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Abstract 

This research paper is on the concept of the complex idempotent in C[G]. Here 

C[G] is the group ring of group G over the complex numbers C. To find the idea 

of the complex idempotent in C[G] we have used the concept of Hermitian inner 

product on C[G], norms in C[G] as well as the absolute value of elements of 

C[G]. We have taken idempotent e in the complex group rings C[G] and proved 

that tre e ≥ 0. When group G is finite and K is a field of char K = 0 then 0≤ tre 

e ≤ 1 as 0≤ dim Ve ≤|G|, and also tre e is always in prime subfield of K. There 

is a basic difference in these two properties of tre e. 

i. When tre e is contained in the prime subfield of K then it is an algebraic 

property. 

ii. When the inequality 0≤ tre e ≤ 1, then it is an analytic property.  

Thus we have obtained the analytic assertion 0≤ tre e ≤ 1 and the algebraic 

assertion on values of tre e. Such concept, when char of field K is p>0 is still a 

problem, of research.  

Keywords: Complex idempotent, Hermitian inner product, Norms in C[G], 

Algebraic property, Analytic property of tre e. 

 

1. Introduction 

This paper presents an idea of complex idempotent in in C[G]. For a finite group G and 

group ring K[G] we choose a homomorphism f such that, f: K[G] → 𝑀𝑛(K), here 𝑀𝑛(K) 

is a matrix of dimension n and n = dim V =|G|. f(x) is  a permutation matrix of 0s and 

1s having one in each row and column. If x≠1 then for all x∈G, tre f(x) = 0, but when 

x = 1 then f(x) is an identity matrix and tre f(1) =n=|G|. Let us suppose that 𝛼 = ∑ 𝑎𝑥.x∈
K[G], then tre f(𝛼) = ∑ 𝑎𝑥.tre f(x) = 𝑎1.|𝐺|. Similarly, for an arbitrary G we define a 
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map, tre K[G] →K and so, tre (∑ 𝑎𝑥.x)= 𝑎1. Now we take some lemmas for basic results.  

 

Lemma1: Let tre: K[G] →K be K-linear then for all 𝛼,𝛽 ∈ K[G] we have 𝑡𝑟𝑒 𝛼𝛽= 

tre 𝛽𝛼. 

 

Lemma2: Let us suppose that G be a finite group and char K is not divisor of O|G|, 

then  

i. If 𝛼 ∈ K[G] is nilpotent ⇒ tre 𝛼=0. 

ii. If e∈ K[G] is an idempotent ⇒ tre e = (dim K[G].e/|G| 

 

2. Complex Group Ring C[G]. 

Let us suppose that G be an arbitrary group and C[G] be the group ring of G over the 

complex numbers C. Let 𝛼, 𝛽 are elements in C[G], and 𝛼 = ∑ 𝑎𝑥.x, 𝛽 = ∑ 𝑏𝑥.x, then 

the product [1][2] and norms [1] in C[G] as follow, (𝛼, 𝛽) = ∑ 𝑎𝑥 𝑏̅x ‖𝛼‖= (𝛼, 𝛼)1/2=( 

∑|𝑎𝑥|2)1/2. 

 

3. Let e be an Idempotent in C[G] and We Have to Prove tre e ≥ 0.  

Lemma3: The Hermitian inner product [5] on C[G] will be, if 𝛼, 𝛽 ∈C[G], (𝛼, 𝛽)= tre 

𝛽̅𝛼 = tre 𝛼𝛽̅. If a map 𝛼 → 𝛼̅ is a ring anti-auto-morphism [3] of C[G] for all 𝛼, 𝛽, 𝛾 

we have (𝛼, 𝛽𝛾) =(𝛼𝛾̅, 𝛽)=(𝛽̅𝛼, 𝛾) 

 

4. Decomposition of C[G] as Direct Sum of Two Right Ideals. 

Let I =e C[G] be the right ideal of C[G] generated by the idempotent e and let I٭ be its 

orthogonal component. Since G is finite so C[G] is finite dimensional vector space. 

Hence I+ I٭ = C[G] is a direct sum decomposition. Hence I٭ is also a right ideal of 

C[G]. If If 𝛼 ∈ I    𝛽  ∈  I,٭  and  𝛾 ∈  C[G] then 𝛼𝛾̅ ∈ I (right ideal  of  C[G]. Hence, 

(𝛼, 𝛽𝛾) =(𝛼𝛾̅, 𝛽)= 0 and  𝛽𝛾  is orthogonal to all 𝛼 ∈ I, also we get    that 𝛽𝛾 ∈ I٭. 

Therefore, we have found that I+ I٭ = C [G] is a decomposition of C[G] as a direct sum 

of two right ideals. Now we suppose that, g +g٭ =I, is similar decomposition of I. Thus 

g and g٭are idempotent with, I = g C[G] and I ٭ = g٭C[G]. As g is orthogonal to g٭C[G] 

so g٭C[G] = (1-g)C[G] and  for all 𝛼∈C[G] we have (g,(1-g)𝛼) =( (1 − 𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅ g,𝛼)=0 also  

(1 − 𝑔)̅̅ ̅̅ ̅̅ ̅̅ ̅ g ∈C[G]0= ٭ ⇒g= 𝑔̅g. Again 𝑔̅= 𝑔̅𝑔̅̅ ̅̅  =g𝑔̅ = g and hence g is a self-adjoint [4] 

idempotent. Since, eC[G] = I= gC[G], as e, g are left identities of ideal I, hence, we 

have, tre e = tre ge = tre eg = tre g. But g = 𝑔̅g so, tre e = tre g = tre g𝑔̅ = ‖𝑔‖2≥ 0. 

Therefore, tre e ≥0. 
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5. We have obtained that tre e ≥0 but still it remained to show that tre e ∈ Q, here 

Q is the set of rational numbers. 

Since we get that I+ I٭ = C[G] for finite, but tre e ∈Q is possible for infinite group G. 

Such decompositions are not true for infinite dimensional inner product spaces. So there 

are two ways to get this problem’s solution. 

i. First way was used by Kaplansky (69) [7] and Montgomery (69) [8].Both of them 

embedded C[G] in some larger algebra in which these decompositions are possible. 

These larger algebras were defined on suitable topologies on C[G]. 

ii. Second approach was given by Passman (71) [6]. His observations were based on 

element g, as taken above. Let us take 𝛼 ∈ 𝐈 and distance between 𝛼  and 1 ∈ C[G] 

as follow, d(𝛼, 1)2=‖𝛼 − 1‖2=( 𝛼 − 1, 𝛼 − 1). Since g+ g1 = ٭ and (𝛼 − 𝑔, g0=(٭. 

We have d(𝛼, 1)2= ‖𝛼 − 𝑔‖2+‖𝑔٭‖. So d(𝛼, 1)≥ ‖𝑔٭‖, and becomes equal if only 

if 𝛼= g. Thus g is unique element of I and closest to 1. Now let G be an arbitrary 

group and L is a complex subspace of C[G] then , d(L, 𝛾) = inf‖𝛼 − 𝛾‖. Hence, 

there exists a sequence of elements of I whose corresponding distances 𝛼 ∈L 

approach to d(I, 1). This sequence plays the role of the element g. 

 

Lemma4: If 𝛼, 𝛽 ∈ L, a linear subspace of C[G], then  

|𝛽, 𝛼 − 𝛾|2≤ ‖𝛽‖2 (‖𝛼 − 𝛾‖2 –d(L,𝛾 )2) 

 

Lemma5: If 𝛼, 𝛽 ∈C[G], then 

i. ‖𝛼 + 𝛽‖ ≤ ‖𝛼‖+‖𝛽‖, |𝛼 + 𝛽| ≤ |𝛼|+|𝛽|. 
ii. |𝑡𝑟𝑒 𝛼| ≤ ‖𝛼‖, (𝛼, 1) =tre 𝛼 

iii. ‖𝛼𝛽‖ ≤ ‖𝛼‖.|𝛽|, |𝛼𝛽| ≤ |𝛼|.|𝛽| 

 

6. When Idempotent of C[G] be e≠0. 

Now we suppose that e≠0 be an idempotent in C[G] and take I = eC[G]. Then I is a 

linear subspace [9] of C[G]. We take d = d(I, 1) be the distance between I and 1. For 

each integer n>0 we get 𝑓𝑛 ∈I with ‖𝑔𝑛 − 1‖2< 𝑑2+1
𝑛4⁄  

 

Lemma6: If there exist non-negative real constants 𝑟′ and 𝑟′′ then we have,  

i. I‖𝑔𝑛‖2-tre𝑔𝑛I≤ 𝑟′

𝑛⁄  

ii. ‖𝑔𝑛𝒆 − 𝒆‖ ≤ 𝑟′′

𝑛⁄  
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Lemma7: If the trace of e is real then, tre e ≥ ‖𝒆‖2/|𝒆|2>0. 

Proof: From lemma 5(ii) and 6 we get, 

I‖𝑔𝑛‖2-tre 𝑔𝑛I≤ 𝑟′

𝑛⁄    and ‖𝑔𝑛𝒆 − 𝒆‖ ≤ 𝑟′′

𝑛⁄  so we have tre 𝑔𝑛.e = tre 𝑔𝑛. e=tre 𝑔𝑛. 

Since 𝑔𝑛 ∈e C[G]⇒ e.𝑔𝑛 = 𝑔𝑛. So we have from the above,  

I‖𝑔𝑛‖2-tre𝑔𝑛I≤ 𝑟′ + 𝑟′′

𝑛⁄  as well as tre e = lim
𝑛→∞

‖𝑔𝑛‖2.Thus tre e is real and non-

negative. Now from lemma 5 (i) (iii) and 6(ii) we get, ‖𝒆‖ ≤ ‖𝒆 − 𝑔𝑛‖+‖𝑔𝑛. 𝒆‖ ≤
𝑟𝑛

𝑛⁄ +‖𝑔𝑛‖.|𝒆|. By taking limit as n→ ∞ we obtain ‖𝒆‖ ≤ (tre e)1/2.|𝑒| and hence, tre 

e≥ ‖𝒆‖2/|𝒆|2>0 

 

7. An Analytic Proof of tre e is Algebraic over Q. 

Theorem 8 [Kaplansky (69)] [7]: Let K be a field of characteristic 0 and let e ≠0,1 be 

an idempotent in K[G]. Then tre e is a totally real algebraic number with the property 

that, it and its algebraic conjugates lie   strictly between 0 and 1. 

Poof: Let us take e = ∑ 𝑏𝑥.x ∈K[G] be an idempotent and F is finitely generated field 

extension of the rational number Q. It is given by F = Q (𝑏𝑥Ix ∈ Supp e). Thus e ∈F[G] 

⊂C[G], and we suppose e as an element of C[G].Here e is an idempotent with same 

trace and e ≠ 0, 1. Now by lemma 7, we have tre e >0. As 1-e is also a non-zero 

idempotent of C[G], so tre (1-e) = 1- tre e>0 and tre e <1. Now we suppose 𝜎 as any 

field automorphism of the complex numbers. Then 𝜎 includes a ring automorphism of 

C[G]  by 𝛼 = ∑ 𝑎𝑥x ⇒ 𝛼𝜎 = ∑ 𝑎𝑥
𝜎x. Since 𝑒𝜎 is again an idempotent of C[G], and 

tre 𝒆𝝈=(𝑡𝑟𝑒 𝒆 )𝜎. Therefore we get 0< (𝑡𝑟𝑒 𝒆 )𝜎 <1 for all such 𝜎. But if tre e were 

transcendental [10 over Q, then there would exist a field auto-morphism 𝜎 with 

(𝑡𝑟𝑒 𝒆 )𝜎  not real. It is a contradiction. Therefore, tre e is algebraic over Q. Hence, the 

other two idempotent of are 0 and 1 also their traces are 0 as well as 1.   

 

8. Von Neumann Finite Ring 

A ring R is said a von Neumann finite [11] if 𝛼. 𝛽 =1 in R⇒𝛽. 𝛼=1. 

 

Corollary 9: If K is a field of characteristic 0, then K[G] is von Neumann finite. 

Proof: Let us take that 𝛼, 𝛽 ∈ K[G] and 𝛼. 𝛽=1. We take e = 𝛽. 𝛼. Then 𝒆2= 𝛽𝛼.𝛽𝛼= 

𝛽(𝛼𝛽)𝛼 = 𝛽𝛼=e. Therefore e is an idempotent in K[G]. But from lemma 1, tre e = tre 

𝛽𝛼= tre 𝛼𝛽=1. Hence by theorem 8, we have e = 1. 

 

9. What Are To Be Investigated Yet In Complex Idempotent? 

These all conditions are problems of research, when the characteristic of field is greater 

than 0, in future.  
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i. If K is a field of characteristic p>0, then K[G] is von Neumann finite. 

ii. In a group ring C[G], tre e ≥0. 

iii. tre e is algebraic in Q. 

iv. Analytic assertion 0≤ tre e ≤1. 

 

Conclusions 

In this research paper, we have presented the concept of complex idempotent in C[G] 

in easy way. For this purpose we have used Hermitian inner product as well as norm. 

With the help of these concept we get result as tre e ≥0. We have got that tre e is 

algebraic over Q. It is not transcendental over Q. Therefore, we obtained, the analytic 

assertion 0≤ tre e ≤1 and the algebraic assertion on values of tre e . This has been 

found when characteristic of field K is 0. But, when the characteristic of field K is p>0 

then such concept of complex idempotent of C[G] is not known. It is still a matter of 

research in future. 
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