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Abstract

In this paper we derive new properties of Mertens function and discuss about a

likely upper bound of the absolute value of the Mertens function /log(x!) >
M (x)| when x > 1. Using this likely bound we show that we have a sufficient
condition to prove the Riemann Hypothesis.

1. INTRODUCTION

We define the Mobius Function u (k). Depending on the factorization of n into prime
factors the function can take various values in {—1, 0, 1}

e u(n) = 1ifnhas even number of prime factors and it is also square-
free(divisible by no perfect square other than 1)

e u(n) = —1if n has odd number of prime factors and it is also square-free
e u(n) = 0ifnisdivisible by a perfect square.

Mertens function is defined as M(n) = Y-, u(k) where u(k) is the Mobius
function. It can be restated as the difference in the number of square-free integers up
to x that have even number of prime factors and the number of square-free integers up
to x that have odd number of prime factors. The Mertens function rather grows very
slowly since the Mobius function takes only the value 0, +1 in both the positive and
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negative directions and keeps oscillating in a chaotic manner. Mertens after verifying
all the numbers up to 10,000 conjectured that the absolute value of M(x) is always
bounded by v/x. This conjecture was later disproved by Odlyzko and te Riele!. This
conjecture is replaced by a weaker one by Stieltjes? who conjectured that M (x) =

1
0(x2). Littlewood?® proved that the Riemann hypothesis is equivalent to the statement
1
that for every e > 0 the function M (x)x"2" € approaches zero as x — oo. This proves

1
that the Riemann Hypothesis is equivalent to conjecture that M (x) = 0(x2*€) which
gives a rather very strong upper bound to the growth of M(x). Although there exists
no analytic formula, Titchmarsh* showed that if the Riemann Hypothesis is true and if
there exist no multiple non-trivial Riemann zeta function zeros, then there must exist a
sequence Tj, which satisfies k < T}, < k + 1 such that the following result holds:

Mo (x) = lim Z >, +Z CO™T_ 2m
° ko L pl(p) i (2n)ing(2n+1) " x
lVI<Tg
Where £ (z) is the Riemann zeta function, and p are all the all nontrivial zeros of the
Riemann zeta function and M, (x) is defined as M,(x) = M(x) — %,u(x) if xeZ*,
M(x) Otherwise (Odlyzko and te Riele?)

2. NEW PROPERTIES OF MERTENS FUNCTION

Lehman® proved that Y7, M(lx/i))= 1. In general, ¥*, M(lx/(in))= 1, n =
1,2,3,...,x(since||lx/nl/i| = (lx/(in)]). Let R’ denote a square matrix where
element (i, j) equals 1 if j divides i or O otherwise. (In a Redheffer matrix, element
(i,)) equals 1 if i divides j or if j = 1. Redheffer® proved that the determinant of the
matrix equals the Mertens Function M(x).) Let T denote the matrix obtained from R’
by element-by-element multiplication of the columns

by M (EJ)M ([’z—CJ)M (EJ) M(EJ ). For example, the T matrix for x = 12 is

-2 0 0 0 00 0 O O0OO0OTUOTDO
-1 -1 0 0 00 0 O O0OO0OTU OO
-1 0 -1 0 0 0 0 0 0 0 0 O
-1 -1 0 -1 0 0 0 0 0 O O0 O
0 0 0 0 000 OO0OTOTU OO
T =1 0 0 0 0 00 O O O0OO0OTUDO 0]
1 0 0 0 001 0 0 O0OO0OO
1 1 0 1 00 0 1 0 0 0O
1 0 1 0 00 0 O 1 O0O0O0
1 1 0 0 1.0 0 0 0 1 0 O
1 0 0 0 00 0 O OOTI1TFDO
1 1 1 1 01 0 0 0 0 0 1
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Theorem (1) : X, M(lx/i])i= A(x)

Proof: Let us now take A(x) = X.;=; @(i) where ¢ is Euler’s totient function. Let U
denote the matrix obtained from T by element-by-element multiplication of the
columns by ¢(j). The sum of the columns of U then equals A(x). Now since i =
Ya)i ©(d) we can write Y7_; M(|x/i]) i (the sum of the rows of U) equals A(x).

By the Schwarz inequality, A(x)//x(x + 1)(2x + 1)/6 is a lower bound

of \/ZfﬂM([x/iJ)z. A(x) = Y5, @) Is further simplified by Walfisz” and Hardy
and Wright® as

A® =T 00) = 3T n [F] (14 [7]) = 52 +
0(n(logn)?/3(loglogn)*/3)

A(x) —x 33 x?

\/Z M( X/l \/x(x+1)(2x+1) > \/x(x+1)(2x+1) _\/x(x+ D(x+1/2)

6 6

This can be further simplified to

1
i J(1+1/x)(1 +1/2x)

(ZeaM /i) fe > 2
Taking limit of infinity on both the sides, we get

lim Jz  M(lx/iD)? /x> 22

This shows that Y7, M(|x/i])? at large values of X is greater than %xz.

Let A(i) denote the Mangoldt function (A(i) equals log(p) if i = p™ for some
prime p and some m > 1 or 0 otherwise). Mertens® proved that ¥*_, M(|x/i|)log i
= P (x) where Y (x) denotes the second Chebyshev function (y(x) =);<, A(Q) ).

Theorem (2) : £, M (|5]) 1og() 00(1)/2 = log(xt)

Proof: Let o,(i) denote the sum of positive divisors function (o, (i) = Xq; d*).
Replacing ¢(j) with log(j) in the U matrix gives a similar result.

Let A(n) denote the Liouville function (A(1) = 1 or if = pfl..p,‘j",/l(n)
(—1)%**% ), ¥4, A(d) Equals 1 if n is a perfect square or O otherwise. Let (x) =
Yn<xA(d) . Let us also assume H(x) = Y« #(m)log(n). H(x)/(xlog(x)) = 0
as x — oo and limM(x)/x — H(x)/(xlog(x))) = 0. The statement lim M(x)/
X—00 x—00

= 0 is equivalent to the prime number theorem. Also, A(n) = — Yq;n u(d)log(d) .
(Apostol*).
The generalization of the Euler’s totient function is Jordan totient function. Let it be

denoted as J, (x) which is defined as number of set of k positive integers which are all
less than or equal to n that will form a co-prime set of (k + 1) positive integers
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together with n. Let us define (x) = Xi, /(i) . It is known that ¥4, Jk(d) = n*.
Then we get the following theorem.

Theorem (3): Y%, M (H) i* = B(x)
B(x) is expanded by McCarthy!* to be

B(x) = Xica Ji (D) = +0(n")

(r+1)((r+ 1)

We therefore get ¥7_, M (H) i* =B(x) = +0(n*).

nk
(k+1)q(k+1)

Likewise we can derive some other similar relationships using the T matrix that are as
listed below:

Theorem (4): ¥7., M (

,—

]) () = Y5, ik forkez*

Theorem (5): YXio M ( % ) where the summation is over those i values that are
perfect squares equals L(x)

Theorem (6): X, M (% ) A(D) = —H(x)

Theorem (7): Y2, M (%) 200 = T ()| ~ =% + 0(n) =

No.of Square Free Integers

Theorem (8): ¥¥., M (%) (m?) = Y%, 29O where d(x) is the sum of all the
divisors of x

Theorem (9): 2, M (| )dz(n) =¥ d(i?)

Theorem (10): Y7, (l J) <p(1) il ’f:((ii))

Similarly many other relationships can be found between various arithmetic functions
and the Mertens Functions.

3. ALIKELY UPPER BOUND OF |M(x)|

The following conjecture is based on data collected for x < 500, 000.
Conjecture (1): log(x!) > Y%, M(lx/i])* > ¥(x) whenx > 7

By Stirling’s formula, log(x!) = x log(x) — x + 0(log(x)), since log (x)

increases more slowly than any positive power of log(x), this is a better upper bound

of X7, M([x/iJ)2 than x1*€ forany & > 0. This likely bound can be used to prove
the Riemann Hypothesis since Y;7-; M(|x/i]) > |[M(x)| and therefore we can

write /log(x!) > [M(x)| . Since the growth of ¥7_, M([x/ij)2 is lesser than x1*¢ for
any ¢ > 0. We can say

1
M(x)x 2 ¢ >0asx - oo.
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Figure 1 for a plot of (x!),Z’i‘le([x/iJ)2 ,and Y (x) forx = 1,2,3,...,1000.
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Fig 1: Plot of log(x!), ¥, M(lx/i)? , and 9 (x) for x = 1,2,3,...,1000

Let j(x) = §“=1M([x/ij)2 where the summation is over i values where i|x. Let
l4,1,,15 denote the x values where j(x) is a local maximum (that is, greater than all
preceding j(x) values) and let m;, m,, ms..... denote the values of the local maxima.
The local maxima occur at x values that equal products of powers of small primes
(Lagarias'? discussed colossally abundant numbers and their relationship to the
Riemann hypothesis). See Figure 2 for a plot of [;/(log(l;) m;), m;/l; , and
1 log(ly) fori = 1,2,3,...,772 (corresponding to the local maxima for x < 15, 000,
000, 000). (M (x) Values for large x were computed using Del eglise and Rivat’s®®
algorithm.) The first two curves cross frequently, so there are i values where mi is

approximately equal to [;//log(L;) .

Figure 2
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F|g 2: Plot of ll/(log(ll) mi), mi/li , and 1/ lOg(ll) fori = 1,2,3,...,772
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See Figure 3 for a plot of j(x) and 2‘,§‘=1M([x/ij)2 forx =1, 2, 3, ..., 10,000. See
Figure 4 for a plot of log(l;),log(m;),log(M(1;)?), and log(m;/o,(l;)) fori=1, 2,
3, ..., 772 (when M(li) = 0,log(M(li) 2 ) is set to —1). See Figure 5 for a plot of
IM(1)|/V1; fori = 1,2,3,...,772. The largest known value of |M(x)|/Vx
(computed by Kotnik and van de Lune** for x < 1014) is 0.570591
(for M(7,766,842,813) = 50,286). The largest [M(l,)|/ VI; value for x < 15, 000,
000, 000 is 0.568887 (for I; = 7, 766, 892, 000). The largest known value of |M(x)|/
Vx (computed by Kuznetsov®® is 0.585767684 (for
M (11,609,864, 264,058,592,345) = —1,995,900,927).)

Figure 3
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Fig 3: Plot of j(x) and Z’i‘le([x/iJ)2 forx=1,2,3,.., 10,000

Figure 4
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Fig 4: Plot of log(l;), log(m;),log(M(1})?), and log(m;/o,(1;))
fori=1,2,3, .., 772
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Fig 5: Plot of |[M(1)|/ V; fori = 1,2,3,...,772

Let [; and m; be similarly defined for the function ay(x). (; ,i = 1,2,3,... are
known as “highly composite” numbers. Ramanujan'® initiated the study of such
numbers. Robin!’ computed the first 5000 highly composite numbers.) Let m; denote
j(l). See Figure 6 for a plot of [;/(log(l;))m;),m;/l;,and 1/ log(l;) for i =
2,3,4,...,160 (corresponding to the local maxima forx <
2,244,031,211,966,544,000). (M(x) values for large x were computed using an
algorithm similar to that used by Kuznetsov. The computations were done on an Intel
i7-6700K CPU with 64 GB of RAM.) Although the first two curves cross frequently,

m; does not appear to converge to [;/,/log(L;).

Figure 6

Fig 6: Plot of I;/(log(l;)m;),m;/l; ,and 1/ log(l;,) fori = 2,3,4,...,160
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Figure 7
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Fig 7: Plot of log(l;) + log(log(l)),log(ly),log(m}), and log(M(1;)?),
fori = 2,3,4,...,160

See Figure 7 for a plot of log(ly) + log(log(l)), log(l),log(m;),
and log(M(1))?), for i = 2,3,4,...,160 (when M(l;) = 0, log(M(l})?), is set to
—1). The vertical distance between the first and third curves appears to become
roughly constant. See Figure 8 for a plot of (log(l;) + log(log(li)) — log(m;),fori

=2, 3, 4... 160. See Figure 9 for a plot of log(l;) + %log(log(li)), log(Zﬁi=1 M(|l;/
iD?), and log(l;) for i = 2,3,4,...,160. log(l;) +%log(log(li)) Is greater than

log(Z"_, M(ll/nD)’) and log(Zh_, M(lL;/n])’) is greater than log(l;) for i > 4.
This is evidence in support of Conjecture 1. See Figure 10 for a plot of log(l;) +

%log(log(li)) - log(Z;ile([li/nJ)2 ) fori = 2,3,4,...,160.

Figure 8
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Fig: 8 for a plot of (log(1;) + log(log(ly)) — log(m})fori=2,3,4... 160.
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Figure 9
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Fig 9: Plot of log(ly) + 2 log(log (1)), log(Si, M(IL/iD),
and log(ly) fori = 2,3,4,...,160

Figure 10
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Fig 10: Plot of log(l;) + %log(log(li)) — log(Zzle([li/nJ)2 )

fori = 2,3,4,...,160.
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4. CONCLUSION

In this paper we derived new relations between Mertens function with a different
arithmetic functions and also discussed about a likely upper bound of the absolute
value of the Mertens function ./log(x!) > [M(x)| when x > 1 with sufficient
numerical evidence. More experimental evidence can be found in the work of Cox
and Ghosh'®1°® Using this likely upper bound we showed that we have a sufficient
condition to prove the Riemann Hypothesis using the Littlewood condition.
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