Overview of the Construction of Irreducible Representations of Symmetric Groups

B. K. Kipkirui
Non-affiliated, P.O. Box 22850 - 00100 Nairobi, Kenya.

Abstract

Representation theory of symmetric groups is one of the subjects that has been studied for centuries. As such, there exists lots of expositions, surveys and research articles whose objective is to illuminate further on this subject. The goal of this article is to introduce this topic to a young graduate student by providing a self contained exposition of the topic in a manner that is not too elementary nor too advanced. We hope that readers will use this article as a preparation towards reading much more advanced and voluminous research materials.

AMS subject classification:

Keywords: Symmetric group, group representations, group algebras, characters, Specht modules.

1. Introduction

It is well known that the number of irreducible representations is equal to the number of the distinct conjugacy classes of S_n (see for example [9]). On the other hand, if $g \in S_n$ is a representative of a conjugacy class, then its cycle-type corresponds to a partition λ of n ([8, Prop. 2.32]). It follows therefore that the number of distinct conjugacy classes of S_n is equal to the number of unordered partitions of n and further that each partition $\lambda = (\lambda_1, \ldots, \lambda_k)$ of n corresponds to an irreducible $\mathbb{C}[S_n]$-module.

Our main goal is to use an example to illustrate how to construct an irreducible $\mathbb{C}[S_n]$-module. We will use the following procedure: for each partition $\lambda \vdash n$, we construct as subgroup $S_\lambda \subset S_n$, next we induce the trivial representation of S_λ up to S_n and denote by ρ_λ the corresponding representation of S_n. Consequently, we get a $\mathbb{C}[S_n]$-module M_λ corresponding to the representation ρ_λ.

The $\mathbb{C}[S_n]$-module M_λ is not irreducible in general, however, we can defined an order on the set $\{\lambda^{(1)}, \lambda^{(2)}, \ldots\}$ of unordered partitions n in such a way that the first module
$M^{(1)}_\lambda$ is irreducible and we denote it by $S^{(1)}_\lambda$, the second module $M^{(2)}_\lambda$ decomposes into copies of $S^{(1)}_\lambda$ and a new irreducible module $S^{(2)}_\lambda$, and in general, each module $M^{(j)}_\lambda$ will decompose into a number of copies of $S^{(i)}_\lambda$ for $i < j$ and a new irreducible module $S^{(j)}_\lambda$. In the end we get a sequence of irreducible $\mathbb{C}[S_n]$ modules $S^{(1)}_\lambda, S^{(2)}_\lambda, S^{(3)}_\lambda, \ldots$ called the Specht Modules.

2. Young Diagrams and Tableaux

Let $\lambda = (\lambda_1, \lambda_2, \ldots, \lambda_k)$ be a partition of a non-negative integer n. We will assume that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_k$. The Young diagram of λ is obtained by stacking sequences of boxes in such a way that the top-most row has λ_1 square boxes, the second top row has λ_2 square boxes, and in general, the i-th row from the top will have i boxes. For example, the Young diagram of the partition $\lambda = (3, 2, 1) \vdash 7$ is the diagram

```
\[ \begin{array}{ccc}
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
\end{array} \]
```

A Young tableau of shape λ (also called λ-tableau) is a labeled Young diagram, where the boxes are labeled with the numbers 1 to n in a bijective manner. For example if $n = 3$ and $\lambda = (2, 1)$, then some of the possible Young tableaux of shape λ are

\[
\begin{align*}
t_1 &= \begin{bmatrix} 1 & 2 & 3 \\ 3 & \end{bmatrix}, & t_2 &= \begin{bmatrix} 1 & 3 & 2 \\ 2 & \end{bmatrix}, & t_3 &= \begin{bmatrix} 2 & 3 & 1 \\ 1 & \end{bmatrix}.
\end{align*}
\]

Let T_λ be the set of all Young tableaux of shape λ. A tableau $t_1 \in T_\lambda$ is said to be row equivalent to another tableau $t_2 \in T_\lambda$ if for each i the set of elements in row i of t_1 is equal to the set of elements in row i of t_2.

Definition 2.1. Let λ be a partition of n, T_λ be the set of all Young tableaux of shape λ and denote by \cong the row equivalence of tableaux in T_λ. A tabloid of shape λ is an element in the set T_λ/\cong. We denote by $[t]$ the equivalence class (tabloid) of a tableau $t \in T_\lambda$.

Definition 2.2. Let $[t_1], [t_2], \ldots, [t_r]$ be the complete list of elements in T_λ/\cong. The permutation module corresponding to λ is defined to be

\[
M^\lambda = \mathbb{C}\{[t_1], [t_2], \ldots, [t_r]\}.
\]

An element of M^λ is called a polytabloid.

Example 2.3. Let $\lambda = (2, 1) \vdash 3$. Then M^λ is the complex vector space of rank 3 spanned by the tabloids $[t_1], [t_2]$ and $[t_3]$ where

\[
\begin{align*}
t_1 &= \begin{bmatrix} 2 & 3 & 1 \\ & & \\
\end{bmatrix}, & t_2 &= \begin{bmatrix} 1 & 3 & 2 \\ & & \\
\end{bmatrix}, & t_3 &= \begin{bmatrix} 1 & 2 & 3 \\ & & \\
\end{bmatrix}.
\end{align*}
\]
3. Constructing a Specht Module Corresponding to a Partition

There is a natural action of T_{λ} by S_n which can be defined as follows. For any $\sigma \in S_n$ and any $t \in T_{\lambda}$, let σt be the element of T_{λ} whose entry at row i and column j is the number obtained by letting σ act on the number in row i and column j of t. For example, if $\sigma = (132) \in S_3$ then

$$\sigma \begin{pmatrix} 1 & 2 \\ 3 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 & 1 \\ 2 \end{pmatrix}. \quad (4)$$

Given a tableau t of shape λ let C_j be the set whose elements are the entries in column j of t. Denote by S_{C_j} the permutation group of elements of C_j. The column stabilizer $C(t)$ of a λ-tableau t is defined to be the subgroup of S_n that fixes the columns of t setwise. If t has columns C_1, C_2, \ldots, C_l then its column stabilizer is the subgroup

$$C(t) = S_{C_1} \times S_{C_2} \times \cdots \times S_{C_l}.$$

Example 3.1. Let $\lambda = (2, 2, 1) \vdash 5$ and consider the following tableau of shape λ.

$$t = \begin{pmatrix} 1 & 2 \\ 3 & 4 \\ 5 \end{pmatrix}. \quad (5)$$

Then the column stabilizer subgroup of t is

$$C(t) = S_{\{1, 3, 5\}} \times S_{\{2, 4\}}$$
$$= \{t, (13), (15), (35), (135), (153)\} \times \{t, (24)\}$$
$$= \{t, (13), (15), (35), (135), (24), (13)(24), (15)(24)\}$$
$$\quad (35)(24), (135)(24), (153)(24)\}.$$

It is a trivial exercise to check that $C(t)$ is indeed a subgroup of S_5 and additionally, that the action of any element of $C(t)$ on t fixes the columns of t setwise.

Definition 3.2. Let t be a λ-tableau. The signed column sum of t is the element of $\mathbb{C}[S_n]$ defined by

$$\kappa_t = \sum_{\sigma \in C(t)} \text{sgn}(\sigma) \sigma \quad (6)$$

where $\text{sgn}(\sigma)$ is the signature of the permutation σ.

At this point, we have all the ingredients required to construct the irreducible representations. For each partition λ we already know how to obtain the permutation module M^λ. The module M^λ is not irreducible in general however it has an irreducible submodule S^λ. The following procedure is used to obtain an irreducible submodule S^λ of M^λ.

Procedure: For each $\lambda \vdash n$ and let $[\tau]$ be a tabloid of shape λ. For each $t \in [\tau]$
• construct the column stabilizer $C(t)$ for t and let κ_t be the signed column sum for t.
• set $v_t = \kappa_t t$.

The irreducible representation of S_n corresponding to λ is the submodule of M^λ generated by the basis $\{v_t : t \in [\tau]\}$.

In order to obtain the characterization of the submodules S^λ as described in the introductory section of this article, we shall have to order the set of all unordered partitions of n in it the reversed lexicographical order (see [6, Def. 3.4]). We shall illustrate this using a concrete example in the next section.

4. Concrete Example

We will use a small concrete example ($n = 3$) to illustrate the construction illuminated above. The $\mathbb{C}[S_3]$ module has the following basis elements

$$\{\iota, (12), (13), (23), (123), (132)\}$$

where ι is the identity permutation. The unordered partitions of 3 are $\lambda = (3), \mu = (2, 1)$ and $\xi = (1, 1, 1)$ listed in the reversed lexicographical order. The corresponding Young diagrams are as follows

$$\lambda \mapsto \begin{array}{c}
\text{[]}
\end{array}, \quad \mu \mapsto \begin{array}{c}
\text{[[]]}
\end{array}, \quad \xi \mapsto \begin{array}{c}
\text{[[]]}
\end{array}.$$ \hfill (8)

1. There are six Young tableau of shape λ all of which are row equivalent to the λ tableau

$$1 | 2 | 3.$$ \hfill (9)

Thus M^λ is one dimensional and is therefore an irreducible submodule of $\mathbb{C}[S_3]$. Thus in this case we have $S^\lambda = M^\lambda$.

2. There are three μ-tabloids. These are

$$[\tau] = \left\{ \begin{array}{c}
\text{[] []}
\end{array} \right\}, \quad [\xi] = \left\{ \begin{array}{c}
\text{[[]]}
\end{array} \right\}, \quad [\eta] = \left\{ \begin{array}{c}
\text{[[]]}
\end{array} \right\}.$$ \hfill (10)

Thus M^μ is a submodule of $\mathbb{C}[S_3]$ of rank 3 generated by $\tau_1 \simeq (12), \tau_2 \simeq (13)$ and $\tau_3 \simeq (23)$. Applying the procedure described in the previous section to the first tabloid we have

By identifying v_{τ_1} with the element $(12) - (32) \in \mathbb{C}[S_3]$ and v_{τ_1} with $(21) - (31) \in \mathbb{C}[S_3]$ then v_{τ_1}, v_{τ_1} generate a rank 2 submodule of M^μ. The claim is the the generated submodule is irreducible and we denote it by S^μ. Repeating the same procedure on $[\xi]$ and $[\eta]$ then one obtains two dimensional irreducible submodule canonically isomorphic to S^μ.
3. Lastly, there are six inequivalent ξ-tableaux. These are

$$\xi_1 = \begin{array}{c} 1 \\ 2 \\ 3 \end{array}, \quad \xi_2 = \begin{array}{c} 1 \\ 3 \\ 2 \end{array}, \quad \xi_3 = \begin{array}{c} 2 \\ 1 \\ 3 \end{array}, \quad \xi_4 = \begin{array}{c} 2 \\ 3 \\ 1 \end{array}, \quad \xi_5 = \begin{array}{c} 3 \\ 1 \\ 2 \end{array}, \quad \xi_6 = \begin{array}{c} 3 \\ 2 \\ 1 \end{array} \quad \text{(11)}$$

Thus M^ξ is of rank 6 and therefore equal to $\mathbb{C}[S_3]$. Further, the column stabilizer for any of the above ξ_i is the entire group S_3 and consequently the signed column sum is

$$\iota - (12) - (13) - (23) + (123) + (132)$$

Applying this column sum to the first ξ-tableau one obtains the element of $\mathbb{C}[S_3]$ given by

$$v_{\xi_1} = \begin{array}{c} 2 \\ 1 \\ 3 \end{array} - \begin{array}{c} 3 \\ 1 \\ 2 \end{array} - \begin{array}{c} 2 \\ 3 \\ 1 \end{array} + \begin{array}{c} 1 \\ 2 \\ 3 \end{array} + \begin{array}{c} 3 \\ 2 \\ 1 \end{array}$$

The element v_{ξ_1} spans a rank 1 submodule of $\mathbb{C}[S_3]$ and is therefore irreducible.

5. Conclusion

Representations of symmetric group is an interesting subject to study. This short exposition is meant to introduce a young graduate student to this interesting subject. Even more interesting is the study of modular representations of symmetric group. It can be shown easily that any irreducible representation of symmetric group is equivalent to a matrix representation whose entries are all integral. An interesting question to ask is the following: given a prime number p, which of the matrix representations remain irreducible when the entries are reduced modulo p?

This is a question which was pioneered by Carter and Lusztig in their paper [1]. In particular, they conjectured a necessary and sufficient condition needed to be satisfied by λ and p for the corresponding matrix representation to remain irreducible. In [4], James prove the necessary part of Carter’s conjecture and later [5] together with Mathas classified the irreducible Specht modules for the case $p = 2$. Further, they conjecture a necessary and sufficient condition imposed on the Young diagram of a partition λ in order for the corresponding Specht module to be reducible. In [7], Lyle proved a major part of the necessary condition in the conjecture by James and Mathas. The result of Lyle was later used by Fayers [2, 3] to complete the proof of James-Mathas conjecture.
References

