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Abstract

Simple epidemiological models with information dependent vaccination functions can generate sus-
tained oscillations via Hopf bifurcation of the endemic state. The onset of these oscillations depend
on the shape of the vaccination function. A “global” approach is used to characterise the instability
condition and identify classes of functions that always lead to stability/instability. The analysis allows
the identification of an analytically determined “threshold vaccination function” having a simple in-
terpretation: coverage functions lying always above the threshold always lead to oscillations, whereas
coverage functions always below never lead to instability.

AMS Subject Classification:
Keywords: SIR epidemiological models, information-dependent vaccination, stability, Hopf bifurca-
tions.

1. Introduction and Main Results

A critical factor in determining the success of a vaccination programme is the “human element”, i.e. the
degree of social adhesion by individuals to the proposed vaccination. The history of vaccination documents
indeed that the path toward increasing degrees of diseases control, for instance in the case of smallpox, has
not been “linear” but rather constellated by episodes of coverage upswing arising from the tension between
public health targets and individual freedom, i.e. between compulsory vaccination and conscientious or
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philosophical exemption [11]. In very recent times the dramatic decline in coverage of the Measles-
Mumps-Rubella vaccine (MMR) in the UK (CDR 2004) has been explained by the reaction of the public
to the adverse publicity about possible links between the vaccine, autism, and Crohn’s disease [15], similar
to what happened few years before to the HBV coverage due to the “Thimerosal” case [6].

These phenomena confirm that the public is not a passive actor of the vaccination process but that rather
can feedback on it with far reaching implications. This fact is strongly emphasized by the vaccination
success in controlling diseases, which encourages forms of “rational exemption”. The argument goes as
follows. Consider the example of measles control. In several countries the increasing measles coverage
within the WHO Plan for measles eradication has driven circulation of the disease to minimal levels.
As the incidence of the disease continues to decline thanks to vaccination, families become increasingly
concerned with the risks associated with vaccines [14]. If families start to perceive that the chance of
acquiring infection for their children is lower compared to the risk of experiencing damages from the
vaccine, they could believe it “rational” not to vaccinate their children. This “rationality” is of course
myopic. Moreover, it is an example of “free riding” [12], as by the way all types of exemptions [11].

In presence of a widespread adoption of rational exemption at least a part of families relate their decision
to vaccinate to the available information on the state of the disease, vaccinating more, and promptly, when
the “perceived” risk from the disease is high, and little (and later) otherwise.

From the theoretical point of view an important question deals with the implications of individuals’
vaccination choice for the dynamics and control of vaccine preventable diseases. This issue has been
considered in [10] and [2]. Though starting from a different background, i.e. game theory in order to fully
embed individuals’ behaviour [10], rather than a phenomenological function relating the response in terms
of overall vaccination coverage to some information function describing the changes in epidemiological
conditions over time [2], these papers come to the same formulation of a Susceptible-Infective-Removed
model with vaccination in which the vaccination coverage is related to some function of the state of the
disease.

As main dynamic result both studies have shown that the presence of delayed information-dependent
vaccination, i.e. individuals who adapt their vaccinating behaviour to changing epidemiological conditions
using not only the current but also the past available information on the state of the disease, can destabilise the
endemic state of the SIR model with vaccination, leading to steady oscillations through Hopf bifurcations.
In addition it was shown in [2] that these oscillations have a period which can be significantly longer
compared to the predictions of the basic SIR model, a fact which must be carefully taken into account
when designing control programmes.

It is therefore interesting to characterise which shapes of the function describing the reaction in individ-
ual’s propensity to vaccinate to changing epidemiological conditions are more/less favourable to instability.
The standard tools, i.e. local stability analysis, are not very informative from this point of view in that
are highly dependent on the specific functional form chosen for the vaccination function at the endemic
state. For this reason in this paper we resort to a different approach having a “global”, rather than local,
nature, i.e. we look for the set of coverage functions that, whatever is the value of endemic state, assure
the instability or the stability of the endemic equilibrium. In other words our idea is to find a general
criterion capable to establish a-priori if a given vaccination function is a potential generator of instability
and oscillations. The only manner to do this is to reformulate the instability condition in a way that allows
to evaluate the “pure” role of the vaccination function on stability, i.e. its role independently on the other
parameters of the system. This is clearly not possible by working on the local stability condition where by
definition the vaccination function and the remaining system parameters are complexly entangled. This
dependency can however be broken down by resorting to a global approach. Our approach leads to a
differential inequality. The study of such inequality allows the identification of an analytically determined
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“threshold function” having a simple interpretation: coverage functions lying always above the threshold
function always lead to oscillations, whereas coverage functions lying always below the threshold function
never lead to instability. The approach is illustrated by some examples using classical functional forms for
the vaccination function. The examples show that the approach is quite promising in that it allows to well
discriminate between the classes of functions that in concrete cases lead to stability or instability.

Finally, we would stress that stability problems similar those we studied here may arise in mathematical
epidemiology whenever an epidemic phenomenon is modelled by means of a family of models containing
one (or more) parameter expressed as a partially unspecified function f of the state of the system, for which
only some qualitative properties are known, such as continuity, monotonicity etc. As a consequence, the
determination of equilibrium points depends on the shape of this function and the conditions guaranteeing
their stability also involve the derivatives of f. For example, in [5] a family of models describing the spread
of diseases in which the latency time depends on the infective load was proposed. In such model, the latent
period is loosely defined as a decreasing function of I and a condition for the stability of the endemic
state is derived, which is conceptually similar to the one we studied here, and thus might be analysed by
following the methodology proposed here.

The paper is organised as follows. In section 2 we present the model and report its main results. In
section 3 we study the condition for the Hopf bifurcation of the endemic state via our “global” approach.
llustrative examples are reported in section 4. Concluding remarks follow.

2. The Model and its Equilibria

In [2] the following family of SIR models for a non-fatal disease in a constant homogeneously mixing
population, with information-dependent vaccination coverage was introduced:

) XY
X =MN(1—p(M))—MX—ﬁW
. XY
Y :ﬂW—(u—l—v)Y 2.1
7' =vY —uZ
V= uNp(M) — Vv

Variables X, Y, Z, V are functions of time denoting respectively the number of susceptibles, infectious (and
infectives), immune and vaccinated individuals at time . Moreover, u € R, denotes the birth and death
rate, which are assumed identical, v € R the rate of recovery from infection, B € R, the transmission
rate,and N = X 4+ Y 4+ Z 4 V is the total population, constant over time. Thus it is useful to introduce
the epidemiological fractions, i.e. the variables

S=X/N, I=Y/N, R=Z/N, U=V/N. (2.2)
The information variable M, summarizing information about present and past values of state variables, is

expressed by an exponentially fading delaying memory (see [8]) of the form

t
M) = f kI (t)ae™"dr  a,keR,. (2.3)

Note that by (2.3) it follows that M is bounded, taking all the values of an interval Z = [M (0) , M**P),
where M®P = sup M (7).
t
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The coverage function p denotes, assuming a 100% effective vaccine, the actual vaccination coverage at
birth in dependence on M defined as:

p(M) = po+ p1(M) O<po<1, Mel (24)

where the fixed component py captures the presence of a fraction of the population that vaccinates its
children whatever be the state of publicly available information M. It seems reasonable to introduce the
following assumptions (discussed in [2]):

Al) 0<p (M) <1— poforall M € T, with pi* = p,(M*™);
A2)  pi(0) =0;

A3) p1 is continuous and differentiable, except, in some cases, at a finite number of points, with
p (M) =0.

Briefly our assumptions (3)—(4) state that, while taking their decision to vaccinate or not their children,
individuals use current and past information on a linear function of the standardised prevalence of infection.
Such a function could represent for instance the incidence of serious cases of the diseases (but many other
forms can be used, as discussed in [2]).

Combining (2.1), (2.2) and (2.3), our model is:

S"=u(l — po— p1(M)) — uS — BSI
I'=1(BS—(u+v)) (2.5)
M = a(kl — M)

where we have discarded variables R and U because their dynamics follow trivially from the dynamics of
S, I and M. System (2.5) always admits the disease-free equilibrium (DFE)

DFE = (1 — py, 0,0). (2.6)

Under condition (1 — pg)Ry < 1, where Ry = 8/ (u + v) denotes the Basic Reproduction Number of the
Disease, the D FE is globally asymptotically stable (GAS) (see [2]).
Under condition

(1 = po) Ro > 1 2.7

the unique endemic equilibrium EE = (S,, 1., M,) exists for (2.5), where

_/L+U_1

Se =—; M, =kl, (2.8)
B Ry
and /, is implicitly defined as the unique solution of:
1 w—+v
l—R—— I = po+ pi(kI). 2.9)
0

Remark 2.1. Note that, under the assumption (2.7), by (2.5) and (2.9) it follows that
121, & S(S.DZ0.
The local stability of E E depends on the delay parameter a defined in (2.3) via the positivity of the function

f(a) = Bya*> + Bia + By aecR,
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where
By=Bl+u (2.10)
By = (Bl + n)* — BLukp|(M,) (2.11)
Bo = Bl (Bl + w) (v + ) (2.12)

The following proposition (see [2]) states our main results on stability.

Proposition 2.2. If and only if
(Bl + w)* — Blepkp' (k1) +2 (BI + 1) v/ BL.(v + 1) <0 (2.13)

there exist two values a, a, with 0 < a; < a, for the parameter a such that E E is unstable fora € (a;, a»),
whereas it is LAS for a ¢ [a;, a;]. At the points a; and a, Hopf bifurcations occur.

3. A Global Bifurcation Threshold Function

The condition (2.13) shows that in order to have instability and oscillations it is required that the steepness of
the reaction function p; at the endemic equilibrium exceeds a critical threshold suggesting that instability
requires a violent (and delayed) reaction by individuals in terms of vaccination coverage to changing
epidemiological conditions. Though this interpretation is epidemiologically appealing, it does not need
to be correct. Indeed, the quantity pj (kl.) appearing in condition (2.13) depends on the level of the
infective fraction at the equilibrium equilibrium /., which in turn depends on the shape of the p; function
through equation (2.9). In this section we attempt at circumventing this difficulty by looking for a suitable
reformulation of condition (2.13) having a twofold purpose, i.e. first to also incorporate the role played
on stability by the p; function, and second to remove the dependency of p; and its derivative on system
parameters. This dependency arises as a consequence of the fact that p; and p| are evaluated at kI, in
the standard local stability analysis. This reformulation leads (see (3.5)) to a “global” version of (2.13)
in which the values p; (kI,) and pj (kI,) are replaced by the functions p; (x) and p] (x) where x takes
values in the range of M. From a technical point of view this yields a differential inequality in the
quantity g = 1 — po — p1. The solution to such inequality yields a “threshold” function ¢ having a clear
interpretation: every vaccination function p; always lying below ¢, i.e. such that p; (x) < ¢ (x) for all
ammissibile values of x , will surely lead to stability, i.e. it will never fulfill the condition (2.13), whereas
every reaction function p; always lying above ¢, will surely lead to instability, i.e. it will always fulfill
(2.13). From am epidemiological standpoint this allows to classify the possible forms of the information-
dependent vaccination function p; by separating those functional forms always allowing (other things being
equal, i.e. given the remaining epidemiological parameters) the local stability of the endemic state from
those always leading to instability and steady oscillations about the endemic state. It is to be noticed that
this approach only provides a partial ordering between vaccination function. This means that the method
is silent for all those vaccination functions that intersect the threshold function ¢ in its admissibility set.

In the remaining part of this section we develop our approach. First we derive the abovementioned
differential inequality (see (3.5)). Next we solve it by determining the threshold function ¢ in closed
form. Finally we demonstrate some properties of the threshold function ¢ which will prove useful for
the subsequent applications. In the subsequent section we illustrate some concrete applications of our
approach by comparing its predictions in terms of stability and bifurcation of the endemic state with the
results from the standard “local” analysis (i.e. (2.13)) reported in [2].

Since we will focus on the stability/instability condition of the endemic equilibrium we will always
work under assumption (2.7), which is necessary and sufficient to its existence.
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We start our analysis by explicitly including in the stability/instability condition (2.13) the role of the
function p. To this aim we note that I, can be implicitly expressed in (2.9) in terms of the value that the
coverage function p takes at the equilibrium by

Bl = (1 - pkl) — Ry") Rop - 3.1)
The last relation implies the following (necessary) condition for the existence of I,:
1— p(kl,) > Ry

Setting for convenience
gx)=1-px (3.2)

e=2y14+v/n

using (3.1) and (3.2), we can rewrite (2.13) as

and

R3q® (kI,) + (Rog (k1,) — 1) kq' (k1) + & Rog (kI.) /Rog (k1) — 1 < 0. (3.3)

Since g (k1.) > Ry ! the condition (3.3) is equivalent to

Rogq (k1.
g (Kl < — ;’,fl() _)1) = (Rog (k1) + y/Rog (k1) = 1). (3:4)

The inequality (3.4) is still “local”, as (2.13), and hence only a direct knolewdge of p and consequently of
1, allows to draw conclusions on the stability of the endemic state.
Starting from (3.4) our idea is to look for a more restrictive condition that does not depend on the equilibrium
value of 1, i.e. we look for the set of coverage functions that whatever is the value of I, assure the instability
or the stability of EE.

Formally, we look for solutions of the differential inequality

Rod 0 (Roa (x) + ev/Rog @) = 1) (3.5)

¢ 0 <t

under condition
Rog (x) > 1. 3.6)

Remark 3.1. The condition (3.6) is less restrictive that it may seem: it means, given that p is an increasing
function, that we control the shape of ¢, i.e. the manner in which it governs the onset of instability, only
in the interval where 1 — p (x.) — R, Iis strictly positive. Since the endemic level k1, necessarily belongs
to this interval our analysis includes all cases that are of practical interest for the analysis of local stability.

We summarise our results by the following:

Proposition 3.2. The differential inequality (3.5) with the restriction (3.6) has a unique upper solution
¥, i.e. a unique function such that any other solution g to (3.5)-(3.6) fullfills g(x) < ¥ (x). To the upper
solution it corresponds a unique and epidemiologically meaningful threshold function ¢ = 1 — pg — ¥
having the following feature: every vaccination function p; always lying below ¢, i.e. such that p; (x) <
@ (x) for all ammissibile values of x , will surely lead to stability, i.e. it will never fulfill the condition
(2.13), whereas every reaction function p; always lying above ¢, will surely lead to instability,i.e. it will
always fulfill (2.13).
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We divide the proof in several steps.

To solve (3.5), we look for the solution ¥ : J — [Ry, 1 — pg), where J is an interval in R, of the Cauchy
problem

, Rog
=————"——(Rog+ey/Rog —1
q (Roq—l)k< 0qg T &y Koq ) 37

q0)=1-po

By the comparison result for ODEs (see [4]) we conclude that all the solutions of (3.5) are functions g :
J — [Ro, 1 — po) such that

g(x) =y (x) Vx € J.

The Cauchy problem (3.7) has a solution (see the Appendix) which can be expressed in implicit form in
terms of the function¢ =1 — pg — ¥:

X = 28—kR01 (arctan QO — R0¢ (_x) — arctan @) +

—kR;"In (2 Q0 — Rop ) + 5)”" < Qo — Rog (1) + zs—l)l‘”
’ 200 +¢ V0o +2&1

(3.8)

where we have set for simplicity (note that e — & = 4 (e +37

—~ R g2 —2
Qo=Ro(1—po)—1; T=+ve*—4 Et=e+e n= =

Equation (3.8) defines the required threshold function ¢ only implicitly. This does not make its proper-
ties immediately evident. Two aspects are worth being investigated. First, in order that ¢ represents a
meaningful threshold function separating vaccination functions always leading to stability of the endemic
state from those always leading to instability, it is necessary to demonstrate that the equilibrium x, = k/,
belongs to the domain of ¢ for every epidemiologically meaningful parameter values. Moreover, given
that the stability/instability of the endemic state depends on the slope of the vaccination function, we need
information on the slope of ¢. The following Proposition provides the answers to these questions.

Proposition 3.3. The function ¢ is:

1. defined on [0, xpna.x), Where

(3.9

2 SOy +2671)"!
Xmax = KRy (—— arctan / Qg — 1n21*n§2n( Qo +2¢7")
&

(200 + )"

and for all biologically meaningful parameters with (1 — pg) Ry > 1 the equilibrium value x, = kI,
belongs to [0, Xmax);
2. strictly increasing, with

i "(x) > ——. 3.10
el ¥ =7 o
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Proof. Considering in (3.8) x as a function of y = ¢ (x), we obtain the first part of 1.:

2 (@H?I)H)
(200 + )"

2
lim x(y) = kRO_l ——arctan/ Qp — In 217”5
y—=>(1=po—Se)~ &

The second conclusion follows by Remark 2.1 observing that

lim § (Se, E) _ P

X —> Xmax k kR()
Since ¥ solves (3.7) and ¢’ = —v" we deduce that ¢ is strictly increasing. Furthermore
(1= po)* R} & (1 — po) Ro

"(0) =
PO = R == Dk k RO —py =T

and lim ¢’ (x) = +o0. To study the convexity of ¢ it is sufficient to remind that ¢ is convex if and only

X —> Xmax

if ¢ is concave and by (3.7) to deduce

_ Ro¥' (Roy —2) <2Rolﬁ + e Ro¥ — 1)

V= k 2 (Royr — 1)2

Since ¥ < 0, we have
Y20 & Ry —-220 <& Ry(1—py)—22¢.

We conclude that:
if 1 < (1 — po) Ry <2, then ¢ is strictly convex for all x € [0, xy.x) and

min )¢/ (x)=¢(0).

x€[0,Xmax

If (1 — pg) Ry > 2, by ¢ (0) = 0 and the strictly monotonicity of ¢, there exists a unique x* € (0, Xpax)
such that ¢ is strictly concave on [0, x*] and strictly convex on [x*, X.x) and, by ¢ (x*) =1—po—2R; !
we obtain

- 2(2+¢)
min ¢ (x) =¢' (x*) = ——.
x€[0,xmax) ¢ (X) ¢ (x ) k
Finally, since for any value of the parameters (with 1 — py — Ry I'>0)
22 +¢)
k

the validity of (3.10) follows. |

¢ (0) >

An example of ¢ is illustrated in Figure 1, where it is plotted by using the following parameter values
roughly mimicking measles in developed countries: mean duration of the disease v=' = 1 week, life

expectancy of the host ™"

= 75 years, basic reproduction number R, = 10. Moreover we took k = 1,
and baseline vaccination py = 0.75. We shall use these values in the next examples and figures.

The result obtained by solving the differential inequality (3.5) have a nice interpretation in terms of the
graph of the ¢ function. The function ¢ plays the role of a stability “threshold line”. In fact reaction functions
p1 (obeying assumptions A1)-A3)) whose graph lie below the graph of ¢ for all x € [0, xy,.x) represent

vaccination behaviours that lead to the stability of endemic state. On the other hand, coverage functions
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Figure 1: Graph of ¢ fork = 1, Ry = 10, pp = 0.75, v = 7 'xdays™!, u = (365 -75)"! xdays~".

whose graphs lie above ¢ for any admissible x will lead, for properly chosen parameter constellations, to
instability and oscillations.

The shape of the threshold function ¢ obviously depends on the values of the system parameters appearing
in the “global” stability condition (3.5) Figure 2 shows the sensitivity of the threshold function to changes
in the basic reproduction number Ry.

A further aspect concerns the difficulty to analitically compare a coverage function with ¢ since this
last is only implicitly defined. With regard to this, we note that (3.10) allows us to state a much simpler
stability test: given any reaction function py, if

pr(x) < @ Vx (3.11)
then p; (x) < ¢ (x) for all x € (0, Xpax)-
Note that unfortunately it does not appear to be possible to find an instability test of simple application as
(3.11).

4. Examples

The following examples based on classic functional forms of p; illustrate all the aspects of the previous
discussion.

Example 4.1. (The piece-wise linear case) A useful, though not fully realistic, functional form is
pi(x) = min{cx, 1 — po} xe€Z, ceR,.

Since p} (x) = ¢ forall x € [0, (1 — po) ¢ and ¢ (x) < 1 — po, by (3.10) to assure p; (x) < ¢ (x) for
all x € [0, xmay) 1s sufficient that
212+¢)

p @.1)

c <
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Figure 2: Sensitivity analysis of ¢ with respect to R in the cases Ry = 20 (continue line), Ry = 10 (dashed
line), Ry = 8 (dotted line) and Ry = 6 (squares).

For example, with the above values of the parameters, we have that it must be 0 < ¢ < ¢* where
¢* >~ 254.175. This is illustrated in Figure 3, where we have plotted both ¢ and p, for ¢ = 200 < ¢* and
¢ =350 > c*.

The previous results are consistent with the “local” investigation of the bifurcation condition, which is
illustrated in Figure 4 reporting the shape of the function f that determines stability, as a function of the
delay parameter a, for various values of c. Figure 4 shows that stability is lost for values of ¢ around 257,
which are lower estimated by our global condition.

This example also shows the difficulty to state a sufficient condition of instability in the same spirit of
(4.1). Any function p) intersecting ¢ represents an ambiguous case from our “global” perspective; Figure
5 illustrates this circumstance: since p does not always lie below (above) the threshold function ¢ , our
approach does not supply useful information. In this case the stability can be detected by the “local” but
conclusive condition (2.13), but since p is not comparable with ¢ no conclusions can be drawn from our
analysis.

Example 4.2. (The Michaelis-Menten-Monod case) A more biologically founded functional form is the
Michaelis-Menten-Monod function (see [9]), given by

Cx

= C,D e R,.
Pi(x) Dr+1 +
The previous function is concave with C = p/(0). This implies:
Pl(x) =< Cx Vx € [0’ xmax)~
By the linear case it follows that, if
212
C < ﬂ, VD e RJ’_

k
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Figure 3: The piece-wise linear case: (a) stability case (¢ > p;)for pg = 0.75; Ry = 10; k = 1; ¢ = 200;
(b) instability case (¢ < p;) for pp = 0.75; Ry = 10; k = 1; ¢ = 350.

the stability condition is satisfied. We note that as in the piece-wise linear case, with respect to the parameter
constellation we are considering, the exact stability/instability value C* ~ 280.32 (corresponding to
D* ~ 1168, see [2]) is roughly estimated by 2 (2 + ¢) /k = 254.175.

Example 4.3. (The Holling type2 case, see [9]) Another function which probably better captures apriori
guesses about p is:

CM?

M)y= "
tM) = Hie

M € [0, Mmax)
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Figure 4: The piece-wise linear case: shape of f(a), for different values of ¢, from ¢ = 200(higher curve)
to ¢ = 280 (lower curve).
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Figure 5: The piece-wise linear case: an ambiguous case (po = 0.75; Ry = 10; k = 1; ¢ = 270).

with C and D in R, with 1 — pg > C/D. In phenomenological terms this function implies a response
of vaccination to changing epidemiological conditions which is quite flat for very low levels of disease
prevalence, then starts to climb very quickly, when diseases prevalence goes above some reference level,
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Figure 6: The Michaelis-Menten-Monod case: (a) stability case (¢ > p;) for po = 0.75; Ry = 10; k =
1; C =200; (b) instability case (¢ < py) for po = 0.75; Ry =10; k =1; C = 350.

and finally saturates. The function z has the first two derivatives

, 2CM , 2C (1 —3DM?)

TM) = (M) = -

(DM?+1) (DM? +1)

Since z (0) = ¢ (0) = 0 with 7' (0) = 0 < ¢’ (0), and the maximum of 7’ is reached in M* = /1/3D with

/ * 9C
<) =55
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Bet+5 T

6e+5 T

4et5T

2et5T

| | | |
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0 1.25e+6 2.5e+6 3.75e+6 Se+6

D

Figure 7: The Holling type2 case: graph of min {%ﬁ, (1 = po) D}.

a sufficient condition of stability is then

16 (2 /3D

oK ,(l—po)D}-

For example, in Figure 7, for po = 0.75; Ry = 10; k = 1 the region of stability in the plane of the
parameters C and D is the region between the curve plotted and the D axis.

5. Appendix

Setting for simplicity z = Ryg, we have to solve:

fz u—1 d R() (5 1)
U=——=x. .
Ro(1—po) U (u + edu — 1) k

Setting t = /u — li.e. u = t* + 1, the integral in (5.1) is equivalent to

z—1 2l3
/ dr. (5.2)
VRo(=po)—1 (l‘2 + 1) (l‘2 + et + 1)
The discriminant
A=g?—4=4"
"

of the second order polinomial 7> + 7 + 1 is positive, hence we can factorize it as:

P tet+1= r+8+§ t+8 ‘
- 2 2 )
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where € = v/ &2 — 4 = 2,/v/u. Since

21 2 £+ 66 -2 N £ —g>+2
(1) (P +er+1)  e(+1) (e EY [ & _F
£e t—i—2+2 £E t+2 >

the primitive of 2% (12 + 1) (> + e + 1) is

2 g2 =2 e z g2 =2 e 7
——arctan(t) + |1+ —— In{t+ -+ )+ |1 —— |In|t 4+ — =
e £e 2 2 £e 2 2

and (5.2) is equal to

— % (arctan (\/ZTI) — arctan <\/Ro(1——po)—1)) +

&

29 20— T+e+7
+(1+8—A>ln< T—1+e+% >+

2JRy(I—po) —1+e+%

g2 —2 2z —14+e—%¢
+(1——)In =
2Ry (1 —py) — 146 —=¢
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