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Abstract 

In this paper we derive new properties of Mertens function and discuss about a 

likely upper bound of the absolute value of the Mertens function √log(𝑥!) >
|𝑀(𝑥)| when 𝑥 > 1. Using this likely bound we show that we have a sufficient 

condition to prove the Riemann Hypothesis. 

 
1. INTRODUCTION 

We define the Mobius Function 𝜇(𝑘). Depending on the factorization of n into prime 

factors the function can take various values in {−1, 0, 1} 

 𝜇(𝑛) = 1 if n has even number of prime factors and it is also square-

free(divisible by no perfect square other than 1) 

 𝜇(𝑛) = −1 if n has odd number of prime factors and it is also square-free 

 𝜇(𝑛) = 0 if n is divisible by a perfect square. 

Mertens function is defined as  𝑀(𝑛) = ∑ 𝜇(𝑘)𝑛
𝑘=1  where 𝜇(𝑘) is the Mobius 

function. It can be restated as the difference in the number of square-free integers up 

to 𝑥 that have even number of prime factors and the number of square-free integers up 

to 𝑥 that have odd number of prime factors. The Mertens function rather grows very 

slowly since the Mobius function takes only the value 0, ±1 in both the positive and 
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negative directions and keeps oscillating in a chaotic manner. Mertens after verifying 

all the numbers up to 10,000 conjectured that the absolute value of 𝑀(𝑥) is always 

bounded by √𝑥. This conjecture was later disproved by Odlyzko and te Riele1. This 

conjecture is replaced by a weaker one by Stieltjes2 who conjectured that 𝑀(𝑥) =

𝑂(𝑥
1

2). Littlewood3 proved that the Riemann hypothesis is equivalent to the statement 

that for every  𝜖 >  0 the function 𝑀(𝑥)𝑥−
1

2
−𝜖

 approaches zero as x → ∞. This proves 

that the Riemann Hypothesis is equivalent to conjecture that 𝑀(𝑥) = 𝑂(𝑥
1

2
+𝜖)  which 

gives a rather very strong upper bound to the growth of 𝑀(𝑥). Although there exists 

no analytic formula, Titchmarsh4 showed that if the Riemann Hypothesis is true and if 

there exist no multiple non-trivial Riemann zeta function zeros, then there must exist a 

sequence 𝑇𝑘 which satisfies 𝑘 ≤ 𝑇𝑘 ≤ 𝑘 + 1 such that the following result holds: 

𝑀0(𝑥) = lim
𝑘→∞

∑
𝑥𝜌

𝜌ζ′(𝜌)
𝜌

|𝛾|<𝑇𝑘

− 2 + ∑
(−1)𝑛+1

(2𝑛)! 𝑛ζ(2n + 1)
(
2𝜋

𝑥
)2𝑛

∞

𝑛=1

 

Where ζ (z) is the Riemann zeta function, and  𝜌 are all the all nontrivial zeros of the 

Riemann zeta function and 𝑀0(𝑥) is defined as  𝑀0(𝑥) =  𝑀(𝑥) −
1

2
𝜇(𝑥) 𝑖𝑓   𝑥 ∈ 𝑍+,  

𝑀(𝑥)   Otherwise (Odlyzko and te Riele1) 

 

2. NEW PROPERTIES OF MERTENS FUNCTION 

Lehman5 proved that ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1 = 1.  In general, ∑ 𝑀(⌊𝑥/(𝑖𝑛)⌋)𝑥

𝑖=1 = 1, 𝑛 =

 1, 2, 3, . . . , 𝑥(since⌊⌊𝑥/𝑛⌋/𝑖⌋ = (⌊𝑥/(𝑖𝑛)⌋). Let 𝑅′  denote a square matrix where 

element (i, j) equals 1 if 𝑗 divides 𝑖 or 0 otherwise. (In a Redheffer matrix, element 

(𝑖, 𝑗) equals 1 if 𝑖 divides 𝑗 or if j = 1. Redheffer6 proved that the determinant of the 

matrix equals the Mertens Function 𝑀(𝑥).) Let 𝑇 denote the matrix obtained from 𝑅′ 

by element-by-element multiplication of the columns 

by 𝑀 (⌊
𝑥

1
⌋) , 𝑀 (⌊

𝑥

2
⌋) , 𝑀 (⌊

𝑥

3
⌋) … 𝑀(⌊

𝑥

𝑥
⌋ ). For example, the T matrix for x = 12 is 

 

𝑇 = [

−2 0 0 0 0 0 0 0 0 0 0 0
−1 −1 0 0 0 0 0 0 0 0 0 0
−1 0 −1 0 0 0 0 0 0 0 0 0
−1 −1 0 −1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0 0 0 0
1 1 0 1 0 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0 1 0 0 0
1 1 0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0
1 1 1 1 0 1 0 0 0 0 0 1

] 
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Theorem (1) :  ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1 𝑖 =  𝐴(𝑥)  

Proof: Let us now take 𝐴(𝑥)  = ∑ φ(i)𝑥
𝑖=1  where φ is Euler’s totient function. Let 𝑈 

denote the matrix obtained from 𝑇 by element-by-element multiplication of the 

columns by 𝜑(𝑗). The sum of the columns of 𝑈 then equals 𝐴(𝑥).   Now since 𝑖 =
∑ φ(d)𝑑|𝑖  we can write ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥

𝑖=1 𝑖 (the sum of the rows of U) equals 𝐴(𝑥). 

By the Schwarz inequality, 𝐴(𝑥)/√𝑥(𝑥 +  1)(2𝑥 +  1)/6   is a lower bound 

of √∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
. 𝐴(𝑥) = ∑ φ(i)𝑥

𝑖=1  Is further simplified by Walfisz7 and Hardy 

and Wright8 as 

𝐴(𝑥) = ∑ φ(i)𝑥
𝑖=1 =

1

2
∑ 𝜇(𝑘)𝑥

𝑘=1 ⌊
𝑥

𝑘
⌋ (1 + ⌊

𝑥

𝑘
⌋) =

3

𝜋2 𝑥2 +

𝑂(𝑛(log 𝑛)2/3(log log 𝑛)4/3)  

√∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
>

𝐴(𝑥)

√𝑥(𝑥 + 1)(2𝑥 + 1)

6

>
3

𝜋2𝑥2 

√𝑥(𝑥 + 1)(2𝑥 + 1)

6

=
3√3

𝜋

𝑥2

√𝑥(𝑥 + 1)(𝑥 + 1/2)
  

This can be further simplified to 

√∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
/𝑥 >

3√3

𝜋

1

√(1+1/𝑥 )(1 + 1/2𝑥)
  

Taking limit of infinity on both the sides, we get 

lim
𝑥→∞

√∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
/𝑥 >

3√3

𝜋
  

This shows that ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 at large values of x is greater than 

27

𝜋2 𝑥2. 

Let 𝛬(𝑖) denote the Mangoldt function (𝛬(𝑖) equals 𝑙𝑜𝑔(𝑝) if 𝑖 =  𝑝𝑚 for some 

prime 𝑝 and some 𝑚 ≥  1 or 0 otherwise). Mertens9 proved that ∑ 𝑀(⌊𝑥/𝑖⌋)𝑙𝑜𝑔𝑥
𝑖=1 𝑖 

=  𝜓(𝑥) where 𝜓(𝑥) denotes the second Chebyshev function (ψ(x) =∑ 𝛬(𝑖) 𝑖≤𝑥 ).  

Theorem (2) :  ∑ 𝑀 (⌊
𝑥

𝑖
⌋)𝑥

𝑖=1 log(𝑖) 𝜎0(𝑖)/2  =  𝑙𝑜𝑔(𝑥!)  

Proof: Let 𝜎𝑥(𝑖) denote the sum of positive divisors function (𝜎𝑥(𝑖) = ∑ 𝑑𝑥 𝑑|𝑖 ). 

Replacing 𝜑(𝑗) with 𝑙𝑜𝑔(𝑗) in the U matrix gives a similar result.  

Let 𝜆(𝑛) denote the Liouville function (𝜆(1)  =  1 or if  = 𝑝1
𝑎1 . . 𝑝𝑘

𝑎𝑘 , 𝜆(𝑛)  =

 (−1)𝑎1+..+𝑎𝑘 ). ∑ 𝜆(𝑑) 𝑑|𝑛 Equals 1 if n is a perfect square or 0 otherwise. Let (𝑥)  = 

∑ 𝜆(𝑑) n≤x . Let us also assume  𝐻(𝑥)  = ∑ 𝜇(𝑛)log (𝑛) n≤x . 𝐻(𝑥)/(𝑥 𝑙𝑜𝑔(𝑥))  →  0 

as 𝑥 →  ∞ and lim
𝑥→∞

𝑀(𝑥)/𝑥 −  𝐻(𝑥)/(𝑥 𝑙𝑜𝑔(𝑥)))  =  0. The statement lim
𝑥→∞

𝑀(𝑥)/

𝑥 =  0 is equivalent to the prime number theorem. Also, 𝛬(𝑛)  = − ∑ 𝜇(𝑑)log (𝑑) d|n . 

(Apostol10). 

The generalization of the Euler’s totient function is Jordan totient function. Let it be 

denoted as 𝐽𝑘(𝑥) which is defined as number of set of k positive integers which are all 

less than or equal to n that will form a co-prime set of (𝑘 +  1) positive integers 
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together with 𝑛. Let us define (𝑥)  = ∑ 𝐽𝑘(𝑖) 𝑥
𝑖=1 . It is known that ∑ 𝐽𝑘(𝑑) 𝑑|𝑛 = 𝑛𝑘. 

Then we get the following theorem.  

Theorem (3): ∑ 𝑀 (⌊
𝑥

𝑖
⌋) 𝑖𝑘 𝑥

𝑖=1 = 𝐵(𝑥) 

𝐵(𝑥) is expanded by McCarthy11 to be 

𝐵(𝑥) = ∑ 𝐽𝑘(𝑖) 𝑥
𝑖=1 =

𝑛𝑟+1

(𝑟+1)ζ(r+1)
+ 𝑂(𝑛𝑟)  

We therefore get  ∑ 𝑀 (⌊
𝑥

𝑖
⌋) 𝑖𝑘 𝑥

𝑖=1 = 𝐵(𝑥) =
𝑛𝑘+1

(𝑘+1)ζ(k+1)
+ 𝑂(𝑛𝑘) . 

Likewise we can derive some other similar relationships using the 𝑇 matrix that are as 

listed below: 

Theorem (4):  ∑ 𝑀 (⌊
𝑥

𝑖
⌋)𝑥

𝑖=1 𝜎𝑘(𝑖) = ∑ 𝑖𝑘𝑥
𝑖=1    for 𝑘 ∈ 𝑍+ 

Theorem (5): ∑ 𝑀 (⌊
𝑥

𝑖
⌋)𝑥

𝑖=1  where the summation is over those 𝑖 values that are 

perfect squares equals 𝐿(𝑥) 

Theorem (6): ∑ 𝑀 (⌊
𝑥

𝑖
⌋) 𝛬(𝑖) 𝑥

𝑖=1 = −𝐻(𝑥) 

Theorem (7): ∑ 𝑀 (⌊
𝑥

𝑖
⌋) 2𝜔(𝑛)𝑥

𝑖=1 = ∑ |𝜇(𝑖)|𝑥
𝑖=1 ~

6

𝜋2 𝑥2 + 𝑂(√𝑛) =

𝑁𝑜. 𝑜𝑓 𝑆𝑞𝑢𝑎𝑟𝑒 𝐹𝑟𝑒𝑒 𝐼𝑛𝑡𝑒𝑔𝑒𝑟𝑠 

Theorem (8): ∑ 𝑀 (⌊
𝑥

𝑖
⌋) 𝑑(𝑛2)𝑥

𝑖=1 = ∑ 2𝜔(𝑖)𝑥
𝑖=1       where 𝑑(𝑥) is the sum of all the 

divisors of 𝑥 

Theorem (9): ∑ 𝑀 (⌊
𝑥

𝑖
⌋) 𝑑2(𝑛)𝑥

𝑖=1 = ∑ 𝑑(𝑖2)𝑥
𝑖=1        

Theorem (10): ∑ 𝑀 (⌊
𝑥

𝑖
⌋) (

𝑖

φ(i)
) 𝑥

𝑖=1 = ∑
𝜇2(𝑖)

φ(i)
𝑥
𝑖=1        

Similarly many other relationships can be found between various arithmetic functions 

and the Mertens Functions. 

 

3. A LIKELY UPPER BOUND OF |M(x)| 

The following conjecture is based on data collected for x ≤ 500, 000.  

Conjecture (1):    𝑙𝑜𝑔(𝑥!)  > ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 >  𝜓(𝑥) when 𝑥 >  7  

By Stirling’s formula, 𝑙𝑜𝑔(𝑥!) =  𝑥 𝑙𝑜𝑔(𝑥) −  𝑥 +  𝑂(𝑙𝑜𝑔(𝑥)), since 𝑙𝑜𝑔(𝑥) 

increases more slowly than any positive power of log(𝑥), this is a better upper bound 

of ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
  than 𝑥1+𝜀 for any  𝜀 >  0. This likely bound can be used to prove 

the Riemann Hypothesis since ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1 > |𝑀(𝑥)|  and therefore we can 

write √log(𝑥!) > |𝑀(𝑥)| . Since the growth of ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
  is lesser than 𝑥1+𝜀 for 

any  𝜀 >  0. We can say  

𝑀(𝑥)𝑥−
1

2
−𝜖 → 0 𝑎𝑠 𝑥 →  ∞. 
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Figure 1 for a plot of (𝑥!), ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 , and 𝜓(𝑥) for 𝑥 =  1, 2, 3, . . . , 1000.  

 

Fig 1: Plot of 𝑙𝑜𝑔(𝑥!), ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 , and 𝜓(𝑥) for 𝑥 =  1, 2, 3, . . . , 1000 

 

Let 𝑗(𝑥)  = ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 where the summation is over 𝑖 values where 𝑖|𝑥. Let 

𝑙1, 𝑙2, 𝑙3 denote the x values where 𝑗(𝑥) is a local maximum (that is, greater than all 

preceding 𝑗(𝑥) values) and let 𝑚1, 𝑚2, 𝑚3..... denote the values of the local maxima. 

The local maxima occur at x values that equal products of powers of small primes 

(Lagarias12 discussed colossally abundant numbers and their relationship to the 

Riemann hypothesis). See Figure 2 for a plot of  𝑙𝑖/(𝑙𝑜𝑔(𝑙𝑖) 𝑚𝑖), 𝑚𝑖/𝑙𝑖 , and 

1/ 𝑙𝑜𝑔(𝑙𝑖) for 𝑖 =  1, 2, 3, . . . , 772 (corresponding to the local maxima for x ≤ 15, 000, 

000, 000). (𝑀(𝑥) Values for large x were computed using Del´eglise and Rivat’s13 

algorithm.) The first two curves cross frequently, so there are 𝑖 values where mi is 

approximately equal to 𝑙𝑖/√𝑙𝑜𝑔(𝑙𝑖) .  

         

Fig 2: Plot of  𝑙𝑖/(𝑙𝑜𝑔(𝑙𝑖) 𝑚𝑖), 𝑚𝑖/𝑙𝑖 , and 1/ 𝑙𝑜𝑔(𝑙𝑖) for 𝑖 =  1, 2, 3, . . . , 772 
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See Figure 3 for a plot of 𝑗(𝑥) and ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 for x = 1, 2, 3, ..., 10,000. See 

Figure 4 for a plot of 𝑙𝑜𝑔(𝑙𝑖), 𝑙𝑜𝑔(𝑚𝑖), 𝑙𝑜𝑔(𝑀(𝑙𝑖)
2), and 𝑙𝑜𝑔(𝑚𝑖/𝜎0(𝑙𝑖)) for i = 1, 2, 

3, ..., 772 (when 𝑀(𝑙𝑖)  =  0, 𝑙𝑜𝑔(𝑀(𝑙𝑖) 2 ) is set to −1). See Figure 5 for a plot of 

|𝑀(𝑙𝑖)|/ √𝑙𝑖  for 𝑖 =  1, 2, 3, . . . , 772. The largest known value of |𝑀(𝑥)|/ √𝑥  

(computed by Kotnik and van de Lune14 for x ≤ 1014) is 0.570591 

(for 𝑀(7, 766, 842, 813)  =  50, 286). The largest |𝑀(𝑙𝑖)|/ √𝑙𝑖  value for x ≤ 15, 000, 

000, 000 is 0.568887 (for 𝑙𝑖 = 7, 766, 892, 000). The largest known value of |𝑀(𝑥)|/

 √𝑥  (computed by Kuznetsov15 is 0.585767684 (for 

𝑀(11, 609, 864, 264, 058, 592, 345)  =  −1, 995, 900, 927).) 

 

Fig 3: Plot of 𝑗(𝑥) and ∑ 𝑀(⌊𝑥/𝑖⌋)𝑥
𝑖=1

2
 for x = 1, 2, 3, ..., 10,000 

 

Fig 4: Plot of 𝑙𝑜𝑔(𝑙𝑖), 𝑙𝑜𝑔(𝑚𝑖), 𝑙𝑜𝑔(𝑀(𝑙𝑖)
2), and 𝑙𝑜𝑔(𝑚𝑖/𝜎0(𝑙𝑖))  

for i = 1, 2, 3, ..., 772 
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Fig 5: Plot of |𝑀(𝑙𝑖)|/ √𝑙𝑖  for 𝑖 =  1, 2, 3, . . . , 772 

Let 𝑙𝑖 and 𝑚𝑖 be similarly defined for the function 𝜎0(𝑥). (𝑙𝑖  , 𝑖 =  1, 2, 3, . .. are 

known as “highly composite” numbers. Ramanujan16 initiated the study of such 

numbers. Robin17 computed the first 5000 highly composite numbers.) Let 𝑚𝑖
′ denote 

𝑗(𝑙𝑖). See Figure 6 for a plot of 𝑙𝑖/(𝑙𝑜𝑔(𝑙𝑖)𝑚𝑖
′), 𝑚𝑖

′/𝑙𝑖 , 𝑎𝑛𝑑 1/ 𝑙𝑜𝑔(𝑙𝑖) for 𝑖 =

 2, 3, 4, . . . , 160 (corresponding to the local maxima for 𝑥 ≤

 2, 244, 031, 211, 966, 544, 000). (M(x) values for large x were computed using an 

algorithm similar to that used by Kuznetsov. The computations were done on an Intel 

i7-6700K CPU with 64 GB of RAM.) Although the first two curves cross frequently, 

𝑚𝑖
′ does not appear to converge to 𝑙𝑖/√𝑙𝑜𝑔(𝑙𝑖).  

 

Fig 6: Plot of 𝑙𝑖/(𝑙𝑜𝑔(𝑙𝑖)𝑚𝑖
′), 𝑚𝑖

′/𝑙𝑖 , 𝑎𝑛𝑑 1/ 𝑙𝑜𝑔(𝑙𝑖) for 𝑖 =  2, 3, 4, . . . , 160 
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Fig 7: Plot of 𝑙𝑜𝑔(𝑙𝑖)  +  𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)), 𝑙𝑜𝑔(𝑙𝑖), 𝑙𝑜𝑔(𝑚𝑖
′), and 𝑙𝑜𝑔(𝑀(𝑙𝑖)

2),  

for 𝑖 =  2, 3, 4, . . . , 160 

See Figure 7 for a plot of 𝑙𝑜𝑔(𝑙𝑖)  +  𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)), 𝑙𝑜𝑔(𝑙𝑖), 𝑙𝑜𝑔(𝑚𝑖
′), 

and 𝑙𝑜𝑔(𝑀(𝑙𝑖)
2), for 𝑖 =  2, 3, 4, . . . , 160 (when 𝑀(𝑙𝑖)  =  0, 𝑙𝑜𝑔(𝑀(𝑙𝑖)

2),  is set to 

−1). The vertical distance between the first and third curves appears to become 

roughly constant. See Figure 8 for a plot of (𝑙𝑜𝑔(𝑙𝑖) +  𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)) − 𝑙𝑜𝑔(𝑚𝑖
′),for i 

= 2, 3, 4... 160. See Figure 9 for a plot of 𝑙𝑜𝑔(𝑙𝑖) +
1

2
𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)),  𝑙𝑜𝑔(∑ 𝑀(⌊𝑙𝑖/

𝑙𝑖
𝑖=1

𝑖⌋)
2

 ), and 𝑙𝑜𝑔(𝑙𝑖) for 𝑖 =  2, 3, 4, . . . , 160. 𝑙𝑜𝑔(𝑙𝑖) +
1

2
𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)) Is greater than 

𝑙𝑜𝑔(∑ 𝑀(⌊𝑙𝑖/𝑛⌋)
𝑙𝑖
𝑛=1

2
) and 𝑙𝑜𝑔(∑ 𝑀(⌊𝑙𝑖/𝑛⌋)

𝑙𝑖
𝑛=1

2
) is greater than 𝑙𝑜𝑔(𝑙𝑖) for i > 4. 

This is evidence in support of Conjecture 1. See Figure 10 for a plot of 𝑙𝑜𝑔(𝑙𝑖) +
1

2
𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)) − 𝑙𝑜𝑔(∑ 𝑀(⌊𝑙𝑖/𝑛⌋)

𝑙𝑖
𝑛=1

2
 ) 𝑓𝑜𝑟 𝑖 =  2, 3, 4, . . . , 160.  

 

Fig: 8 for a plot of (𝑙𝑜𝑔(𝑙𝑖) +  𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)) − 𝑙𝑜𝑔(𝑚𝑖
′),for i = 2, 3, 4... 160. 
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Fig 9: Plot of 𝑙𝑜𝑔(𝑙𝑖) +
1

2
𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)),  𝑙𝑜𝑔(∑ 𝑀(⌊𝑙𝑖/𝑖⌋)

𝑙𝑖
𝑖=1

2
 ),  

and 𝑙𝑜𝑔(𝑙𝑖) for 𝑖 =  2, 3, 4, . . . , 160 

 

 

Fig 10: Plot of 𝑙𝑜𝑔(𝑙𝑖) +
1

2
𝑙𝑜𝑔(𝑙𝑜𝑔(𝑙𝑖)) − 𝑙𝑜𝑔(∑ 𝑀(⌊𝑙𝑖/𝑛⌋)

𝑙𝑖
𝑛=1

2
 )  

𝑓𝑜𝑟 𝑖 =  2, 3, 4, . . . , 160. 
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4. CONCLUSION 

In this paper we derived new relations between Mertens function with a different 

arithmetic functions and also discussed about a likely upper bound of the absolute 

value of the Mertens function √log(𝑥!) > |𝑀(𝑥)| when 𝑥 > 1 with sufficient 

numerical evidence. More experimental evidence can be found in the work of Cox 

and Ghosh18-19 .Using this likely upper bound we showed that we have a sufficient 

condition to prove the Riemann Hypothesis using the Littlewood condition. 
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