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Abstract

In this paper we shall find a new connection between n™ degree polynomial
mod p congruence with n roots and higher order Fibonacci and Lucas
sequences. We shall first discuss about the recent work been done in
sequences and their connection to polynomial congruence and then find out
new relations between particular recurrence relation and the congruence of the
sequences.

1. INTRODUCTION

Let the U series is defined by the recurrence relation
Ui - alUi_l - azUi_Z_. .~ 0an Ui_n =0
Herei =1,2,3,...,Uy=1,and U; = 01fi < 0.

In this article we shall consider the sequence modulo some prime number p. Now we
shall start looking into some properties of polynomial congruence. Sun' used general
linear recurring sequences by defining a recurrence relation to extend the Lucas


mailto:dilycox@cableone.net
mailto:sourangshug123@gmail.com
mailto:Eldar.Sultanow@wi.uni-potsdam.de

18 Darrell Cox, Sourangshu Ghosh, Eldar Sultanow

Sequence. He established the following important condition for polynomials to be
congruent to the linear polynomials product (mod p) which we define as follows:

Theorem 1.1[Sun?]: Let m > 2,m,ay,...,a,, € Z, and let p be a prime such that
p > m andpiscoprimeto a,. Then the congruence x,, + aiXpu_q +---
+ a,, = 0 (mod p) has m distinct solutions if and only if it satisfies the following
condition:

Upon = =Up_,=0(modp) and U, =1 (modp)

Sun? then used the Chebotarev density theorem which states that if the recurrence
polynomial f(x) is irreducible over z(x) then the set S of primes p which will satisfy
the condition of f(x) = 0 (mod p) p € S having m solutions will have a positive
density d(S) or mathematically speaking the following holds:

: <x,p€S
d(s) = lim lp: p=xp €S
x=+o |{p: p < x,pis aprime}

To prove that if f(x) over Z(x) is irreducible, then there are must exist infinitely
many prime p satisfying the above stated condition.

One question of interest is when that sequence will repeat itself or what will be the
period of that sequence. Hardy and Wright® found some upper limits of the period
length of the Fibonacci by analyzing the properties of the roots of the recurrence
polynomial. In this article we shall build on this approach to work in analyzing the
recurrence relation roots and congruence of the sequences. Let us now define the term
period for the sequence, we say that a sequence has period [ if [ is the smallest integer
such that U;,, = U, (mod p).

We shall now state and prove a theorem originally stated by Lehman® and Wallis*
which puts a condition for the periodicity of recursive sequences modulo p.

Theorem 1.2 [Lehman®]: Let the U series is defined as stated above by the
recurrence relation U; — a;U;_q — ay,U;_—...—a, U;_, = 0. If gcd(ay,,m) =1,
then the sequence is periodic modulo m.

Proof: Z,, will have exactly m¥ distinct k — tuples. Therefore there must exist two
distinct integers s and t in Z,,( 0 < s < t < mk) such that it will satisfy Ug,; = U,
by the pigeonhole principle for 0< i < k — 1. By the well-ordering principle there
must exist a smallest non-negative integer s > 0 in Z,,,.



Sequences and Polynomial Congruence 19

If we take s > 0, then the condition Ug,,_1 = Usyr—q shall imply a,Us_1 = aUp_4
since

a1 Usyp—2 + ap Usyp3 + -+ ap_1Us + a, Us_4
=ay Uppp—2 +a Uz + -+ ag_1Us + a, Up_4

Now If we have gcd(ay, m) =1 as the condition mentioned above in the theorem
then we must have a,_; = a,_, in Z,,. This contradicts our initial assumption,
therefore s must 0.

Therefore the sequence is periodic modulo m.

We shall now define the characteristic polynomial. If U is a recursive sequence
defined by the recurrence relation U; + a,U;_4 + a,U;_,+...+a, U;_, = 0 as stated
earlier then the characteristic polynomial of that sequence is defined to be

fO) =xt+a;xt™t + axtT? 4. 4a, xt"

The series can be written as the combination of the powers of the solutions of f (x)=0,
whose values are determined by the sequence’s initial terms.

Lehman® showed that the recursive sequence modulo some integer m will be equal to
the order of the formal root w of the characteristic polynomial under some restrictions
of m. Lehman’® further showed using the properties of ring automorphisms of Zylw]
that if the recurrence polynomial f has no repeated factors in the polynomial ring
Zp[x] and t is the LCM of the all the degrees of the irreducible factors of f in
Zy[x] then it is the smallest positive integer for which the order of the root w shall
divide p* — 1. We shall state and prove the results now

Let us consider (f) to be the principal ideal of Z,,[x] generated by the characteristic
polynomial f. Consider the quotient ring Z,,[x]/(f) . Here we define Z,,[x] to be the
ring of polynomials whose coefficients are in Z,,,. Notice that every polynomial g can
be expressed in terms of 2 other unique polynomials q and r in Z,,[x] such that it
satisfies g = f.q + 1, as r is the remainder it must be of smaller degree than f. Then

we must have the two coset being g + (f) = r + (f). Let us now define the ring
Z’Z‘T[)x] with the ring Z,,[w] as

k
Zmlw] = {bp_10* 1 + by_,0* 2 + -+ + by + by and w* = z a;w* 4}
=1

Here we have written the coset x + (f) as w. We can now form a connection between
recursive sequences with characteristic polynomial f and the quotient ring Z,,[x]/(f).



20 Darrell Cox, Sourangshu Ghosh, Eldar Sultanow

Let the U series is defined by the recurrence relation U; —aqU;_q —
aU;_,—...—a, U;_, = 0 as defined earlier or U(j,n) = §‘=j a;U,,_;. Then for all
n = k we have the following 2 conditions:

U(k,n) = akUn_k
And
UG+ 1,n)+aU,_;=U(@,n) if1<j<k

Theorem 1.3[Lehman®]: Let U be defined recursively as stated earlier .Then for
every integer n > 0,

aw™ = Upppoq @0 P+ X, UG+ k +j — 2)0*

Here a is an element of Z,,[w] which can be defined in terms of initial terms of the
recursive sequence.

a=U_ 10" P+ UK 2+ UGB w3+ Uk — 1,2k —3)w + Uk, 2k — 2)

From this theorem Lehman® inferred that if gcd(ag,m) =1, andZ,[w]=
Zmlw]/(f), then the sequence U will be periodic modulo m if and only if aw' = a
in Z,[w]. From this we can write a corollary that is the same as corollary 5 of
Lehman’®.

Corollary 1.1[Lehman®]: The sequence U is periodic modulo m, with the period !
dividing ord,, (w),the order of w in the group, Z,,[w] with the operation X, of units
inZylw]. If A={B € Zy,[w]|af = 0}, then [ is the order of w + A in the group of
units of the quotient ring Z,,[w]/A .

This recursive sequences are used to develop algorithms for factorization of higher
order polynomials modulo primes by many authors (Adams*, Lehman® and Sun').
There are some excellent works on recursive sequences modulo some positive integer.
Some of them are Lehman® | Engstrom® , Ward® and Fillmore’. For the factorization
of a polynomial into linear factors modulo a prime number p, Sun* and Skolem?® find a
condition which is basically the same as that of Corollary 13 of Lehman’.

2. NEW RELATIONS BETWEEN THE RECURRENCE RELATION AND
THE SEQUENCES

Let p be a prime greater than 2, n a natural number such thatn < p — 2,
and a4, a,, .. a, integers. Let the U series be defined by the recurrence relation
Ui+a1Ui_1 + azUl'_2+. . +an Ul'_nWheI‘e i = 1, 2, 3, ceay UO = 1, and Ul =0ifi < 0.
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The principal subject here is the proof of the following theorem;

Theorem 2.1: The congruence x™ + a;x™ 1 + a,x™2 +... +a, = 0(mod p),0 <
x < p, has nroots if and only if Up_14;—n=U;_n(mod p),i = 1,2,3,....

(Also, if ay, a,, .. a, are elements of a Galois field, then the equation x™ + a;x™"1 +
a,x"? +...+a, = 0(mod p), has n roots if and only if Uy_;,;_,=U;_,where O is
the order of the Galois field.)

Only n where n < p — 2 are considered since a mod p congruence of arbitrary degree
can be reduced to degree p — 2 or less by using Fermat's theorem that xP~1 =
1(mod p) if p does not divide x. As will be shown, If U,,_14;_n=U;_, (mod p),i =
1,2,3,....nthen Uy_44; n=U;_p, (modp),i =1,2,3,..... This result combined with
Theorem (2.1) gives a practical means of determining for which p a given nth degree
congruence has n roots. (The same U series applies for all p such that n < p — 2.)
For example, some U values corresponding to the congruence x® —x? —x + 2 =
0(mod p),0 < x < p, are;

Uy=1 Uy=2 Us=1 Uy=1 Us=-2 Ug=-3 U, =—7 Ug=—6

U9:_7 U]_O:l U11:6 U12:21U13:25 U14:34U15:17 U16:1

Ui = 1(mod 17) and U5 = U4 = 0(mod 17), Therefore this congruence has
three roots if p = 17. Also, this congruence does not have three roots for any p such
that 5 < p < 17.

2.1 RELATIONSHIP OF U SERIES TO FIBONACCI NUMBERS

Notice that ifn = 2 and a; = a, = —1, then U; is the (i + 1) Fibonacci number.
From the perspective here, the Fibonacci numbers are indexed improperly.
Alternately, the i™ Fibonacci number can be defined to be equal to (¢F — &) /({ —
{;) where {;, {, are the roots of the equation {2 —{ — 1 = 0. A well known result is
that p divides the (p — 1)™ Fibonacci number if and only if 5 (the discriminant of the
equation {2 — { — 1 = 0 is a quadratic residue of p.

The congruence equation x> — x — 1 = 0 (mod p),0 < x < p, has two roots if and
only if 5 is a quadratic residue of p. Theorem (2.1) is a generalization of these results.
There also exists an alternate U; definition;



22 Darrell Cox, Sourangshu Ghosh, Eldar Sultanow
Theorem 2.2: U;, i = 0, equals Y.{;°{,% ... ,,°™ where {1, {5,..(, are the roots of
"+ a;{™ 1+ a,{"? +... +a,, = 0 and the summation is over all combinations of

non-negative integers ey, €,, .. e, such that e;+e,+.. +e, = i.

As will be ShOWn, al(Up_l - 1) + ZazUp_z + 3a3Up_3+. ‘e +nanU =

p—n
0(mod p). Therefore if n > 1 and p does not divide a4, a,, .. a,, the congruence to
zero of any group of n — 1 of U,_; — 1,U,_3,Up_3, ..., Up_, implies the congruence

to zero of all of U,_; — 1,Up_3,Up_3, ..., Up_y. This result is of special significance in
the case n=2. Ifn=2, a property of the U series is U,_; = (a? —
4a)CD/2(mod p) (since if 1 =2, Up-y=(F = ¢D)/C ~ )y @F =4/ (G, =
&) = (6, —E)P/(C1—¢2)(mod p),and  (§; — ;)% = [—(§, + )]~ — 40182 =
ai — 4a,). Therefore U,_; = 1(mod p) where n = 2 if and only if af — 4a, is a
quadratic residue of p. If U,_; = 1(mod p) and U,_, = 0(mod p) where n = 2,
then p does not divide a, (since by the recurrence relation, Up_2=(—a1)p"1+k1 a,
and Up_q = (—a,)P " Y+k, a, where kq,k, are integers). Conversely, if a? — 4a, is a
quadratic residue of p and p does not divide a, where n = 2, then U,_; = 1(mod p)
and U,_, = 0(mod p) (since a;,(Up—; —1) + 2a,U,_, = 0(mod p)). Therefore
Up-1 =1,U,_, = 0(mod p) where n =2 if and only if a? — 4a, is a quadratic
residue of p and p does not divide a,. This shows the equivalence of Theorem (2.1) in
the case n =2 with the familiar result that the congruence x2+ a;x + a, =

0(mod p),0 < x < p, has two roots if and only if a? — 4a, is a quadratic residue of
p and p does not divide a,.

2.2 RELATIONSHIP OF U SERIES TO LUCAS' SERIES

Denote Y¢;°1¢,° ... {,°" where {4, {5,..(, are the roots of {* + a; ("1 + a, {2
+...+a, = 0 and the summation is over all combinations of non-negative

integers eq, e,,.. e, such that e;+e,+.. +e,, = i .and exactly [] of e, e,, .. e, are non-
zeroby V; . If i < [0, let V; , = 0. The following theorem is also proved;

Theorem 2.3: The congruence x™ + a;x™ 1 + a,x™ 2 +... +a, = 0(mod p),0 <
x < p,p does not divide a;a,.. a,, has n roots if and only if V,, ;=V; ;(mod p), i =
2,3,4,...,n.

As will be shown, V), ; is always congruent (mod p) to V; ; when i = 1. Lucas'”
denoted (x! — x4)/(x; — x,) ,i=1,2,3,..., where x;, x, are the roots of x% —

Px + Q = 0 and P, Q are relatively prime integers by u; and x! + x% by v;. If n = 2
and a4, a, are relatively prime, then Uy, Uy, Uy, ... is Lucas’ u,, u,, us,...and Vy 4,
V3,1, V3 1 1s Lucas' vq, v, v3 The Uy, Vy; series can then be considered generalizations
of Lucas' u;, v; series. For typographical convenience, let c(i,j) denote i "choose" j
(a binomial coefficient). The U and V series are related as follows;
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Theorem 2.4: q;U; = (=1)/Yc( + k,j) Vi) j+ks = 1,2,3,...,n where the
summation is fromk = 0tok =n —j.

Theorem 2.5: V; ;=(=1)/3c(j + k,j) aj4xUi—j-x,j = 1,2,3,...,n where the
summation is fromk = 0tok =n —j.

23  KONIG'S THEOREM

The proof of Theorem (2.1) is based on Kénig's theorem (proposed by Julius Kénig!!
in 1882). Konig's theorem is this; Let f(x) = coxP ™2+ xP 3 +c,xP~* . 4cy
where the ¢'s are integers and c,,_, is not divisible by the prime p. Then f(x) =
0(mod p) has real roots if and only if the determinant of the cyclic matrix

Cop Cq4 Cp . .. Cp_3 Cp_z

Ci Cp C3 . .. Cp_z Co

Cy C3 C4 ... (g Cq
Cp_z CO C1 « e e Cp_4, Cp_3

is divisible by p. Denote this matrix by C. In order that it has at least k distinct real
roots it is necessary that all p — k rowed minors of C be divisible by p. If also not all
p — k — 1 rowed minors are divisible by p, the congruence has exactly k distinct real
roots. Kronecker's'? version of Konig's theorem will also be used in the proof.
Kronecker's version is this; f(x) = 0(mod p) has exactly k roots if and only if the
rank of C is exactly p — 1 — k.

Fermat's theorem is essential to the formulation of Koénig's theorem. If f(x) =
0(mod p) has a root, then this root is also a root of x?~1 = 1(mod p) and hence p
divides the determinant of the resultant of f(x) and xP~! —1, i.e., the cyclic matrix C.
This is the motivation for part of the U series definition; the U series has been defined
so that the "resultant" of Ujta,Ujin + apUipn_1+...+a, U; and Up_qy; — Ui =
0,1,2,...,(p — 2),equals the resultant of x™ + a;x" !+ a,x™"? +...4+a, and
xP~1.1. The condition Up-14i-n=Ui_n (mod p), i = 1,2,3,..., is then the analogue
of Fermat's theorem.



24 Darrell Cox, Sourangshu Ghosh, Eldar Sultanow
2.4  PROOF OF THEOREM (2.1) (THE PART USING KRONECKER'S
THEOREM)

First suppose that U,_14;—n=U;_, (mod p),i =1,2,3,..., Denote the (p — 1) = (p —
1) cyclic matrix

a,aza; .. a, 0 ..00 1 a4
asa,as.. 0 0 ..01 a a,
a, as ag.. 0 0 ..1 a;a, as

Il a;a,..ap_2a,_1...00 0 0
a,a,az..ap_1a, ..00 0 1
by A. Then since U;+a,U;_q + axU;_+...+a, Uiy = 0and U,_q14;n=U;_p
(modp),i=1,273,..(p—1) A(Up-2,Up_3,Up_4,...,Up) =
(0,0,0,...,0)(mod p).
Up—1+i-n = 0(mod p),i =1,2,3,...,(n— 1),
Therefore My(Up—n-1, Up—n-2,Up—n—3,...,Uy) = (0,0,0,...,0)(mod p), where M,

is the (p — 1) * (p — n) matrix obtained from A by deleting its first n — 1 columns.
Denote the (p — 1) * (p — n — 1) matrix by R.

0 0 0..0001
0 0 0..001a
0 0 0 ..01 aa,
0 0 0 ..1aa,a;

Ap—2ap_1ay .. 0 0 0 O
an-1a, 0 ..00 0 O

a, 0 0 ..00 0 0
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R(=Up_n-1,—Up-n—2,Up_n_3,...,—U1) = (ay,a3,0as,...,0,0,1)(mod p)

(since Up—y =1,Up_» = Up_3 = Up_y =...= U,_,, = 0(mod p)) and hence the last
column of M, is linearly dependent (mod p) on the other columns of M,,.

Similarly, My (=Up—n, —Up_n—1,—Up—n—2,,...,—Uy) =

(az, as,ay,...,0,1,a;)(mod p) (since U, = Uy, Up_1 = U, Uy, = Uy 3=U,_4 =
...=Up—-n+1=00modp)). LetM;,j =1,2,3,...,(n—1),bethe (p — 1) x (p —
n + j) matrix having as its first (p — n) columns the columns of M, and as its last
columns the first j columns of A. In general, M;

(“Up-n+jp =Up-nsj-1,—Up_nyj-2,...,—U1), j = 0,1,2,...,(n — 1), is congruent
mod p to the (j + 1)™ column of A.

Then since the last column of M, is linearly dependent (1mod p) on the other columns
of M, and the first column of A is linearly dependent (mod p) on the columns of M,
and the second column of A is linearly dependent (mod p) on the columns of M,
etc., there are at most p — n — 1 linearly independent columns of A. Since the rank of
a matrix is the dimension of its column space, the rank of A is at mostp — 1 —n.
Then by Kronecker's version of Kénig's theorem, the congruence x™ + a;x™ 1 +
a,x™"? +...+a, = 0(mod p),0 < x < p, has at least n roots. An nth degree mod p
congruence has at most n roots, therefore x™ + a;x™ !+ a,x"? +...+a, =
0(mod p),0 < x < p, has exactly n roots.

25  PROOF OF THEOREM (2.1) (THE PART USING KONIG'S
THEOREM)

Now suppose x™ + a;x" 1 + a,x" 2 +...+a, = 0(mod p),0 < x < p, has nn roots.
Then by Fermat's theorem, A(xP~2,xP~3,xP~4,...,x%) = (0,0,0,...,0)(mod p).
Furthermore, by Konig's theorem, p divides all p — n rowed minors of A. One such
minor is the determinant of the following matrix (denoted by B;);

000 ..00..001a
000 ..00..01aa,

000 .. 0 O0..1aqa,as

1aa .. ap_a,..00 0 0

a,a,az .. a, 0..00 0 O
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(This is the matrix obtained from A by deleting its first n — 1 columns and lastn — 1
rOwSs.) Therefore B, Vp-n-1Yp-n-2:Yp-n-3:++-,Yo) =
0,0,0,...,0)(mod p) where not all of y,_n_1,Yp-n-2,Yp-n-3,--+» Yo are congruent
to zero mod p.Then y; + a;y, = 0(mod p), y, + a1y; + a,yo = 0(mod p), y; +
a1y, + axy: + azy0 = 0 (mod p),
Yp-n-11A1Yp-n-2102Yp-n-3+..+anYp_2n—1=0(mod p) and hence p does not d1v1de
Yo (since otherwise p would divide all of y,_pn_1,, Yp-n-2, Yp-n-3> - Yo, @
contradiction). Therefore (y,/yo)+ a; = 0(mod p). Also U;+a,Uy=0, therefore
(V1/y0)=Ui(mod p).  Similarly  (y2/yo)+ a1 (y1/yo)t a,=0(mod p)  and
U,+a,U;+a,Uy=0, therefore (y,/yy)= U, (mod p). By an induction argument,

(Vp-n-1/Y0)= Up-n-1 (Mmod p), (¥p-n-2/Y0)= Up_n— (mod p),

(Yp-n-3/Y0) = Up_n—_3(mod p),...,(y1/yo) = U;(mod p)

and hence B1(Up—n—1,Up—n-2,Up—n—3,..., Up) = (0,0,0,...,0)(mod p). The product
of the last row of B; and ((Up-n-1.Up-n-2.Up—n-3,..., Up) gives a;Up_n_1 +
aUp_n—z+...+a,U,_2, = 0(mod p).Then since Up-nt+aUp_n_1+
aUp_n—z+...+a,Up_2, = 0,U,_, = 0(modp).

Since p divides all p —n rowed minors of A,p divides all j rowed minors of A
where j = p — n. Therefore p divides the determinant of the (p —n+ 1) *x (p —n +
1) matrix

a,0 0 0 0 ..00 1 a4
0 00 0 0 .01 a, a;
0 0O 0 0 ..1a;a,as
1 a, a ... Ap_1ay ... 000 O
a,aaz.. a, 0..00 0 O

(This 1s the matrix obtained from A by deleting its first n — 2 columns and last n — 2
rows.) p divides the row 1, column 1 cofactor of this matrix (since p divides all p — n
rowed minors of A), therefore p divides the determinant of the matrix obtained from
the above matrix by changing the row 1, column 1 element to a zero. Denote this
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matrix by B,. Then B, (Up—pn, Up—n-1,Up—n-2,...,Up) = (0,0,0,...,0)(mod p). The
product of the last row of B, and (Up_p, Up—n—1, Up—n—2,...,Up) gives

a1 Up_ntaUy_pn_1tazUy_pn_ot..+anUy_3n41 = 0(mod p). Then since

a Up_ntaUy_pn_1tazUy_p_ot..FanUy_zn41 = 0(mod p)., Up_ny1 = 0(mod p).

The proofs that U,,_, = 0(mod p), U,_3 = 0(mod p),Up_4 =
0(mod p),...,Up_, = 0(mod p) are similar. Finally, p divides the determinant of
the (p — D)x(p — 1) matrix

000..0 O ..001 a

000..0 O ..01a a,

0 0 OO 0 .. 1a1a2 as

1aa..ap1a,..-.00 0 O

a,a,as.. a, 0 .. 00 0 1

Denote this matrix by B,.Then By, (Up—3, Up_3,Up_4,...,Uy) =
(0,0,0,...,0)(mod p).

The product of the last row of By, and (Up_3, Up_3,Up_s,..., Up) gives
aq Up_2+a2 Up_3+a3 Up_4+...+anUp_n_1 +1= O(mOd p) Then since

a,Up_ptayUpy_stazUp_syt+..tayUp_pn g = 0, Up_y = 1(mod p).
Therefore Up_14;—n=U;—, (Mmod p),i =1,2,3,...,n.

Theorem 2.6: If Up_14;-n=U;—n (mod p),i=1,2,3,...,n,then Up_14;n=U;_p
(modp),i=1,2,3,...

Suppose Up_14i—n=U;i_p (Mmod p),i=1,2,3,...,n. Up +a,Up_4 +
aUp_z+...+a,Up_,, = 0, therefore U, + a; = 0(mod p). Also Uy + a,Uy =0,
therefore U,=U; (mod p), thatis, Up_14;—n=U;_, (Mod p), i=n+1.

Similarly Up4q + a,Up, + ayU,_1+... +a,Up_nyq = 0, therefore U,y 1 + a Uy +
a,Uy = 0(mod p). Also Uy+a,U; + a,Uy = 0, therefore Uy, 1=U, (mod p), that is,
Up-1+i-n=Ui_n (mod p), i = n + 2. An induction argument gives U,_14; n=U;_p
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(mod p),i = 1,2,3,.... Therefore if x™ + a;x™" 1 + a,x" % +...+a, =

0(mod p),0 < x < p, has nroots, then Up_14;—n=U;_,, (Mmod p),i = 1,2,3,....S0
x"+ a;x® 1+ a,x™"?% +...+a, = 0(mod p),0 < x < p, has n roots if and only if
Up-1+i-n=Uij—n (mod p),i = 1,2,3,....

2.6 PROOFS OF THEOREMS (2.2) AND (2.4)

Denote Y¢;°,° ... {,°" where {;, {5,..(, are the roots of {* + a; {1 + a, {2
+...+a, = 0 and the summation is over all combinations of non-negative

integers e,, e,,.. ey, such that e;+e,+.. +e,, = i by U;. Then Uy, U;, U, ... are defined
and Uy = 1.If i < 0, let U;=0. Then

Theorem 2.7: If i # 0, U; = Vi1 + Vi3 + Vis+... +V,.

"+ a3+ ap R +...ta, = (= ) =) —3) (=),

therefore a;, j = 1,2,3,...,n, equals (—1)j times the sum of all combinations of
products of {;, {3,..(, taken j at a time (that is, a; = (—1)jVj_j). Ifi > 0, each term
in the summation giving Vi j iy, 0 < k < i,k < n — j, can be factored in c(j + k, j)
ways so that one factor is a term in the summation giving U; and the other factor is a
term in the summation giving aj. Conversely, if i = 0, every term in the summation
giving ale-' isinone of Viyj i, Vijjr1> Viejj+2> s Vitja Where d = min(i + j,n).
Therefore if i = 0,

a;U; = (W[cG)Vigjj +c(+ L)DVisj a1 +c( +
2, )WVisjjrat. +c(d DVisjal

Then a]Ul’ = (1)1[C(],])Vl+],] + C(i + 1'j)Vi+j,j+1 + C(i +
2, WVigjjezt e j)Vigjnl, j = 1,2,3,...,n. Denote the nxn matrix

-c(1,1) —c(2,1) —c(3,1) ... -—-c(n1)
0 c(22) ¢B3B2) .. cn?2)
0 0 —c(3,3) ... —c(n3)

0 0 0 o (=D(n,n)
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by T. Therefore T(Vi1,VigVis,- o, Vin)=(a Uiy, axUi_p, aszUi_g, .., anUi_y).
The sums of the columns of Tequal -1, therefore —(V;;+V;,+
Visgt...+Vin)= a,U;_y+ aUi_,+ azU;_s+ .t a,U;_, and  hence
U+ a,U;_y+ aU;_,+ asU;_s+ ..+ a,U;_, =0,i=1,2,3,.... Therefore U;=U; and
Theorems (2.2) and (2.4) follow.

2.7 PROOFS OF THEOREMS (2.5)

Element (a,b),a < b, of T is (—1)%c(b,a)and element (a,b) a > b, is zero,
therefore element (a,b),a < b, of T? is Y(—1)**%c(k,a)c(b,k) where the
summation is from k = a to k = b, and element (a,b),a > b, is zero. If a < k < b,
then c(k,a)c(b, k) = c(b,a)c(b—a,k —a). Also, Y.(—=1)**%c(b,a)c(b —a,k —

a) where the summation is from k=atok =b equals c(b, a)Z(—l)kc(b —
a, k) where the summation is from k = 0 to k = b — a, and these summations equal
Oifa<borlifa=bh.

Therefore T? =1 where [ is the nxn identity matrix. Then since
TWVi, Vi, Viz, .o, Vin)=(a1Ui—q, aUi—y, azUi_s, ..., apUi_p), T(a Ui—q, ayU;_p,
as Ui—37 ceey anUi_n):( Vl',l' Vi,Z' Vi,3' . Vi,n)- Therefore

Vl’] = (_I)J[C(]l])a]Ul—] + C(j + 1;j)aj+1Ui_j_1 + C(j
+2,))aj42Ui—jo+...+c(n, j)a U], j = 1,2,3,...,n.

(Note that this is the formula relating Fibonacci and Lucas numbers if n = 2,
a,=a, =—1l,andj=1.)

2. 8 PROOFS OF REMANINIG THEOREMS

Some previous assertions will now be proved.
OGP+ LGP+ P+ + P = (4 + § + (3t + §)P(mod p)
(by properties of symmetric functions and the binomial coefficients) and

(G+ &G+ G+ QP = (4 + o+ {3+ + $) (mod p)

(by Fermat's theorem), therefore {;P + (P + GGP+...+ P =(4+ &+
(3+...+ ¢,)(mod p), thatis;
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Theorem 2.8: V,, 1=V, 1 (mod p).

AISO, V1'1=' aland 'Vp’1= alUp_l + Zazup_z + 3a3Up_3+. .. +TlanUp_n (by
Theorem (2.5)), therefore;

Theorem 2.9: ay(Up—1 — 1) + 2a,U,_, + 3a3U,_3+... tna,U,_, = 0(mod p).

Finally, Theorem (2.3) will be proved. If U,_;4;_n=U;_, (modp),i=1,2,3,...,n,
then by the matrix equation obtained in the proof of Theorems (2.2) and (2.4), V, , =

Vo3 =Vpa =...= Vpp =0(mod ), thatis V,,;=V; ; (mod p) i = 2,3,4,...,n.
Conversely, if V,, 1=V ; (mod p) i = 2,3,4,...,n and p does not divide
a,a,0a3..ay,then U,y =1, U,_, = Uy_3 = Up_y =...= U,_,, = 0(Mod p), that

is, Up_14i-n=U;—n (Mmod p), i = 1,2,3,...,n. Theorem (2.3) then follows from
Theorem (2.1).

2.9 CONCLUSION

In this article we have find a new connection between n'" degree polynomial mod p
congruence with n roots and higher order Fibonacci and Lucas sequences. We have
also discussed about the recent work that has been done in sequences and their
connection to polynomial congruence and then find out new relations between
particular recurrence relation and the congruence of the sequences.
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