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Abstract

We discuss sufficient conditions for the existence of solutions for a boundary value
problem of implicit fractional-orders differential equation. Some types of Ulam
stability for our problem will bee establish.
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1. INTRODUCTION

Recently, some mathematicians considered boundary value problems
for fractional-orders differential equations (see [1]-[5], [7]-[22] and references therein).
Let 1 < f < a < 2. Here, we establish existence, Uniqueness and stability results

for the boundary value problem of the implicit fractional-orders differential problem
(IFDP):

“Dey(t) = £ (6, (1) DPy(), / K(t,s)Doy(s)ds), teT=[0;T], (1)

y(0) =y, y(T) =yr. (2)
The paper is organized as follows: Section 2, we present our main result by using
Schauder’s fixed point theorem. Furthermore, we prove the stability of solution of our
problem. In Section 3, we give examples to demonstrate the application of our main
results. Finally, we present conclusion in Section 4.
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2. EXISTENCE OF SOLUTIONS

Consider the problem (1)-(2) under the following assumptions

(Hy) f:1I x R®— Ris continuous and there exists ¢ € C(I, Ry ), with norm |2
such that:

)

|f(t, w1, ug, us) — f(E,01,02,03)] < () (Jur — v1] + [ug — va| + [ug — v3]),
Vite [, U;, V; € R, (Z = 1,2,3)

(Hy) k(t, s) is continuous for all (¢, s) € I x I, and there is a positive constant /&
such that

max |k(t,s)| = K.
t,s€[0,7

Remark:
From assumption (H), we have

|f<t,U1,U2,'U/3)’ - ‘f(t7070a O)’ S ‘f(t7u17u27u3> - f<t707070)‘
< () (Jua| + [ua] + us)),

then
|f(t,u1,u2,U3)| < w(t)(|u1| + |u2| + |U3|) + |f(t70’070)|7

and

[f(t v,z us) | < (01| (fua] + Jua] + fus]) + F, where F' = sup |£(£,0,0,0)].
te

Lemma 1. If the solution of IFDP (1)-(2) exist, it can be represented by the integral
equation

T
) = bty + [ Gt opuls)ds, ®
0
where u is the solution of the functional integral equation
T t
u(t) = f(t, h(t) + / G(t, s)u(s)ds, Io‘ﬂu(t),/ k(t, s)u(s)ds), 4)
0 0

G(t, s) is the Green’s function defined by

G(t,s) = )
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with
Go = max{|G(t,s)|,(t,s) € [ x I},

and
(yT - yo>t

h(t) = Yo + T

: (6)

Proof. Tt is not difficult (see [21]) to verify that DPy(t) = [*P<Dy(t) fort € I. If y
is a solution of equation (1), then

Dy(t) = f(t.y(t), 1*7° CDO‘y(t),/O k(t,s) “D%y(s)ds), t € J =:(0;T].

Let °D?y(t) = u(t) in equation (1), then

u(t) = f(t,y(t),[o‘_ﬁu(t),/o k(t, s)u(s)ds)

and

y(t) = co+ 1t + ﬁ/o (t —8)* tu(s)ds

from which can get ¢, = y, and

- 1 g a—1 (yr — ¥o)
= “TT (o) /0 (T — s)* u(s)ds + —r

Then the solution of (1)-(2) is given by

IR . t T . t t
W) = g7y | (0= s = s [T = 9 u(s)s £ (1= D+
_ 1 ! t a—1 t T a—1 d t r T a—1 d
— | [l e s [ s
¢ ¢
+ (1 — T)yo + 7Y
As a result, we have equation (3) and (4). [l

Definition 1. By a mild solution of IFDP (1)-(2), we mean a function u € C(I,R)
satisfying integral equation (4).

Our first existence result is based on Schauder’s fixed point theorem.
Theorem 1. Let (H,)-(Hs) be hold. If

KAl A
TR v

Then the IFDP (1)-(2) has at least one mild solution on I.

+ LI KT.
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Proof. Transform the IFDP (1)-(2) into a fixed point problem. Define the operator
A:C(I,R) = C(I,R) by:

Ay(t) = h(t) +/0 G(t,s)v(s)ds, (7)

where v € C(I, R) satisfies the implicit functional equation

u(t) = f(t,y(t),]o‘_ﬁv(t),/o k(t, s)v(s)ds).

and ;
h(t) A + (yT ;yo)
with G are the functions defined by (5).
Define the ball
lyr| + S
BQ = {?/ € C(LR) : ||y|| < Q}» 0> W

It is clear that the set 3, is nonempty, bounded, closed and convex. We demonstrate
that the operator A defined by (7) meets the hypothesis of the fixed point theorem of
Schauder. The proof will be presented in several steps.

Step.1 : The operator A is continuous.
Consider a sequence {z,,} C B, such that z,, — x in B,. To show that A is continuous,
we have to prove that

|Az, — Az|| - 0 as n — cc.

For this, we have

|A,(t) — Ax(t)] < / G(t, 5)[tn(s) — u(s)|ds ®)

where u,,, u € C(I, R), such that
wnlt) = £ (b 2n(t), " Punt), /0 k(t, s)un(s)ds).
u(t) = f(t,x(t),[aﬁu(t),/o k(t, s)u(s)ds)

and by (H;), we have
|un(t) = u(t)]

— F (b a0, I Pun (), /O K, s)un(s)ds) — £ (t,2(t), " Pu(t), /0 k(t, s)u(s)ds),

_ 8)04—,8—1

< (1) (|:rn<t>—$(t>|+/0 (tr(

a—_5)|un(s) —u(s)| ds +/0 k(t, s)|u,(s) — u(s)|ds),
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then
a—p3
i (®) = < 1] (L = ol + gy o =l + K T = ).
Thus
it — ] < ] E——
T Ol (K T+ n)

Since x,, — x, then we get u,,(t) — u(t) asn — oo foreach ¢ € I. And lete > 0 be
such that, for each t € I, we have |u,(t)| < ¢, and |u(t)| < e. Then, we have

Gt 5)|un(s) —uls)] < [G(E,5)] (Jun(s)] + |u(s)])
< 2¢|G(t, )|

Foreacht € I, the function s — 2¢|G(t; s)| is integrable on /. Then applying Lebesgue
Dominated Convergence Theorem, then (8) implies that

|Az, — Az|| - 0 as n — oo.

Consequently, A is continuous.

Step.2: A maps bounded sets into bounded sets in B,, i.e., A(B,) C B,. Indeed, it is
sufficient to demonstrate that there is a positive constant p for each y € B,, we have
| Ay|| < p, show that Ay € B,

We have that for each t € I, by the condition (Hs),

T

Ay(t)] = |h(t) + / G(t, s)o(s)ds| < |h(b)] + / Gt 9)l[o(s)lds,  ©)
where v(t) = f (¢, y(t), fo (s)ds)

w(t)] = |£ (£, (), " Pu(d), /0 k(t, 5)o(s)ds)|

t (t _ S)a—ﬁ—l

< Fevo]+00) | Sl ds+00) [ Ik s)lio(s)ds.

Taking supermum for ¢ € I, we have
a—p

Ioll < £+ Rl ol + 191 g =515

[oll + 1l Kol T

Thus

F+ ¢l e

[ i ’
1- (F(a—/o’—i—l) T |WHKT)

[
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and
(yT - yo)t
T

<l =T) | Jurle
- T T

Thus (9) implies that, for each t € I,

[A(D)] = |yo +

< |yT|'

Go T(F + ||l o)

<
[ Ay(t)] < Jyrl + 22

< p
Taking supermum for ¢t € I, we have
1Ayl < p.

Then A(B,) C B,.

Step.3: A(S) is relatively compact.

we prove that A maps bounded sets into equicontinuous sets of C'(I, R), i.e, By is
equicontinuous. Now, Let Ve > 0,36 > 0and t1,ty € I, t; < ta, |ta—t1| <. Then
we have

|Ay(ts) — Ay(tr)] < / Glta, ) — Gltr, 5)| Jols)|ds

T
< 1ol / Glta,5) — G(t1, )| ds
0

_F+lele

T
ST .x /0 |G(te,s) — G(t1, s)| ds.

As t; — to, the right-hand side of the above inequality is not dependent on y and tends
to zero. Consequently,

Thus, { Ay} is equi-continuous on B,, and A is compact operator by the Arzela-Ascoli
Theorem [6] and in view of the above three steps. Therefore, Operator A : C'(I, R) —
C(I, R) is continuous and completely continuous.

Hence, all the hypotheses of Schauder’s fixed point Theorem [6] holds and shows that
A has a fixed point on B,. Therefore, the IFDP (1)-(2) has a mild solution. The proof
is complete. O

Our second result is based on Banach’s fixed point Theorem to obtain the existence
of a unique solution of the IFDP (1)-(2).
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Theorem 2. Let the assumptions of Theorem 1 holds, with

Go [Pl T

L=l (K T+ srs)

< 1. (10)

Then the IFDP (1)-(2) has a unique mild solution on I.

Proof. 1t follows, from Theorem 1, that IFDP (1)-(2) has at least one solution.
Therefore, we only need to show that the operator A described in (7) is a contraction.

Now take x,y € C(I, R). Then for ¢t € I, we have

Ax(t) — Ay(t) = /0 "Gt syu(s)ds — /0 "Gt syols)ds, (an
where u, v € C(I, R) be such that
a(t) = £t 2(t), I Pult), /0 k(t, $)u(s)ds),
o(t) = f(t y(t),Io‘_Bv(t),/Otk(t, s)v(s)ds).
Then, fort € I
Ar(t) — Ayl < [ Glt.s) ) — ot (1)

but by condition (H,), we have
[u(t) —v(t)]
= F (6 2(0), I Pult), /O k(t, syu(s)ds) — £(t,y(8), I°Pol2), /0 k(t, s)o(s)ds)|

t(p_ gyo—p-l
swme—mm+/@—l——

. T(a—5) lu(s) —v(s)| ds+/0 k(t, s)|u(s) — v(s)|ds)

a—p3

< r—yYl|l+ =————=|lu—v||+ K|lu—v||T).

< 9l (e =l + =gy I = vl + Kl =0l 7)
R Il

lu— vl < —— Iz —yll.
L=l (K T+ w555)
Retrain to (12) , we have
Go ¥ T

|Ax(t) — Ay(t)] <

a—f
L=l (K T+ sogrm

[z = yll-
)
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Taking supermum for ¢t € I, we have
Go ¢l T

a—f
L= [YIl(K T+ s

|4z — Ayl < (

))Ilw—yll'

Go |l¥Il T

By o
(1—wn(f< Tt e

contraction principle, A has a unique fixed point which is a mild solution of the IFDP
(1)-(2)on I. [

)) < 1, the operator A is a contraction. Hence, by Banach’s

Now, we consider the Ulam stability for IFDP (1)-(2). Lete > 0and ® : I — R, bea
continuous function. We consider the following inequalities:

Doy (t) — (b, y(t), DPy(t), / Kt ) Doy(s)ds)| < e(t), te T (13)
€Dy (t) — (1, y(t) Dy(1), / Kt ) Dy(s)ds)| < B(1), te T (14)

|“D%y(t) — f(t,y(t),c Dﬁy(t),/o k(t, s)CDay(s)ds)| <ed(t), tel. (15)

Definition 2. [22] The IFDP (1)-(2) is Ulam—Hyers stable if there exists a real number
cg > 0 such that there exists a solution v € C(I, R) of (1)-(2) for

ly(t) —x(t)| <ecy, tel.
for each solution y € C (I, R) of the inequality (13).

Definition 3. [22] The IFDP (1)-(2) is generalized to be Ulam—Hyers stable if there is
cy € C(R4, Ry) with cg(0) = 0 so that there is a solution x € C(I, R) of (1)-(2) with
ly(t) —x(@)] <csle), tel

for each € > 0 and for each solution y € C(I, R) of the inequality (13).

Definition 4. [22] The IFDP (1)-(2) is Ulam—Hyers—Rassias stable with respect to ®
if there exists a real number cy o > 0 such that there is a solution x € C(I, R) of (1)-(2)
with

ly(t) —z(t)| < ecra®(t), tel.
for each € > 0 and for each solution y € C(I, R) of the inequality (15).

Definition 5. [22] The IFDP (2) is generalized Ulam—Hyers—Rassias stable with
respect to ® if the actual number c;o > 0 exists in such a way that for each solution
y € C(I, R) of the inequality (14) there is a solution x € C(I, R) of (1)-(2) with the
solution © € C(1, R) of the inequality.

ly(t) —z(t) > | < cr0®(t), tel
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2.1 Ulam-Hyers Stability

Next, we present the following Ulam—Hyers stable result.

Theorem 3. Let the assumptions of Theorem 2 be satisfied. Then IFDP (1)-(2) is
Ulam—Hyers stable.

Proof. Lete > 0 and let z € C(I, R) be a function which satisfies the inequality (13),
t
°D*z(t) — f(¢,2(¢),° Dﬁz(t),/ k(t,s)°D%z(s)ds)| <e, tel
0

and let y € C(I, R) be the unique solution of IFDE (1)-(2) which is by lemma 1 the
IFDP (1)-(2) equivalence to fractional order integral equation

T
y(t) = h(t) —I—/ G(t, s)u(s)ds,
0
where w is the solution of the functional integral equation
T t
u(t) = £(t,h(t) + / G(t, s)u(s)ds, I°Pu(?), / k(t, s)u(s)ds).
0 0
Operating by I* on both sides of (13), and then integrating, we get

r eTe
|2(t) — h(t) _/o G(t, s)v(s)ds| < Tatl) (16)

For each t € I, we have
|2(t) —y(t)] = k@%—MU—[fG@SM@Mﬂ
< |2(t) = h(t) - /OTG(t, s)v(s)ds|

+ M@%+ATG@3M@Ms—h@—:ATG@sm@Mﬂ

eT® T

S _

S TatD +/0 G(t,s)|v(s) —u(s)|ds
eT®

< —_— — .

< F(a+1)+G°Hu o|| T

Indeed, from proof of Theorem 2, we have

T WI(E T+ s

Iz =yl
(oa—ﬁ-l—l))
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Then, foreacht € [

ooyl < 1 ColblT oy
Cla+1) 1= [l (K T+ )
Thus
€T G, vl T -1
lz =yl < ﬁ{1_( 1] ] =«
(a+1) L= (KT + w5

-1
I _ Go |9l T 2(2)i ;
for let ¢ = NS [1 (1—||¢<KT+F(TE§1>)} . So, the IFDE (1)-(2) is Ulam-Hyers

stable. OJ

By putting ®(¢) = ¢ ¢, ®(0) = 0yields that the IFDE (1)-(2) is generalized Ulam-Hyers
stable.

2.2 Ulam-Hyers-Rassias Stability.

Now, we state the following Ulam—Hyers—Rassias stable result.

Theorem 4. Assume assumptions (H,) — (H3) and
(Hy) The function ® € C(1, R,) is increasing and there exists \p > 0 such that, for
eacht € J, we have
I ®(t) < Xp O(1).
are hold. Then IFDP (1)-(2) is Ulam—Hyers—Rassias stable with respect to P.
Proof. Let z € C(I, R) be a solution of the inequation (15), i.e.,
t
Do (1) — f(t, 2(8).C DP=(1), / K(t,5)°D°2(s)ds)| < e ®, tel
0
and let us assume that y is a solution of the problem (1)—(2). Thus, we have
T
y(t) = h(t) —i—/ G(t, s)u(s)ds,
0

where u € C'(I, R) such that

u(t) = f(t,y(t),]o‘_ﬁu(t),/o k:(t,s)u(s)ds).
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Operating by /* on both sides of the inequality (15) and then integrating, we get

/ G(t,s)v(s)ds| < m/ (t—s)* " ®(s)ds

S E)\cpq)( ),

where v € C(I, R) such that

For eacht € I, we have
0=yl = [0 =h0) = [ Gt
S\AQ—MQ—ZZG@@M$%|

+ MQy+A G@sﬁ@ﬂs—h@—:é G(t, s)u(s)ds|

< e D(1) +/0 G(t, s)|v(s) — u(s)|ds

IA

e O(t) + /0 G(t, s)|v(s) — u(s)|ds
< €Xo O(t) + Gollv —u| T

Indeed, from proof of Theorem 2, we have

Il
lu = o|| < = Ilz —yll.
L= (19K T+ ri=gimy)
Then, foreacht € [
G, || T
el < xo o)+ —— T oy
— (K T + /a=zemy)
Thus
Go ||| T -
[z —yll < [1 - Il Tah ] € Ao D(t) = coe P(2),
L= I T + re=prmy)
where X
Go v T ]
Cp = |:1 - y— /\q>.
L= I (K T+ mi5m)

So, the problem IFDP (1)-(2) is Ulam-Hyers-Rassias stable with respect to ®. O



86 A. M. A. El-Sayed, Sh. M Al Issa, M. Elmiari

3. EXAMPLE

Example 1. Given the following IFDP:

2+ y(t) +° D3 + [y e* “Diy(s)ds

1
cD3 = ., telo,1 (17)
2et+1(1 4 y(t) +° D3 + fol el=s CD%y(s)ds) 0.1
y(0)=1 and y(1)=1. (18)
Set
2

2e 1 (14 |u| + [v] + w])

Obviously, f is mutually continuous function. In fact, for any wy, vy, wy, g, Vo, wy €
R and t € [0,1]

‘ -

|t u,v,w) — f(tuy, v, wi)| < = (Jur — uo| + o1 — va| + Jwy — wyl).

\)

e2

Hence condition (H>) is satisfied with ¢(t) = 5.

Also,
1 1 1
f(tuv,w)] = o5 (24 Jul + [v] + [w]), where F ==, and |[v]| = .
Thus condition
% ~ 0.393913 < 1.

To—p .
where X = F(Wﬁm‘) + [[Q|KT, with T =1, 0 =4, 6 =35 F = 5, |[¢| = 5
and K = e. It follows from Theorem 1 that the IFDP (17)-(18) has at least one mild

solution on /.

Example 2 Consider the following IFDP:

1
‘D3 = — . (19)
2et1(1 4 y(t) +¢ D3 + [ et~ <D2y(s)ds)
y(0) =1 and y(1)=2. (20)
Set
1
ftu,v,w) = t €[0,1], u,v,w € R.

21 (1 + [u] + o] + w|)’
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Clearly, the function f is jointly continuous.
For any u;.v1, wy, ug.v2,wy € R and ¢ € [0, 1]

|f(t,U1,U17w1) - f(t7u27v2aw2)|
1 [ 1 1 ]
< t+1 -
2ett (1—|—|u1|+|vl|+]w1|) (1+|U2|+|?}2|+|w2|)
< 1 |: \ul—u2|+|vl—v2\+\w1—w2\ :|
T 26T L (1A Jua | o]+ Jw]) (1 fug] + fva] 4 [w2])
S @Gul—U2‘+|U1—02|+’w1—w2|).

Hence condition (H) is hold with ||| = 55 < 1. From (5) the function G is given by

1 1
(t—5)2  t(1-5)2
T(a)  1T(@) O<s<t<1,

G(t,s) =

1
—t(1—s)2
Ll 0<t<s<l,

Clearly Gy < 2. Thus We shall check that condition 10 thus

Go [l T

L= [ (K T+ w555)

= 0.1821179198 < 1.

isholdwith T =1,a =3, 8 = 3, |[¢|| = 35 and K = e. It follows from Theorem 2

that the problem (19)-(20) as a unique solution on /.

4. CONCLUSION

In this current research paper. First, the equivalence between IFDP (1)-(2) and the
Volterra integration equation (3) was developed in our study. Secondly, the existence
and uniqueness of mild solutions for boundary value problems of implicit fractional
order differential equations were established based on Schauder’s fixed point theorem,
and Banach contraction principle. We found the Ulam Hayers stability and the
generalized Ulam Hayers stability, the stability of Ulam - Hyers - Rassias and the
generalized stability of Ulam - Hyers - Rassias allowed on the implicit differential
equation of fractional order, supplemented with fractional integral type boundary
conditions. Finally, we end the article with illustrations examples to prove the
applicability of the result obtained.
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