N = gy onl’, 4.1)
S (2, [eurl uy, 2)curl w, x 1= h, X 1 onT,
| (-, 1)s, =0 =1,
for every n = 0,1, .. .. Thus (u,, 7,) satisfies

/ S (2, |curl w,|?)curl w, - curl vdz — / T div vde
0 Q

={(f,,v)a+ (h, x n,v)rforallv € X,(Q). (4.2)

Then we have the following theorem on the continuous dependence on the data.

Theorem 4.1. We assume that for every n = 0,1,..., a Carathéodory function
S (x,t) satisfies (2.1a)-(2.1c) with the same constants \ and A, and assume that
f, € Xb(Q), g, € W=1P2(Q) and h,, x n € W ~YP'P(T) satisfy the compatibility
conditions (2.8) and (2.9) with f = f,,9 = g, and h = h,. Let (u,,m,) €
WP(Q) x L' (Q) /R be a unique weak solution of (4.1). IS (x,t) — Sz, 1) ace.
inQx[0,00), and f,, — foin X0(Q), g, — go in W=YPP(T') and h,, xn — hg xn
in W=YP'P (1) as n — oo, then u, — ug in WP(Q) and m, — o in L (Q)/R as

n — oQ.

In the particular case where S™ (z,t) = SO (x,t) foralln = 1.2, ..., there exists a

constant C > 0 depending only on p, \, A, Q, || fo[|xz () and [[ho X nHW_l/p/,p/(r) such

that for large n,

/ /
whoey T I7n = Mol ) e

< C(an - f”%gﬂ(g)/ + an - .f”ggg(g)/ + Hgn - 90| I;I\//f,l/p,p(p)

/
+ [[hn x m = ho x n|[7

[en — o

i py T B X = Ro X RIG )

where p vV p' = max{p, p'}.
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Proof. First we consider the following system.

([ curl [S™ (2, [curl w, [?)curl w,] + Vi, = £, in €,
divw, =0 in €2,
Wy m =0 onT, (4.3)
St(n)(:v, lcurl w,|*)curlw,, x n = h, x n onl,

| (w, -, )5, =0 j=1...,J

By Theorem 2.6, the system (4.4) has a unique weak solution (w,,, 7,) € W?(Q) x
L () /R satisfying (4.2). Taking v = w,, — wq € V5.(Q) — X5(Q) as a test function
of (4.2) and noting that div (w,, — wg) = 0 in 2, we have

/ (St(") (z, |curl w, |*)curl w,, — St(o)(x, |curl wo |*)curl wy) - curl (w,, — wo)dx
Q
= <fn - anwn - wU>Q + <(hn - hO) XNn,w, — w0>F'

We write this equality into the form

/(St(")(az, |curl w, |*)curl w,
Q
_ St(n)(aj7 |curl wy|?)curl wo) ccurl (w, —wo)dr =1, — I, (44)

where

Iy = (f, — fo,wn —wo)a + ((hn — o) X i, w, — wo)r,
I, = /(St(")(x, |curl wo|?)curl wy
Q

51" (a |eurl wo [*)eurl wp) - curl (w,, — wo)dz.

We estimate |[;| and |I5| from above. We have

L] < [[f.— fo”xg(ﬂ)'Hwn - wOHX‘;(Q)
+H(hn - hO) X n”w—l/p’,p’(p))Hwn - wOlefl/pyrr(F)
< OUFa — Follzpay + 10 — o) X nllyyrr 1)

x[|lwy, — w0||V§(Q)

and

|| < HSt(")(x, |curl w|?)curl wO—St(O)(x, |curl w|?)curl w0||Lp/(Q)>< ||wn—w0||vg(g).
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For the brevity of notation, we put

Gn = an - fOHX%(Q)’ + ||(h'n - hO) X n”wfl/p’,p’(r)

+ 15 (. |eurl wo|*)eurl wo — i (z, [eurl wy|?)eurl wo|| v g -

Thus we have
|1 + [12] < Gullw, — wollve (-

Next we estimate the left hand side of (4.4) from below, using Lemma 2.2.

When p > 2, we have
c/ jcwrl (w, — w)Pdz < |1 + |1o] < Gullw, — wollye
Q

Hence we have
lwn = woll}y ) < ele/ (4.5)

When 1 < p < 2, we have
c/(|cur1 w,| + |curl wo| )P~ |curl (w, — wo)|Pdr < G||lw, — wollvz ()
0

In this case, we use the reverse Holder inequality (cf. Sobolev [17, p. 8]) with
0<s=p/2<lands =p/(p—2)<0. Then we have

/(|Cur1 w,| + [curlwg|)P~2|curl (w,, — wo)|*dx
Q

> 271 (||curl Wy [Ty + [lcurl w0||’£p(m)(p_2)/p||curl (w,, — w0)||2Lp(Q).
Thus using the estimate (2.10) of Theorem 2.6, we have

||curl (w,, — 'wo)||2Lp(Q) < C(||curl wn||p ) + [leurl w7 Q))(2—10)/:0
X Gol[wn, — wollye o
< Cl(”f HXP(Q + HfOHXP(Q + Hh X an 1yl

+ho x EII Gl = wollvg o)

)

fl/p’,p’(p))

Hence, for large n,

s = wo)llvgiey < CUlFolltp oy + 1o X %, ey + DEPPGL (@6)
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On the other hand, from (4.2), we have
/ (St(") (z, |curl w, |*)curl w,, — St(o)(a:, |curl wo |*)curl wy) - curl vda
0
- /(m — mo)divedz = (£, — fov)a + (o — ho) X D0} (47)
Q

for any v € X7.(Q2). We write the mean value of a function ¢ by ¢, i.e.,

1,
c, = — | pdx.
Tl e

For any v € X%.(Q), it follows from the divergence theorem that

/(Wn — Ty — Crpy—mp )iV vdT = /<7Tn — mp)divodzr — ¢q, _r, / divvdx
Q Q Q

= /(ﬂ'n — 7p)div vdz.
Q
Thus we may assume that 7,, — 7y € LSI(Q) where

LE(Q) = {p € L”'(Q);/ﬂwdw = 0}.

Hence, for any ¢ € LP(£2), we see that

/Q(wn — 7o) pdx = /(wn — o) (¢ — cp)da.

Q

By [1, Corollary 3.1], there exists z € Wé’p (Q) such that divz = ¢ — ¢4, and there
exists a constant C' > 0 depending only on p and 2 such that

HZHW[l)’p(Q) < C||9ll Lo
Taking v = z € WP(Q) € X2(Q) as a test function of (4.7),
/Q(St(n) (z, |curl w, [*)curl w,, — St(o)(:v, |curl wy |*)curl wy) - curl zdx
- /Q (1 = m)ode = (f — .2) + (Ao — ho) x 7, 2)r.
We write this equality in the following form.

/(7?” —mo)pdxr = Jy + Jo + Js. (4.8)
Q
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where
Ji = /Q(St(") (z, |curl w,|?*)curl w,
—St(”) (z, |curl wo|*)curl wy) - curl zdz,
Jo = /Q(St(") (, |curl wo|?)curl wy
—Sgo)(:ﬂ, |curl wy |*)curl wy) - curl zdz,
Js = —(fn—Fo 2)a = ((hn — ho) X 1, Z)r.
We have

|Jo] < C’Han)(x, |curl w|?)curl wy
0
—St( )(x, |curl wo|*)curl w0|]Lp/(Q)]|zHW01,p(Q)

< CGH|9ll e,

Clearly we have

[ J5| < (£ = Follxz.y + [An x 1= ho X 0|1 o (0 )| Dl £o(02)
< CGL||9] e ()

When 1 < p < 2, using Lemma 2.3, the Holder inequality and (4.7), we have

|1

IN

C{/ curl (w,, — wy) [P~ |curl z|dx
Q

—1
Cllwn - wOH{\)/?(Q)HzHW(I)’p(Q)
< CGHI¢lee-

IN

When p > 2, similarly, we have

|| < C{/ |curl w,| + |curl wg|)?~?|curl (w,, — wy)||curl z|dx
0
< Clllwallvao) + lwollve. )"~ llwn — wollvr o) 2l wirg
< CGY?)0]|ire).

Therefore, we have

CiG, + CsGP™Lif 1l <p <2,

I o 4.9
| oll v ()/m {C4GH+C5G%Z_1 ifp > 2. 4.9)
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Taking (4.7) into consideration, we have

24 \v;
|w,, — ongpﬁQ) + ||, — 7r0”1? P oy S C’(GP + GP).

We show that G, —>Oasn—>001ff — foin X2.(Q) and h, x n — hy X n in
WYY (T and S (2, 1) — S (x,1), a.e. in Q x [0, 00).

Since

‘St(n)<x7 |curl wo|?)curl wy — Szfo)(x? [eurl wo [*)eurl wo |”
< (2A) |curlw|P € LH(R)

and S\ (z, |curl w|?)curlwy — S (2, |curl wo|?)curl wy a.e. in €, it follows from

the Lebesgue dominated theorem that

||St(n) (z, |curl wo|?)curl wy — St(o) (z, |curl 'w0]2)curlw0||Lp/(Q) —0
as n — oo. Hence we have GG,, — 0 as n — oo.
End of the proof of Theorem 4.1.

Let (w,,m,) € VH(Q) x L¥(Q)/R be a unique weak solution of (4.4). From the
compatibility condition (2.9) with g = g, the following Neumann problem
{ Ad, =0 inQ,

B __
5 =¢gn onl

has a unique solution 6,, € W?%?(Q), up to an additive constant, and there exists a
constant C' > 0 such that

[10nllw2r0) < Cllgnllwi-1mrry-

Define
J

uw, = w, + V0, — E (w, +V6b,) -n, 1>2j6q]r.
j=1
Since

w, — Uy = w, —wo+ V(0, —0) —

M“

— Wy + V<9n - 00)) ‘n, 1>Ej%Qf7

J=1

we have

IN

C(llwn = wollwrr@) + 160 = Oollwzr)

< Ci([lwn — w0||vg(9) + [lgn — go||w1—1/p«p(r))-

|w, — u0||W1=P(Q)

This completes the proof of Theorem 4.1. O]
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A. THE GREEN FORMULA
First, we show that if 7 € L” (Q)/R, then V' € X5 (Q)’ is well defined and

(V@) = (VT, @)xr qyxp@) = — / ndiv pdzx, for all ¢ € X7.(Q).
Q

To show this, define a functional 7}; on X%.(£2) by

(Tr, ) = —/Qﬂdiv pdzx, for p € XL(2).

Since ¢-n = 0 on I', the above definition is independent of the choice of representative
of m € L”(Q)/R. Moreover, we have

(T )| < I7ll 1o ) el 2.0

Thus T, € X2.(Q)" and
1T llx2 @y < 17l Lo 0/

If 7 € D(Q2)/R, then we can clearly see that

(T, ) = (Vm, ) = — / wdiv epdz for all ¢ € D(S2).
Q

Since D(2)/R is dense in L” (2)/R, T} is a unique extension of V7 and we have
T, = Vrin X4 (Q)". Thus

(Vm, o) = — / ndiv gpdzx for ¢ € X2.(Q). (A1)
Q

Next, let w € LP (Q) and curl w € X2(Q)". For any ¢ € W'™V/PP(T") with ¢y - n = 0
on I', there exists 17) € WP(Q) such that ':b = onl, and

Y llwre@) < CllYllwr-1me -

Define
(w x n, ) = —(curl w, P)g + / w - curl Y.
Q

Then we have

(w x )| < (leurlwllg oy + 0] o) 1% 22 0)

< Clfleurlwllg oy + ] g ) 18 w27

A
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Thus w x n € WP (') is well defined, and for any ¢ € X2(Q), the following
Green formula holds.

(curlw, p)qg = —(w X N, Y)r + / w - curl pdz. (A.2)
Q
Of course, if w € Wl’p,(Q), we have

/curlw-godx:—/(w><n)-t,odS—i—/w-curlgodxforall(,oEX&}(Q).
0 r 0
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