Problems Of The Complex Idempotents In Group Ring C[G]

¹Dhananjay Kumar Mishra* and ²Dr. Hiteshwar Singh

¹L.N.M.U. Darbhanga, Mathematics Department ²Dept. M.L.S.M. College, Darbhanga

Abstract

This research paper is on the concept of the complex idempotent in C[G]. Here C[G] is the group ring of group G over the complex numbers C. To find the idea of the complex idempotent in C[G] we have used the concept of Hermitian inner product on C[G], norms in C[G] as well as the absolute value of elements of C[G]. We have taken idempotent e in the complex group rings C[G] and proved that $tre\ e \ge 0$. When group G is finite and K is a field of char K = 0 then $0 \le tre\ e \le 1$ as $0 \le \dim Ve \le |G|$, and also $tre\ e$ is always in prime subfield of K. There is a basic difference in these two properties of $tre\ e$.

- **i.** When *tre e* is contained in the prime subfield of K then it is an algebraic property.
- ii. When the inequality $0 \le tre \ e \le 1$, then it is an analytic property.

Thus we have obtained the analytic assertion $0 \le tre \ e \le 1$ and the algebraic assertion on values of $tre \ e$. Such concept, when char of field K is p>0 is still a problem, of research.

Keywords: Complex idempotent, Hermitian inner product, Norms in C[G], Algebraic property, Analytic property of *tre e*.

1. Introduction

This paper presents an idea of complex idempotent in in C[G]. For a finite group G and group ring K[G] we choose a homomorphism f such that, f: K[G] $\rightarrow M_n(K)$, here $M_n(K)$ is a matrix of dimension n and $n = \dim V = |G|$. f(x) is a permutation matrix of 0s and 1s having one in each row and column. If $x \ne 1$ then for all $x \in G$, $tre\ f(x) = 0$, but when x = 1 then f(x) is an identity matrix and $tre\ f(1) = n = |G|$. Let us suppose that $\alpha = \sum a_x . x \in K[G]$, then $tre\ f(\alpha) = \sum a_x . tre\ f(x) = a_1 . |G|$. Similarly, for an arbitrary G we define a

map, $tre K[G] \rightarrow K$ and so, $tre (\sum a_x.x) = a_1$. Now we take some lemmas for basic results.

Lemma1: Let $tre: K[G] \to K$ be K-linear then for all $\alpha, \beta \in K[G]$ we have $tre \alpha\beta = tre \beta\alpha$.

Lemma2: Let us suppose that G be a finite group and *char* K is not divisor of O|G|, then

- **i.** If $\alpha \in K[G]$ is nilpotent $\Rightarrow tre \alpha = 0$.
- ii. If $e \in K[G]$ is an idempotent $\Rightarrow tre \ e = (\dim K[G].e/|G|)$

2. Complex Group Ring C[G].

Let us suppose that G be an arbitrary group and C[G] be the group ring of G over the complex numbers C. Let α , β are elements in C[G], and $\alpha = \sum a_x . x$, $\beta = \sum b_x . x$, then the product [1][2] and norms [1] in C[G] as follow, $(\alpha, \beta) = \sum a_x \, \overline{b}_x \, ||\alpha|| = (\alpha, \alpha)^{1/2} = (\sum |a_x|^2)^{1/2}$.

3. Let *e* be an Idempotent in C[G] and We Have to Prove $tre \ e \ge 0$.

Lemma3: The Hermitian inner product [5] on C[G] will be, if α , $\beta \in C[G]$, $(\alpha, \beta) = tre \bar{\beta}\alpha = tre \alpha\bar{\beta}$. If a map $\alpha \to \bar{\alpha}$ is a ring anti-auto-morphism [3] of C[G] for all α , β , γ we have $(\alpha, \beta\gamma) = (\alpha\bar{\gamma}, \beta) = (\bar{\beta}\alpha, \gamma)$

4. Decomposition of C[G] as Direct Sum of Two Right Ideals.

Let $\mathbf{I} = e$ C[G] be the right ideal of C[G] generated by the idempotent e and let \mathbf{I}^* be its orthogonal component. Since G is finite so C[G] is finite dimensional vector space. Hence $\mathbf{I} + \mathbf{I}^* = \mathbf{C}[G]$ is a direct sum decomposition. Hence \mathbf{I}^* is also a right ideal of C[G]. If If $\alpha \in \mathbf{I}$ $\beta \in \mathbf{I}$, and $\gamma \in \mathbf{C}[G]$ then $\alpha \bar{\gamma} \in \mathbf{I}$ (right ideal of C[G]. Hence, $(\alpha, \beta \gamma) = (\alpha \bar{\gamma}, \beta) = 0$ and $\beta \gamma$ is orthogonal to all $\alpha \in \mathbf{I}$, also we get that $\beta \gamma \in \mathbf{I}^*$. Therefore, we have found that $\mathbf{I} + \mathbf{I}^* = \mathbf{C}[G]$ is a decomposition of C[G] as a direct sum of two right ideals. Now we suppose that, $g + g^* = \mathbf{I}$, is similar decomposition of \mathbf{I} . Thus g and g^* are idempotent with, $\mathbf{I} = g$ C[G] and $\mathbf{I}^* = g^*$ C[G]. As g is orthogonal to g^* C[G] so g^* C[G] = (1-g) C[G] and for all $\alpha \in \mathbf{C}[G]$ we have $(g,(1-g)\alpha) = ((\overline{1-g})g,\alpha) = 0$ also $(\overline{1-g})g \in \mathbf{C}[G]^* = 0 \Rightarrow g = \overline{g}g$. Again $\overline{g} = \overline{g}g = g\overline{g} = g$ and hence g is a self-adjoint [4] idempotent. Since, e C[G] = $\mathbf{I} = g$ C[G], as e, g are left identities of ideal \mathbf{I} , hence, we have, e if e

5403

5. We have obtained that $tre \ e \ge 0$ but still it remained to show that $tre \ e \in Q$, here Q is the set of rational numbers.

Since we get that $I + I^* = C[G]$ for finite, but $tre \ e \in Q$ is possible for infinite group G. Such decompositions are not true for infinite dimensional inner product spaces. So there are two ways to get this problem's solution.

- i. First way was used by **Kaplansky** (69) [7] and **Montgomery** (69) [8].Both of them embedded C[G] in some larger algebra in which these decompositions are possible. These larger algebras were defined on suitable topologies on C[G].
- ii. Second approach was given by Passman (71) [6]. His observations were based on element g, as taken above. Let us take $\alpha \in \mathbf{I}$ and distance between α and $1 \in C[G]$ as follow, $d(\alpha, 1)^2 = \|\alpha 1\|^2 = (\alpha 1, \alpha 1)$. Since $g + g^* = 1$ and $(\alpha g, g^*) = 0$. We have $d(\alpha, 1)^2 = \|\alpha g\|^2 + \|g^*\|$. So $d(\alpha, 1) \ge \|g^*\|$, and becomes equal if only if $\alpha = g$. Thus g is unique element of \mathbf{I} and closest to 1. Now let G be an arbitrary group and G is a complex subspace of G then G then G then G is a sequence of elements of G whose corresponding distances G is approach to G. This sequence plays the role of the element G.

Lemma4: If $\alpha, \beta \in L$, a linear subspace of C[G], then

$$|\beta, \alpha - \gamma|^2 \le ||\beta||^2 (||\alpha - \gamma||^2 - d(L, \gamma)^2)$$

Lemma5: If α , $\beta \in C[G]$, then

- **i.** $\|\alpha + \beta\| \le \|\alpha\| + \|\beta\|, |\alpha + \beta| \le |\alpha| + |\beta|.$
- ii. $|tre \alpha| \le ||\alpha||, (\alpha, 1) = tre \alpha$
- iii. $\|\alpha\beta\| \leq \|\alpha\| \|\beta\|$, $|\alpha\beta| \leq |\alpha| \|\beta\|$

6. When Idempotent of C[G] be $e \neq 0$.

Now we suppose that $e\neq 0$ be an idempotent in C[G] and take $\mathbf{I} = e\mathbf{C}[G]$. Then \mathbf{I} is a linear subspace [9] of C[G]. We take $d = d(\mathbf{I}, 1)$ be the distance between \mathbf{I} and 1. For each integer n>0 we get $f_n \in \mathbf{I}$ with $||g_n-1||^2 < d^2+\frac{1}{n^4}$

Lemma6: If there exist non-negative real constants r' and r'' then we have,

i.
$$I||g_n||^2$$
-tre $g_n I \le r'/n$

ii.
$$||g_n e - e|| \le r''/n$$

Lemma 7: If the trace of e is real then, tre $e \ge ||e||^2/|e|^2 > 0$.

Proof: From lemma 5(ii) and 6 we get,

 $\|g_n\|^2$ -tre $g_n \le r'/n$ and $\|g_n e - e\| \le r''/n$ so we have tre $g_n \cdot e = tre \ g_n$. $e = tre \ g_n$. Since $g_n \in e \ C[G] \Rightarrow e \cdot g_n = g_n$. So we have from the above,

I|| g_n ||²-tre g_n I $\leq r'+r''/n$ as well as tre $e=\lim_{n\to\infty} ||g_n||^2$. Thus tre e is real and nonnegative. Now from lemma 5 (i) (iii) and 6(ii) we get, $||e|| \leq ||e-g_n|| + ||g_n|| \leq r^n/n + ||g_n|| \cdot ||e||$. By taking limit as $n\to\infty$ we obtain $||e|| \leq (tre \ e)^{1/2} \cdot ||e||$ and hence, tre $e\geq ||e||^2/|e|^2>0$

7. An Analytic Proof of tre e is Algebraic over Q.

Theorem 8 [Kaplansky (69)] [7]: Let K be a field of characteristic 0 and let $e \neq 0,1$ be an idempotent in K[G]. Then *tre* e is a totally real algebraic number with the property that, it and its algebraic conjugates lie strictly between 0 and 1.

Poof: Let us take $e = \sum b_x . x \in K[G]$ be an idempotent and F is finitely generated field extension of the rational number Q. It is given by F = Q ($b_x Ix \in Supp e$). Thus $e \in F[G] \subset C[G]$, and we suppose e as an element of C[G]. Here e is an idempotent with same trace and $e \neq 0$, 1. Now by lemma 7, we have tre e > 0. As 1-e is also a non-zero idempotent of C[G], so tre(1-e) = 1- tre(e) = 0 and tre(e) = 1. Now we suppose e as any field automorphism of the complex numbers. Then e includes a ring automorphism of e e by e and e and e are e and e are e are e are e are e are e and e are e a

8. Von Neumann Finite Ring

A ring R is said a von Neumann finite [11] if α . $\beta = 1$ in $R \Rightarrow \beta$. $\alpha = 1$.

Corollary 9: If K is a field of characteristic 0, then K[G] is von Neumann finite.

Proof: Let us take that $\alpha, \beta \in K[G]$ and $\alpha, \beta=1$. We take $e = \beta, \alpha$. Then $e^2 = \beta \alpha, \beta \alpha = \beta(\alpha\beta)\alpha = \beta\alpha=e$. Therefore e is an idempotent in K[G]. But from lemma 1, $tre\ e = tre\ \beta\alpha = tre\ \alpha\beta=1$. Hence by theorem 8, we have e = 1.

9. What Are To Be Investigated Yet In Complex Idempotent?

These all conditions are problems of research, when the characteristic of field is greater than 0, in future.

- i. If K is a field of characteristic p>0, then K[G] is von Neumann finite.
- ii. In a group ring C[G], $tre e \ge 0$.
- iii. tre e is algebraic in Q.
- iv. Analytic assertion $0 \le tre \ e \le 1$.

Conclusions

In this research paper, we have presented the concept of complex idempotent in C[G] in easy way. For this purpose we have used Hermitian inner product as well as norm. With the help of these concept we get result as $tre\ e \ge 0$. We have got that $tre\ e$ is algebraic over Q. It is not transcendental over Q. Therefore, we obtained, the analytic assertion $0 \le tre\ e \le 1$ and the algebraic assertion on values of $tre\ e$. This has been found when characteristic of field K is 0. But, when the characteristic of field K is p>0 then such concept of complex idempotent of C[G] is not known. It is still a matter of research in future.

References

- [1] Saxe, Karen (2002). Beginning Functional Analysis. Springer p.7 ISBN 0-387-95224-1
- [2] Jain, P.K.; Ahmad, Khalil (1995). "Example 5". Functional A NALYSIS (2nd ed.) New Age International. P. 209. ISBN 81-224-0801-X.
- [3] Jacobson, Nathan (1943). The Theory of Ring. Mathematical Surveys and Monographs.2. American Mathematical Society. P. 16. ISBN 0821815024.
- [4] Hall 2013 Proposition 9.30
- [5] http://mathworld.wolfram.com/HermitianInnerProduct.html
- [6] D.S. Passman, The algebraic structure of group ring, Wiely (2011).
- [7] Irving Kaplansky (1969) Fields and Rings.
- [8] M.S. Montgomery (1969), Left and ring inverses in group algebra.
- [9] Herstein (1964, p. 132)
- [10] Baker, Alan (1975). Transcendental Number Theory. Cambrige University Press. ISBN 987-0-521-20461-3. Zbl 0297.10013.
- [11] Michiel Hazewinkel, Nadiya M. Gubareni. Algebras, Rings and Modules, Volume 2: Non commutative Algebras, 2017.