
Advances in Dynamical Systems and Applications (ADSA).
ISSN 0973-5321, Volume 16, Number 1, (2021) pp. 1-4
c©Research India Publications

https://dx.doi.org/10.37622/ADSA/16.1.2021.1-4

The Rate of Change for the Weight of the Squared Error
in the Neural Network

Hwajoon Kim
Kyungdong University

11458, Kyungdong Univ. Rd. 27, Yangju, Gyeonggi, S. Korea.

Abstract

We consider the proof of the rate of change for the weight of the squared error in
a neural network. The method used is reduction ad absurdum, which works well
for the proof. The obtained research results are closely related to the concept of
convolution in mathematics.

Mathematics Subject Classification: 68T07, 44A35

Keywords: update of weight, squared error, sigmoid function

1. INTRODUCTION

In the neural network, each input signal is given a unique weight, and it can be
determined that the corresponding signal is important as the weight increases. At this
time, the weight plays a role corresponding to the axon of the neuron of the brain
cell[1-2]. In order to obtain the desired output from the neural network, it is necessary
to update the weights. Typically, the actual output is calculated by multiplying each
input signal by a weight and applying an activation function to the sum. The equation
for updating the weight is given from the gradient descent algorithm as

wnew
ij = wold

ij − α
∂E

∂wij

,

where α is the learning rate. The E appearing in this equation is the squared error,
which is given as

1

2

N∑
j=1

||yj − tj||2,

where yj is the actual output from the j-th node of the output layer, tj is the desired
output value, and ej = tj − yj be the error from the j-th node of the output layer.

2 Hj. Kim

Typically, the rate of change for the weight of the squared errorEwij is can be expressed
by

∂E

∂wij

= Ewij = −ejyj(1− yj)xi,

where xi is the input from the i-th node of the hidden layer and wij means the weight
connected from the i-th node of the hidden layer to the j-th node of the output layer.

This proof, which is being used intuitively, has been dealt with more systematically
using the method of reduction ad absurdum. This result can be extended in the
multi convolution layer, and the concept of convolution comes from the concept of
convolution in mathematics. Details can be found in [3].

2. THE RATE OF CHANGE FOR THE WEIGHT OF THE SQUARED ERROR
IN THE NEURAL NETWORK

We would like to consider the rate of change for the weight of the squared error in the
neural network. In general, the error in the output layer is calculated with the weight by
receiving the input signal from the hidden layer. In other word, it is represented by(

yn
yn+1

)
=

(
wmn w(m+1)n

wm(n+1) w(m+1)(n+1)

)(
xm
xm+1

)
for arbitrary natural number m and n. Then, apply the activation function to that value
to get the output value. Hence, Then yn and yn+1 can be expressed as

yn = f(xmwmn + xm+1w(m+1)n)

yn+1 = f(xmwm(n+1) + xm+1w(m+1)(n+1)),

where f is an activation function. Typically, the frequently used activation functions
are sigmoid function and hyperbolic tangent function. The relation

tanh(x) = 2f(2x)− 1

holds for f is the sigmoid function and h is the hyperbolic function.

Lemma 2.1. The sigmoid function f(x) satisfies f ′(x) = f(x)(1− f(x)).

Proof. Since the sigmoid function

f(x) =
1

1 + e−x
,

the result follows clearly.

Rate of Change for the Weight of the Squared Error 3

Theorem 2.2. (The rate of change for the weight of the squared error) Let yj be the
actual output from the j-th node of the output layer, tj be the desired output value, and
ej = tj − yj be the error from the j-th node of the output layer. Then the rate of change
for the weight of the squared error Ewij is can be expressed by

∂E

∂wij

= Ewij = −ejyj(1− yj)xi,

where xi is the input from the i-th node of the hidden layer and wij means the weight
connected from the i-th node of the hidden layer to the j-th node of the output layer.

Proof. Suppose that
∂E

∂wij

6= −ejyj(1− yj)xi, (∗)

and for simplicity, assume that the output layer has only two outputs yn and yn+1 for
arbitrary natural number n. The squared error E is represented as

E =
1

2
[(tn − yn)2 + (tn+1 − yn+1)

2]

=
1

2
[(tn − f(xmwmn + xm+1w(m+1)n))

2

+(tn+1 − f(xmwm(n+1) + xm+1w(m+1)(n+1))
2]

for two inputs and two outputs. Differentiating E with respect to w(m+1)(n+1), we get

∂E

∂w(m+1)(n+1)

=
1

2
· (−2) (tn+1 − f(xmwm(n+1) + xm+1w(m+1)(n+1)))

·f ′(xmwm(n+1) + xm+1w(m+1)(n+1)) · xm+1.

Let us take the sigmoid function as the activation function. Since the sigmoid function
f(x) satisfies f ′(x) = f(x)(1− f(x)),

∂E

∂w(m+1)(n+1)

= −(tn+1 − yn+1)yn+1(1− yn+1)xm+1

= −en+1yn+1(1− yn+1)xm+1.

This is contradictory to (∗), and therefore, this theorem holds for arbitrary natural
numbers i and j. In the case of the input layer and the hidden layer, the weight can
be updated in the same way. If there are multiple inputs and outputs, it can be obtained
similarly.

4 Hj. Kim

Of course, this equation can update the error by wnew
ij = wold

ij − α ∂E
∂wij

, where α is the
learning rate. In the case of the l-th channel of the multi convolution layer, it can be
obtained by

wl,new
ij = wl,old

ij − α ∂C

∂wl
ij

= wl,old
ij +

N∑
n=1

ei
lyi

l(1− yil)yj l−1,

where C is the cost function. Details on this require a large amount, so we will deal
with it in a later study.

Conflict of interest. The authors declare no conflicts of interest.

Acknowledgements. This research was supported by Kyungdong University Research
Fund, 2021.

REFERENCES

[1] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep learning, Nature, 521,
2015. doi:10.1038/nature14539

[2] M. Negnevitsky, Artificial Intelligence, Pearson Education Limited, 2005.

[3] Y. H. Geum, A.K. Rathie, and Hj. Kim, Matrix Expression of Convolution and Its
Generalized Continuous Form, Symmetry 2020 (2020), 1791.

