
Mathematical Modelling of Natural Phenomena.
Vol.2 No.1 (2007): Epidemiology pp. 39–54
ISSN 0973-5348 © Research India Publications
http://www.ripublication.com/mmnp.htm

Hopf Bifurcation Analysis of Pathogen-Immune
Interaction Dynamics with Delay Kernel

M. Neamţu
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Abstract

The aim of this paper is to study the steady states of the mathematical models with delay kernels which
describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of
infectious diseases it is important to predict whether the infection disappears or the pathogens persist.
The delay kernel is described by the memory function that reflects the influence of the past density of
pathogen in the blood and it is given by a nonnegative bounded and normated function k defined on
[0, ∞). By using the coefficient of the kernel k, as a bifurcation parameter, the models are found to
undergo a sequence of Hopf bifurcation. The direction and the stability criteria of bifurcation periodic
solutions are obtained by applying the normal form theory and the center manifold theorems. Some
numerical simulation examples for justifying the theoretical results are also given.
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1. Introduction

The purpose of this paper is to study the Hopf bifurcation of pathogen-immune dynamics in the steady states
of a mathematical model with delay kernel. Dynamical systems with delay kernel have been studied for
population dynamics and neural networks [3]. Various dynamical models modeling the pathogen-immune
interaction have been proposed and investigated [4, 5, 7–16].

We introduce a model which describes one of most known infectious diseases, namely malaria infection.
Our model is based on the model from [7]. The model, as it was created, without delay, has the feature
that the interior equilibrium is always asymptotically stable if it exists. For obtaining the natural behavior
which was observed experimentally, i.e. oscillatory behavior, it is needed to make some adjustments to
the model. One way is to introduce some extra terms into the equations for a better description of the
pathogens-immune system interaction or, other way is to introduce a delay. Our contribution to the model
lies in introduction of the delay kernel, which is a natural thing to do, according to the fact that biological
processes are not instantaneous.

System (1.1) without the last term in the third equation, which implies the effect of absorption of the
pathogens into uninfected cells, could be used for describing another well-known infectious disease, the
HIV infection, as was done in [4,9,10,16] or other infectious diseases as hepatitis B virus infection [13] or
hepatitis C virus infection [11].

In what follows, because our model deals with malaria infection, we will say some words about this
disease. Malaria ranks high on the list of world health problems by causing massive human and economic
loss. The parasite in this disease is called Plasmodium Falciparum and has a high virulence which can cause
even death. Plasmodium Falciparum is not the only one agent that cause malaria, there are another three,
but it is the most common and virulent one, so from now on we will refer to it as malaria agent. Malaria
has some important features that should be mentioned: first, the amount of variation in disease severity
observed in the field is remarkably high, second, the immunity is virtually never sufficient to prevent
infection and third, transmission intensity in the field is highly variable both temporally and geographically
[5].

More precisely, consider the following system:

ẋ(t) = a1 − a2x(t) − a3

t∫
−∞

x(s)z(s)k(t − s)ds

ẏ(t) = −a4y(t) + a3

t∫
−∞

x(s)z(s)k(t − s)ds

ż(t) = a4a5y(t) − a6

t∫
−∞

z(s)k(t − s)ds − a7

t∫
−∞

x(s)z(s)k(t − s)ds,

(1.1)

where ai , i = 1, . . . , 7 are positives constants and the delay kernel, k : [0, ∞) → [0, ∞), k is piecewise
continuous, is assumed to satisfy the following properties:

∞∫
0

k(s)ds = 1,

∞∫
0

sk(s)ds < ∞.
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It is also assumed that the system (1.1) is supplemented with initial conditions of the form:

x(0) = ϕ1(s), y(0) = y∗, z(s) = ϕ2(s), s ∈ (−∞, 0],
ϕ1, ϕ2 is bounded and continuous on [0, ∞).

The model contains three variables: the density of uninfected cells x, the density of infected cells y
and the density of pathogens in blood z. Uninfected cells are recruited at a constant rate a1 from the source

within the body, such as the bone marrow and have the natural life expectancy of
1

a1
days. Cells are infected

by contact with pathogens and turn to infected cells at rate a3

t∫
−∞

z(s)k(t − s)ds. Infected cells die at rate

a4. The death of the cells results in the release of a5 pathogens per an infected cell and these pathogens

have a life expectancy of
1

a6
. For a7 = 0 we obtain the model of HIV infection with delay kernel and for

a3 = a7 we obtain the model of malaria infection with delay kernel.
In what follows we will consider this infection. Other assumptions for model (1.1) are: pathogens either

die or successfully infect new cells; we are taking into account the absorption of pathogens into uninfected
cells; we will discuss only the dynamics of uninfected cells, infected cells and parasites (Plasmodium
Falciparum) in the blood of the hosts.

The number of cells implied in our model varies in the manner described below: in the absence of the
disease (malaria in our case), the number of uninfected cells (erythrocytes) is quite constant and is given
by the difference between the constant rate of production (a1) and the constant rate of death (a2). In the
presence of the disease the number of erythrocytes decreases because they are infected by malaria agent
(Plasmodium Falciparum). This action, i.e. infection, is represented in our model by the last term in the
right side of the first equation.

If we are moving to the second equation, describing the variation of the number of infected cells (y)
we can notice that the variation is given by the difference between the “production” rate given by the last
term from the first equation and the rate of destruction of these cells due to the completion of the cell cycle
of the parasite.

The third equation refers to the number of the pathogens in the blood of the hosts (in our case Plasmodium
Falciparum). In this case the “production rate” is proportional with the destruction rate of the infected
cells. Every infected cell who dies releases a5 parasites leading to the production rate a5a4y(t). To obtain
the number of pathogens in blood we have to subtract from the total number of the parasites produced, the
number of those that dies naturally (second term in the right side of the equation) and also the number of
those that disappear from the blood by infecting the erythrocytes (last term of the equation).

We consider that it is not useless to make some comments regarding the delay kernel. It is obvious that
the biological processes do not take place instantaneous and of course neither the interactions described
by this model make exception. So in every equation, each of them describing a biological process, we
will have a delay. In all three we will find the delay in the last term (right side), except the third equation
where we can find two terms with delay (the last two). The delay we can find in the last term of all three
equations rely on the interaction between the uninfected cells (x(t)) and the pathogens (z(t)). The process
of interaction between uninfected cells and pathogens needs time, because the pathogens have to cross the
cell membrane. For a smoother modeling we choose the type of delay as a kernel delay because in this
manner we can better describe the biological process which is a heterogeneous one. By heterogeneous
process, we are meaning that the infection, which take place all over the body, is not in the same phase in
every cell at a given moment in time: some cells are just infected, others are in the phase of multiplication
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of the pathogens, and other cells are in the final phase and start to release parasites in the blood. Having
this in mind, it is now natural to use an integral form to describe this process with delay, because as it is
known, the integral form, in a “raw” way of speaking is a mean of a function on a interval.

The delay kernel is a general form to describe a delay and to support this affirmation we will make
some further comments about delay kernel in what follows.

If the delay kernel has the form

k(s) = δ(s − τ), τ ≥ 0,

where τ is a parameter which denotes the effect of the past memories, then system (1.1) becomes:

ẋ(t) = a1 − a2x(t) − a3x(t − τ)z(t − τ)

ẏ(t) = −a4y(t) + a3x(t − τ)z(t − τ)

ż(t) = a4a5y(t) − a6z(t − τ) − a7x(t − τ)z(t − τ)

x(0) = ϕ1(s), y(0) = y∗, z(s) = ϕ2(s), s ∈ [−τ, 0].

(1.2)

For τ = 0 the system has been studied in [7] and has the following form:

ẋ(t) = a1 − a2x(t) − a3x(t)z(t)

ẏ(t) = −a4y(t) + a3x(t)z(t)

ż(t) = a4a5y(t) − a6z(t) − a7x(t)z(t)

x(0) = x∗, y(0) = y∗, z(s) = ϕ2(s), s ∈ [−τ, 0].
If the kernel k has the form

k(s) = qe−qs,

called weak kernel, where q is a parameter varying in (0, ∞) which denotes the decay rate of the effect of
the past memories, then system (1.1) becomes:

ẋ(t) = a1 − a2x(t) − a3x(t)u(t)

ẏ(t) = −a4y(t) + a3x(t)u(t)

ż(t) = a4a5y(t) − a6u(t) − a7x(t)u(t)

u̇(t) = q(x(t) − u(t))

x(0) = x∗, y(0) = y∗, z(s) = z∗, u(0) = z∗.

(1.3)

This paper is organized as follows: in Section 2, the local stability property and Hopf bifurcation of
models (2.3), (2.4) are discussed and some sufficient conditions for stability are derived. In Section 3,
model (3.1) containing the general kernel is further studied and both the direction and the stability of Hopf
bifurcation are analyzed by the normal form theory and the center manifold theorem and some criteria for
stability are derived. Then, we consider two cases: in the first case k is delta function and in the second
k = qe−qs . Numerical simulations will be shown, in order to justify the theoretical results. Finally, some
conclusions are drawn with further research directions in Section 5.

2. Local Stability Analysis and the Hopf Bifurcation

In this section, consider the local stability of the equilibrium solution of system (1.1). From the special
nature of the delay kernel (1.2) embedded in system (1.3), we found out that an equilibrium solution of
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(2.1) is given by the solution of the system:

a1 − a2x − a3xz = 0

a4y − a3xz = 0

a4a5y − a6z − a7xz = 0.

(2.1)

From (2.1) it results that if 0 ≤ a7 < a3a5, 0 < a2a6 < a1(a3a5 − a7), then system (2.1) has two

equilibria. The first one is X1 =
(

a1

a2
, 0, 0

)
and it represents the state in which the pathogens are absent.

The second is X2 = (x0, y0, z0), where

x0 = a6

a3a5 − a7
, y0 = a1(a3a5 − a7) − a2a6

a4(a3a5 − a7)
, z0 = a1(a3a5 − a7) − a2a6

a3a6
.

The equilibrium X2 lies in the interior of the first quadrant. Then we say that X2 is an interior equilibrium
and represents the state in which the pathogens are present.

In what follows, the equilibrium (x0, y0, z0) is transformed to the origin, so system (2.1) becomes:

u̇1(t) = −b1u1(t) − b2

0∫
−∞

k(−s)u3(t + s)ds

− b3

0∫
−∞

k(−s)u1(t + s)u3(t + s)ds

u̇2(t) = b4u1(t) − b5u2(t) + b2

0∫
−∞

k(−s)u3(t + s)ds

+ b3

0∫
−∞

k(−s)u1(t + s)u3(t + s)ds

u̇3(t) = −b6u1(t) + b7u2(t) − b8

0∫
−∞

k(−s)u3(t + s)ds

− b9

0∫
−∞

k(−s)u1(t + s)u3(t + s)ds,

(2.2)

where

b1 = a2 + a3z0, b2 = a3x0 b3 = a3, b4 = a3z0, b5 = a4,

b6 = a7x0, b7 = a4a5, b8 = a6 + a7x0, b9 = a7

and
u1(t) = x(t) − x0, u2(t) = y(t) − y0, u3(t) = z(t) − z0.

Rewrite system (2.2) in the following matrix form:

u̇(t) = Lu(t) +
0∫

−∞
F(s)u(t + s)ds + H(u(t)), (2.3)
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where
u(t) = (u1(t), u2(t), u3(t))

T ,

L =

 −b1 0 0

b4 −b5 0
−b6 b7 0


 , F (s) = k(−s)


 0 0 −b2

0 0 b2

0 0 −b8


 ,

H(u(t)) =




−b3

0∫
−∞

u1(t + s)u3(t + s)k(−s)ds

b3

0∫
−∞

u1(t + s)u3(t + s)k(−s)ds

−b9

0∫
−∞

u1(t + s)u3(t + s)k(−s)ds




.

(2.4)

The associated characteristic equation of the linearized system is given by:

λ3 + p2λ
2 + p1λ + (r2λ

2 + r1λ + r0)

0∫
−∞

k(−s)eλsds = 0, (2.5)

where

p2 = b1 + b5, p1 = b1b5, r2 = b8, r1 = b8(b1 + b5) − b2b6 − b2b7

r0 = b4b7 − b1b2b7 − b1b5b8 − b2b5b6.

It can be directly verified that the following two proposition take place.

Proposition 2.1. If k(s) = δ(s − τ), then

(i) The characteristic equation (2.5) is given by

λ3 + p2λ
2 + p1λ + (r2λ

2 + r1λ + r0)e
−λτ = 0; (2.6)

(ii) For τ = 0 the characteristic equation (2.6) is given by

λ3 + m2λ
2 + m1λ + m0 = 0,

where
m2 = p2 + r2, m1 = p1 + r1, m0 = r0;

(iii) If τ = 0, the equilibrium X2 is asymptotically stable if and only if

m2 > 0, m1 > 0, m0 > 0, m1m2 − m0 > 0;

(iv) For τ = τ0, given by

τ0 = 1

ω0
arctan

r1p2ω
3
0 − (ω3

0 − ω0p1)(r0 − r2ω
2
0)

p2ω
2
0(r0 − r2ω

2
0) + r1ω0(ω

3
0 − ω0p1)

,
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where ω0 is the positive root of the equation

x6 + n1x
4 + n2x

2 + n3 = 0,

with
n1 = p2

2 − 2p1 − r2
2 , n2 = p2

1 − r2
1 + 2r0r2, n3 = −r2

0 ,

there is a Hopf bifurcation.

Proposition 2.2. If k(s) = qe−qs , s > 0, q > 0, then

(i) The characteristic equation (2.5) is given by:

λ4 + (p2 + q)λ3 + (p1 + q(p2 + r2))λ
2 + q(p1 + r1)λ + r0q = 0;

(ii) The equilibrium X2 is asymptotically stable if and only if

D3(q) = ((p1 + r1)(p2 + r2) − r0)q
2 + ((p1 + r1)(p2(p2+

+ r2) − r1) − 2p2r0)q + p2(p1 − r0) > 0;

(iii) If there exists q0 > 0 so that D3(q0) = 0 and
dD3(q)

dq
|q=q0 �= 0, then a Hopf bifurcation occurs at

X2 as q passes through q0.

3. Stability of the Bifurcating Periodic Solutions

In this section, the stability of the bifurcating periodic solutions of system (1.1) with the kernel satisfying
(1.2) is studied. For convenience, in the study of the Hopf bifurcation problem, we consider the abstract
differential equation [1]:

u̇t = A(µ)ut + R(µ)ut ,

where

u = (u1, u2, u3)
T , ut (θ) = u(t + θ), θ ∈ (−∞, 0], u̇t (θ) = du(t + θ)

dt
, µ = a − a0.

The operators A and R are defined as:

A(µ)φ(θ) =




dφ(θ)

dθ
, θ ∈ (−∞, 0)

Lφ(0) +
0∫

−∞
F(s)φ(s)ds, θ = 0

R(µ)φ(θ) =



(0, 0, 0)T , θ ∈ (−∞, 0)

(−b3f1, b3f1, −b9f1)
T , θ = 0

where

f1 = −
0∫

−∞
k(−s)φ1(s)φ3(s)ds,
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with L, F defined in (2.4).
With respect to the parameter a0 we will study the Hopf bifurcation.
As in [2], [6], the bifurcating periodic solutions x(t, µ) of (1)are indexed by a small parameter ε ≥ 0.

A solution x(t, µ(ε)) has amplitude O(ε), period T (ε) and nonzero Floquet exponent β(ε) with β(0) = 0.
Under the present assumptions, µ, T and β have expansions:

µ = µ2ε
2 + µ4ε

4 + · · ·
T = 2π

ω
(1 + T2ε

2 + T4ε
4 + · · · )

β = β2ε
2 + β4ε

4 + · · · .

The sign of µ2 determines the direction of bifurcation, while β2 determines the stability of x(t, µ(ε)):
asymptotically orbitally stable if β2 < 0, but unstable if β2 > 0.

Next, the question of how to derive the coefficients in these expansions is addressed. For the applications
from this paper, only µ2, τ2 and β2 are computed here.

We define the adjoint operator A∗ of A as:

A∗ψ(s) =




−dψ(s)

ds
, s ∈ (0, ∞)

LT ψ(0) +
0∫

−∞
FT (s)ψ(−s)ds, s = 0,

where LT and FT are transposes of matrices L and F respectively.
Note that the operator A depends on the system parameter a. According to Propositions 2.1, 2.2, Hopf

bifurcation occurs when a passes through a0. Let µ = a −a0. Then, Hopf bifurcation occurs when µ = 0.
It is therefore reasonable to assume that ϕ, ψ : [0, ∞) → C

3. Define the bilinear form:

< φ, ψ >= ψ(0)
T
φ(0) −

0∫
θ=−∞

θ∫
ξ=0

ψ
T
(ξ − θ)F (θ)φ(ξ)dξdθ.

To determine the Poincare normal form of operator A, we need to calculate the eigenvector φ of A associated
with eigenvalue λ1 = iω0 and the eigenvector φ∗ of A∗ associated with eigenvalue λ2 = λ1. We can easily
obtain:

Proposition 3.1.

(i) The eigenvector φ of A associated with eigenvalue λ1 = iω0 is given by φ(θ) = veλ1θ , θ ∈ (−∞, 0],
where v = (v1, v2, v3)

T and

v1 = −b2(λ1 + b5)k
1, v2 = b2(λ1 + b1 − b4)k

1, v3 = (λ1 + b1)(λ1 + b5), (3.1)

where

k1 =
0∫

−∞
k(−s)eλ1sds;
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(ii) The eigenvector φ∗ of A∗ associated with eigenvalue λ2 = λ1 is given by φ∗(s) = weλ2s , s ∈ [0, ∞),
where w = (w1, w2, w3)

T and

w1 = b4b7 − b6(λ2 + b5)

b7(λ2 + b1)η
, w2 = 1

η
, w3 = λ2 + b5

b7η

η = b4b7 − b6(λ2 + b5)

b7(λ2 + b1)
v1 + v2 +

(
λ2 + b5

b7
−

(
−b2

b4b7 − b6(λ2 + b5)

b7(λ2 + b1)

+b2 − b8
λ2 + b5

b7

)
k(−1)

)
v3,

(3.2)

where

k(−1) =
0∫

−∞
k(−s)eλ2sds;

(iii) We have:
< φ∗, φ >= 1, < φ∗, φ >=< φ

∗
, φ >= 0, < φ

∗
, φ >= 1.

Next, we construct the coordinates of the center manifold �0 at µ = 0 (a = a0) [2], [6]. Let

z(t) =< φ∗, xt >

w(t, θ) = xt − 2Re{z(t)φ(θ)}.
On the center manifold �0, w(t, θ) = w(z(t), z(t), θ), where

w(z, z, θ) = w20(θ)
z2

2
+ w11(θ)zz + w02(θ)

z2

2
+ · · · ,

z and z are the local coordinates of the center manifold �0 in the direction of φ and φ∗, respectively.
For the solution xt ∈ �0 of (1.1), notice that for µ = 0 we have:

ż(t) = λ1z(t)+ < φ∗, R(ω + 2Re{z(t)φ(θ)}) >

Rewrite this as
ż(t) = λ1z(t) + g(z, z),

with
g(z, z) = φ∗(0)

T
R(w(z, z, 0) + 2Re{z(t)φ(0)}).

Further, expand the function g(z, z) on the center manifold �0 in powers of z and z:

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ g21

z2z

2
+ · · ·

Proposition 3.2. For the system (1.1) we have:

(i)

g20 = −2b3v1v3

(
w1 − w2 + b9

b3
w3

)
k(2)

g11 = −b3(v1v3 + v1v3)

(
w1 − w2 + b9

b3
w3

)

g02 = −2b3v1v3

(
w1 − w2 + b9

b3
w3

)
k(−2);

(3.3)
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(ii)

w20(θ) = g20

λ1
veλ1θ − g20

3λ1
veλ2θ + E1e

2λ1θ

w11(θ) = g11

λ1
veλ1θ − g11

λ1
veλ2θ + E2,

where E1, E2 are the solutions of the following system:

(A + k(2)B − 2λ1I )E1 = b3v1v3k
(2)(1, −1, −b9/b

2
3)

T

(A + B)E2 = b3(v1v3 + v1v3)(1, −1, −b9/b
2
3)

T

k(2) =
0∫

−∞
k(−s)e2λ1sds, k(−2) =

0∫
−∞

k(−s)e2λ2sds;

(iii)

g21 = −2b3

(
w1 − w2 + b9

b3
w3

) 
v1

0∫
−∞

k(−s)w311(s)e
λ1sds

+ 1

2
v1

0∫
−∞

k(−s)w320(s)e
λ2sds + v3

0∫
−∞

k(−s)w111(s)e
λ1sds

+v3

0∫
−∞

k(−s)w120(s)e
λ2sds


 ,

(3.4)

with w20(θ)=(w120(θ), w220(θ), w320(θ))T and w11(θ)=(w111(θ), w211(θ) w311(θ))T .

Therefore, we will compute the following parameters:

c1(0) = i

2ω0

(
g20g11 − 2|g11|2 − 1

3
|g02|2

)
+ g21

2

µ2 = − Re c1(0)

Re λ′(a0)

T2 = −Im c1(0) + µ2Im λ′(a0)

ω0

β2 = 2Re c1(0)

T = 2π

ω0
(1 + T2ε

2 + O(ε4)), ε2 = a − a0

µ
+ O(a − a0)

2.

We have:

Theorem 3.3. The sign of µ2 determines the directions of the Hopf bifurcations: if µ2 > 0(< 0) the
Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solutions exist for a > a0(< a0).
The sign of β2 determines the stability of the bifurcation periodic solutions. They are both asymptotically
orbitally stable if β2 < 0, but unstable if β2 > 0. T2 determines the period of the bifurcating periodic
solutions: the period increases (decreases) if T2 > 0(< 0).
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If k(s) = δ(s − τ), τ ≥ 0, then k(2) = e2λ1τ and a0 = τ0, where τ0 is given by Proposition 2.1. In this
case

λ′(τ0) = dλ

dτ
|τ=τ0,λ=λ1

= λ1(r2λ
2
1 + r1λ1 + r0)

(3λ2
1 + 2p2λ1 + p1)eλ1τ0 + 2r2λ1 + r1 − (r2λ

2
1 + r1λ1 + r0)τ0

.

If k(s) = qe−qs, s > 0, q > 0, then k(2) = q

2λ1 + q
, k(−2) = q

2λ2 + q
and a0 = q0, where q0 satisfies

D3(q0) = 0 (D3(q0) from Proposition 2.2), λ1 = iω0, λ2 = λ1 and ω0 is given by

ω2
0 = q0(p1 + r1)

p2 + q0
.

In this case

λ′(q0) = dλ

dq
|q=q0,λ=λ1

= − λ3
1 + (p2 + r2)λ

2
1 + (p1 + r1)λ1 + r0

4λ3
1 + 3(p2 + q0)λ

2
1 + 2(p1 + q0(p2 + r2))λ1 + q0(p1 + r1)

.

From (3.1), (3.2), (3.3), (3.4), (3.5) it results:

Proposition 3.4. If k(s) = δ(s − τ), τ ≥ 0, then for system (4) we have:

v1 = −b2(λ1 + b5)e
λ1τ , v2 = b2(λ1 + b1 − b4)e

λ1τ , v3 = (λ1 + b1)(λ1 + b5),

w1 = b4b7 − b6(λ2 + b5)

b7(λ2 + b1)η
, w2 = 1

η
, w3 = λ2 + b5

b7η

η = b4b7 − b6(λ2 + b5)

b7(λ2 + b1)
v1 + v2 +

(
λ2 + b5

b7
−

(
−b2

b4b7 − b6(λ2 + b5)

b7(λ2 + b1)

+b2 − b8
λ2 + b5

b7

)
eλ2τ

)
v3

g20 = −2b3v1v3

(
w1 − w2 + b9

b3
w3

)
e2λ1τ

g11 = −b3(v1v3 + v1v3)

(
w1 − w2 + b9

b3
w3

)

g02 = −2b3v1v3

(
w1 − w2 + b9

b3
w3

)
e2λ2τ

g21 = −2b3

(
w1 − w2 + b9

b3
w3

) [
v1

(
g11v3

λ1
e2λ2τ − g11v3

λ1
+ E32e

λ1τ

)

+ 1

2
v1

(
g20v3

λ1
− g20v3

3λ1
e2λ2τ + E31e

λ1τ

)

+ v3

(
g11e

2λ2τ v1

λ1
− g11

λ1
v1 + E12e

λ1τ

)
+ 1

2
v3

(
g20v1

λ1
− g20v1

3λ1
e2λ2τ + E11e

λ1τ

)]
,
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where E1 = (E11, E21, E31)
T , E2 = (E12, E22, E32)

T satisfy the systems:

(A + e2λ1τB − 2λ1I )E1 = b3v1v3e
2λ1τ

(
1, −1, −b9

b2
3

)T

(A + B)E2 = b3(v1v3 + v1v3)

(
1, −1, −b9

b2
3

)T

.

Using (3.2), (3.3), (3.4), (3.5) we have:

Proposition 3.5. If k(s) = qe−qs , s > 0, q > 0, then for system (5) we have:

v1 = −b2(λ1 + b5)q0

λ1 + q0
, v2 = b2(λ1 + b1 − b4)q0

λ1 + q0
, v3 = (λ1 + b1)(λ1 + b5),

w1 = b4b7 − b6(λ2 + b5)

b7(λ2 + b1)η
, w2 = 1

η
, w3 = λ2 + b5

b7η

η = b4b7 − b6(λ2 + b5)

b7(λ2 + b1)
v1 + v2 +

(
λ2 + b5

b7
−

(
−b2

b4b7 − b6(λ2 + b5)

b7(λ2 + b1)

+b2 − b8
λ2 + b5

b7

)
q0

λ2 + q0

)
v3

g20 = −2b3v1v3

(
w1 − w2 + b9

b3
w3

)
q0

2λ1 + q0

g11 = −b3(v1v3 + v1v3)

(
w1 − w2 + b9

b3
w3

)

g02 = −2b3v1v3

(
w1 − w2 + b9

b3
w3

)
q0

2λ2 + q0

g21 = −2b3

(
w1 − w2 + b9

b3
w3

) [
v1

(
g11q0

λ1(2λ1 + q0)
v3 − g11

λ1
v3 + E32

q0

λ1 + q0

)

+ 1

2
v1

(
g20

λ1
v3 − g20q0

3λ1(2λ2 + q0)
v3 + E31

q0

λ1 + q0

)

+ v3

(
g11

λ1
v1

q0

2λ1 + q0
− g11

λ1
v1 + E12

q0

λ1 + q0

)
+ 1

2
v3

(
g20v1

λ1
− g11v1

3λ1

q0

2λ2 + q0

+E11
q0

λ1 + q0

)]
,

where E1 = (E11, E21, E31)
T , E2 = (E12, E22, E32)

T satisfy the systems:

(
A + q0

2λ1 + q0
B − 2λ1I

)
E1 = b3v1v3

q0

2λ1 + q0

(
1, −1, −b9

b2
3

)T

(A + B)E2 = b3(v1v3 + v1v3)

(
1, −1, −b9

b2
3

)T

.
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4. Numerical Simulations

For numerical simulations, we use Maple 9.5. We consider system (3) with a1 = 2, a2 = 0.02, a3 = 0.5,
a4 = 2, a5 = 1.5, a6 = 0, 03, a7 = 0.5. The equilibrium point is: x0 = 0.12, y0 = 0.99, z0 = 33.29.

In the first case k(s) = δ(s − τ), we obtain: τ0 = 0.81, ω0 = 1.14, g20 = −2.41 + 4.73i, g11 =
3.43 + 0.11i, g02 = −2.38 − 4.74i, g21 = −170.67 + 18.30i, c1(0) = −101.55 − 32.18i, µ2 = 223.34,
β2 = −203.11, T2 = 129.39.

Because µ2 > 0, the Hopf bifurcation is supercritical for τ > τ0; as β2 < 0 the bifurcating periodic
solution is asymptotically orbitally stable; as T2 > 0 the period increases. We have the following figures:
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In the second case k(s) = qe−qs , we obtain: q0 = 0.18, ω0 = 0.18, g20 = −0.23 − 0.95i, g11 = 0.45,
g02 = −0.23 + 0.85i, g21 = 1.72 + 0.35i, c1(0) = 0.86 + 0.17i, µ2 = 7.90, β2 = 1.72, T2 = −143.55.

Because µ2 > 0, the Hopf bifurcation is supercritical for q > q0; as β2 > 0 the bifurcating periodic
solution is asymptotically orbitally unstable; as T2 < 0 the period decreases. We have the following figures:
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Fig. 7 Represents the concentration of the Fig. 8 The concentration of the
uninfected cells (t, x(t)). infected cells (t, y(t)).
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5. Conclusion

In this paper we introduce a model with delay kernel which describes infectious diseases and malaria
infection, in particular. By using the average time delay as a parameter, it has been proved that the Hopf
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bifurcation occurs when this parameter passes through a critical value. The biological meaning of this
mathematical property of the model implies that the infection does not disappear, the immune system
persists and the disease(in our case malaria) varies periodically. This finding is biologically consistent, in
reality malaria does vary periodically. We also have to emphasized that the introduction of the delay in the
model plays a key role, without it the interior equilibrium of the system is stable as it was shown in [7]. In
the subsequent works we intend to take into account the immune response to pathogens and the effect of
involvement of the uninfected cells in the immune response to pathogens.
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