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Abstract

We consider an ecosystem in which spiders may be transported by the wind from
vineyards into the surrounding woods and vice versa. The model takes into ac-
count this tranport phenomenon without building space explicitly into the gov-
erning equations. The equilibria of the dynamical system are analyzed together
with their stability, showing that bifurcations may occur. Then the effects of in-
discriminated spraying to keep pests under control is also investigated via suitable
simulations.
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1. Introduction

The importance of generalist predators has received increasing awareness, e.g. [15].
Spiders are among the most ubiquitous and numerous generalist predators in agroe-
cosystems [9,13] and along with other generalists are thought to be important in reduc-
ing and preventing pest outbreaks [11, 14]. One of the key factors for the evolutionary
success of spiders is ballooning. Most of the ballooners are immature instars under 1.0
mg although many of the smaller Linyphiids, which are the most frequent long-range
dispersers, balloon as adults [1]. Dispersal characterizes the first few days of most
spiders although the youngsters may drift on their silken threads to sites more distant
than a meter away. Only a fashionable minority makes romantic journeys to unknown
niches in distant continents or remote volcanic islands [24]. Selective pressures relat-
ing to competition for food, cannibalism, density dependent predation and shortages of
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suitable web-support structures favoured the evolution of dispersal behaviour. In this
sense dispersal can be regarded as an example of an evolved behaviour to avoid com-
petition [24]. Immigration depends both on the dispersal characteristics of the species
and the composition of surrounding habitats. Therefore, ballooning-spider population
dynamics in a single field not only depends on the immediate surroundings, but on the
landscape as a whole [4,12].

From the individual spider’s point of view the landscape consists of a mosaic of
patches of varying quality. This landscape structure has to be considered both in spatial
and temporal terms [8]. The landscape can be described spatially in terms of patch di-
versity and heterogeneity. Landscape diversity can be defined as the number of habitat
types available to the spiders, and landscape heterogeneity as how intermingled they
are. Temporally, the landscape can also be described with respect to disturbance syn-
chronisation, e.g. how large a proportion of the fields are at the same time subject to
pesticide application [17]. Hence, the landscape structure is not static, and spatial and
temporal diversity and heterogeneity are not independent; they all change with season,
management, crop rotation, land use, husbandry, etc. Spider communities are signif-
icantly affected by these factors and different agroecosystem dynamics can show dif-
ferent spider assemblages [4]. The population in a single field may need to recover
several times every year. This cannot always be achieved by reproduction alone, and
thus immigration is important. Consequently, the population dynamics of ballooning
spiders, i.e. Linyphiids, cannot be understood without taking their spatial dynamics into
account. The problem of investigating the relative importance of these factors is that ex-
periments are very labour intensive and expensive to carry out at landscape scale [23].
Therefore, at this scale, simulation modelling is an appropriate approach to study effects
of land use and crop management practices. Several simulation models have suggested
that monoculture-dominated homogenous landscapes support fewer spiders than more
diverse landscapes and that rotation could be harmful [3, 4, 18]. It has also been sug-
gested that inclusion of less disturbed permanent habitats is beneficial for spider pop-
ulation dynamics, and that field size could play a role for species with poor dispersal
abilities [18,19].

The Langa Astigiana is one of the most important wine producing regions in Italy.
Woods and fields have been almost completely removed along the centuries in order to
harvest vineyards. Only a few grass patches and sparse groups of trees survive in places
and some tree lines mainly as property delimiters. We would like to investigate their
role in the ecosystem formed by insects, possible pests of vineyards and their natural
predators, spiders.

The model we propose attempts at investigating this situation. From the modelling
point of view, the major novelty consists in taking into account the ballooning effect
without explicitly introducing spatial dimensions, as for instance in other investiga-
tions [3]. The model is described in the next Section, the boundedness of the system’s
trajectories is studied in Section 3, boundary equilibria with their stability are analyzed
in Section 4, the coexistence equilibrium is found in Section 5 and its stability investi-
gated in Section 6. The effects of insecticide spraying are discussed in Section 7 and
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finally the ecological implications of these findings are summarized in the last Section.
In a related work, [22] a similar model for wandering spiders has been investigated.

It differs from the one presented here because the wanderer spider population acts as a
predator on the two kinds of prey, the insects living in woods and grass patches which
are distinguished from those living and possibly adversely affecting the vineyards. This
distinction among prey populations is assumed also in this context, but here we need to
distinguish also the spider populations, as being essentially stantial.

2. The proposed model

Let W denote the woods insects carrying capacity,w(t) be the insects population living
in woods,V the vineyards insects carrying capacity, withV >> W in the Langhe,v(t)
be the insects population living in the vineyards,sw(t) andsv(t) represent the spider
populations living respectively in the woods and in the vineyards.

The model can then be formulated as follows.

ẇ = bw(1− w

W
)− `wsw

v̇ = av(1− v

V
)− kvsv

ṡw = −csw + sw[˜̀w − αw ˜̀ V

V + W
] + svαvk̃

W

V + W

ṡv = −esv + sv[k̃v − αvk̃
W

V + W
] + swαw ˜̀ V

V + W
. (2.1)

Here the first equation expresses the fact that wood insects reproduce logistically and are
subject to predation by the spiders living in the woods. Similarly the second equation
states the same for insects and spiders living in the vineyards. The two ecosystems could
be considered as separate entities, as the web-making spiders tend to live in the same
place, but for the ballooning effect. The transport of the young spiders by the wind is
accounted for in the two equations modelling the growth of the spider populations. The
third equation gives the dynamics of spiders living in the woods. They die with very
low exponential ratec in absence of prey. When a prey is captured, it is turned into
newborns with efficiencỳ̃. A fractionα of newborns is carried by the wind into the air
and has probability of landing in either woods or surrounding vineyards with probability
which we here assume to be proportional to the surface of the two patches. Indeed
in practice this surface is related also to their respective carrying capacities. The last
two terms in this equation describe then this migration effect, the last one representing
immigration from newborns carried into the woods from the vineyards, while the third
term represents emigration of wood-born spiders into the surrounding landscape. Notice
that the last equation expresses these same concepts in terms of the spider population
living in the vineyards, which has predation efficiencyk̃. The transport effect of the
wind is instead clearly the same for both species, as there is no essential reason for
assuming it to be different in the woods than on open land. Notice also that we do not
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consider the wind transport effect on insects, as they are able to fly on their own and
move toward the environment places that they prefer.

3. Boundedness

From the first two equations of (2.1) it is not difficult to show that the two insects
populations are bounded above, more precisely

w(t) ≤ max{w(0),W}, lim sup
t→∞

w(t) ≤ W

v(t) ≤ max{v(0), V }, lim sup
t→∞

v(t) ≤ V (3.1)

Moreover, let us define the functionφ(t) = w + v + sw + sv. Upon summation of the
equations (2.1) we find for any arbitraryκ > 0

φ̇ + κφ ≤ bw(1− w

W
) + av(1− v

V
)− (c− κ)sw − (e− κ)sv

−(`− ˜̀− κ)sw − (k − k̃ − κ)sv

≤ bw(1− w

W
) + av(1− v

V
) ≤ 1

4
[bW + aV ] ≡ M̄

where we have restrictedκ ≤ min{c, e, `− ˜̀, k− k̃}. It follows then thatφ̇ ≤ −κφ+M̄
from which Gronwall’s inequality delivers

φ(t) ≤ exp(−κt) +
M̄

κ
[1− exp(−κt)] ≤ M. (3.2)

Thus every population is bounded for all time.

4. Ecosystem’s equilibria

We analyze in this Section the possible equilibria of the system. The first one is given by
the originE(1), which is feasible but always unstable, as the eigenvalues of the Jacobian

at this point area, b,−c,−e. The second equilibrium point isE(2) ≡
(
w(2), v(2), s

(2)
w , s

(2)
v

)

= (W, 0, 0, 0). It is easily seen that the second equation forv̇ has eigenvaluea, and this
is sufficient to conclude thatE(2) is always unstable. The the other ones are−b, −e,
−c + ˜̀ W

V +W
(V + W − αV ).

The pointE(3) ≡ (0, V, 0, 0) is the next equilibrium, but here again the linearization
of the first equation forẇ givesb as eigenvalue, and the other ones are−a, −c, −e +
k̃ V

V +W
(V + W − αW ) i.e. again unconditional instability.

We then findE(4) ≡ (W,V, 0, 0). In this case the eigenvalues are−a,−b and the
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roots of the quadratic equation

λ2 + λ

[
c−W ˜̀+ e− V k̃ +

αV W (˜̀+ k̃)

V + W

]

+

(
c−W ˜̀+

αV W ˜̀

V + W

)(
e− V k̃ +

αV Wk̃

V + W

)
− V 2W 2 ˜̀̃kα2

(V + W )2
= 0.

The Routh Hurwitz criterion applied to this equation gives the conditions for whichE(4)

is stable. Sufficient conditions ensuring their satisfaction are given by

c > W ˜̀, e > V k̃ (4.1)

The next equilibrium is

E(5) ≡
(

0,
e(V + W )

k̃ (V + W − αW )
,
a

k

eαW

c(W + V − αW )

[
1− e (V + W )

k̃V (V + W − αW )

]
,

a

k

[
1− e (V + W )

k̃V (V + W − αW )

])
(4.2)

The feasibility conditions are two in this case. The first one isW +V −αW > 0 which
is always satisfied in view of the fact thatα is a fraction, i.e.0 ≤ α ≤ 1. The second
one is given by

k̃V (V + W − αW ) > e (V + W ) . (4.3)

The next boundary equilibrium is the point

E(6) ≡
(

c(V + W )
˜̀(V + W − αV )

, 0,
b

`

(
1− c(V + W )

˜̀W (V + W − αV )

)
,

b

`

V α

e

[
c

W + V − αV

] [
1− c (V + W )

˜̀W (V + W − αV )

])
(4.4)

which is feasible under the two conditionsW + V − αV > 0, always satisfied for
0 ≤ α ≤ 1, and

˜̀W (V + W − αV ) > c (V + W ) . (4.5)

The stability analysis for both the above equilibria needs the following Jacobian
J (i) ≡ J(E(i))




b(1− 2w(i)

W
)− `s

(i)
w 0 −`w(i) 0

0 a(1− 2v(i)

V
)− ks

(i)
v 0 −kv(i)

(1− α V
V +W

)˜̀s
(i)
w α W

V +W
k̃s

(i)
v (1− αV

V +W
)˜̀w(i) − c α W

V +W
k̃v(i)

α V
V +W

˜̀s
(i)
w k̃s

(i)
v (1− α W

V +W
) ˜̀w(i)α V

V +W
k̃v(i)(1− αW

V +W
)− e


(4.6)
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Thus for equilibriumE(5), the eigenvalues are−c andb− `s
(5)
w and the roots of the

quadratic
λ2 − tr(J̃(E(5)))λ + det(J̃(E(5))) = 0. (4.7)

Here

J̃(E(5)) ≡
(

a(1− 2v(5)

V
)− ks

(5)
v −kv(5)

k̃s
(5)
v (1− α W

V +W
) k̃v(5)(1− α W

V +W
)− e

)
(4.8)

≡
(

a(1− 2v(5)

V
)− ks

(5)
v −kv(5)

k̃s
(5)
v (1− α W

V +W
) 0

)

Thus the Routh Hurwitz conditions for stability give−tr(J (5)) > 0 anddet(J (5)) > 0,
i.e. since0 ≤ α ≤ 1

−tr(J (5)) ≡ ks(5)
v − a + 2

a

V
v(5) = ae

V + W

k̃V (V + W − αW )
> 0,

det(J (5)) ≡ kk̃v(5)s(5)
v

V + W − αW

V + W
> 0.

Hence the conditions for stability ofE(5) reduce to just

b < `s(5)
w . (4.9)

ForE(6), we find again explicitly two eigenvalues,−e, a− ks
(6)
v and then the eigen-

values of

J̃(E(6)) ≡
(

b(1− 2w(6)

W
)− `s

(6)
w −`w(6)

˜̀s
(6)
w (1− α V

V +W
) ˜̀w(6)(1− α V

V +W
)− c

)
(4.10)

≡
(

− bc(V +W )
˜̀W (V +W−αV )

−`w(6)

˜̀s
(6)
w (1− α V

V +W
) 0

)

The Routh Hurwitz criterion on the characteristic equation gives again

−tr(J̃(E(6))) =
bc(V + W )

˜̀W (V + W − αV )
> 0,

det(J̃(E(6))) = `˜̀w(6)s(6)
w

V + W − αV

V + W
> 0,

so that the stability ofE(6) is ensured just by

a < ks(6)
v . (4.11)
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5. Coexistence

We analyze now the existence of equilibria in the first orthant, with all nonvanishing
components,E∗ ≡ E7 = (w∗, v∗, s∗w, s∗v). To find sufficient conditions for existence,
we solve the first two equations of (2.1) forw andv to get

w∗ =
W

b
(b− `s∗w), v∗ =

V

a
(a− ks∗v). (5.1)

Feasibility implies that the opposite conditions of (4.9) and (4.11), but both evaluated at
E∗, have to be satisfied in order forE∗ to be feasible, namely

a > ks∗v, b > `s∗w. (5.2)

Substituting (5.1) into the last two equations of (2.1), we obtain the following equations
in sw andsv. The first one is

−As2
w + 2B̃sw + 2Csv −Ds2

v = 0 (5.3)

whereA ≡ `
b
˜̀ W
V +W

(V + W − αV ) > 0, B̃ ≡ 1
2
[˜̀ W

V +W
(V + W − αV ) − c] ∈ R,

C ≡ 1
2
αk̃ V W

V +W
> 0, D ≡ k

a
V W

V +W
k̃α > 0. The second one instead is

−Es2
w + 2Fsw + 2G̃sv −Hs2

v = 0 (5.4)

whereE ≡ `
b
˜̀ V W
V +W

α > 0, F ≡ 1
2
˜̀α V W

V +W
> 0, G̃ ≡ 1

2
[k̃ V

V +W
(V +W −αW )− e] ∈ R,

H ≡ k
a

V
V +W

k̃(V + W − αW ) > 0.
Both are conic sections, in fact both are ellipses in the(sw, sv) ≡ (x, y) plane. Their

detailed analysis shows that both cross the origin. Notice that in this context the origin
in R2 gives rise for the whole model to the equilibria we namedE(1), E(2) andE(3),
which we already analyzed earlier. We concentrate then on the ellipses’ possible further
intersections.

The first ellipse intersects the positive vertical semiaxis at the pointP ≡ (xP , yP ) =

(0, 2C
D

), and an intersection with the horizontal axis atQ ≡ (xQ, yQ) = (2 B̃
A
, 0). Also

its derivative at the pointP is y′1(P ) = B̃
C

, while at the origin it isy′1(O) = − B̃
C

. It
is then easily seen to have the same sign as the abscissaxQ at P , while at the origin it
has always its opposite sign. The center is located at the point( B̃

A
, C

D
). The vertices are

instead

(
B̃

A
± 1

AD

√
B̃2D2 + AC2D,

C

D
), (

B̃

A
,
C

D
± 1

AD

√
A2C2 + AB̃2D) (5.5)

The second one instead has a further intersection with the positive vertical semiaxis
at the pointR ≡ (xR, yR) = (0, 2 G̃

H
), and an intersection with the horizontal axis at

S ≡ (xS, yS) = (2F
E
, 0). Also its derivative at the pointR is y′2(R) = F

G̃
, while at the

origin it is y′2(O) = −F
G̃

It is thus seen to have the same sign as the heightyR when
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evaluated atR and its opposite sign when evaluated at the origin. The center in this case
is the point(F

E
, G̃

H
). The vertices in this case are

(
F

E
,
G̃

H
± 1

EH

√
G̃2E2 + EF 2H), (

F

E
± 1

EH

√
F 2H2 + EG̃2H,

G̃

H
) (5.6)

In view of the above remarks, both ellipses have axes that are parallel to the coordinate
axes.

Combining these informations it is now easy to write down sufficient conditions for
the existence ofE∗. We distinguish four cases.

1A) B̃ > 0, G̃ > 0; in this case sufficient conditions for the existence and uniqueness
of an intersection betweeny1 and y2 in the first quadrant, which might give a
feasibleE∗ if conditions (5.2) are also satisfied, are either

CH > DG̃ andFA > EB̃ (5.7)

or alternatively
CH < DG̃ andFA < EB̃. (5.8)

1B) B̃ > 0, G̃ < 0; the conditions reduce just to the following one

FA > EB̃. (5.9)

2A) For B̃ < 0, G̃ > 0 the condition now is

CH > DG̃. (5.10)

2B) Finally for B̃ < 0, G̃ < 0 we need to compare the derivatives ofy1 andy2 at the
origin, namelyy′1(O) < y′2(O), to impose an intersection in the first quadrant. We
thus find

FC < G̃B̃. (5.11)

Direct substitution of the values forA, B̃, C, D, E, F, G̃ into (5.7) shows that these
two conditions are always satisfied, since they are equivalent respectively toc > 0 and
e > 0. Geometrically, they correspond to the requirementsxS ≥ xQ andyP ≥ yR,
where equality holds only for the casesc = 0 ande = 0 respectively. It follows in
turn that (5.9) and (5.10) are always satisfied. These conditions must hold together with
(5.2), and the latter imply that the intersectionE∗ of the ellipses must lie within the
square with verticesOPUS, whereU ≡ (xS, yP ) ≡ (2F

E
, 2C

D
) ≡ ( b

`
, a

k
). The first

ellipse however circumscribes this square in the cases 1A) and 1B) corresponding to
xQ > 0, i.e. G̃ > 0. Therefore in such casesE∗ will result infeasible since one of
the first two coordinates,v, w is negative. In cases 2A) and 2B) the arcOP of the first
ellipse not containingQ lies entirely in the squareOPUS, conditions (5.10) and (5.11)
guarantee an intersection so thatE∗ is always feasible. The case 2A) is graphically
illustrated in Figure 1.
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To investigate further this phenomenon, we analyze also the particular cases. Notice
first of all that for the particular casee = 0 new equilibria are found, namelyE0 ≡
(0, 0, 0, s̄v) for some arbitrarȳsv > 0, which however on further investigation has to
be s̄v ≡ yP ≡ a

b
, or alsoE1 ≡ (W, 0, 0, s̄v). Conversely forc = 0 we find E2 ≡

(0, 0, s̄w, 0) andE3 ≡ (0, V, s̄w, 0), wheres̄w ≡ b
`
. It is then easy to study the stability

of these points. Substituting into the Jacobian, the eigenvaluesa, b,−c, 0 for E0 and
−b, a − ks̄v ≡ 0,−c + ˜̀W (1 − α V

V +W
), 0 for E1 are found. Instability of the former

is immediate. The stability condition for the latter is then˜̀W (1 − α V
V +W

) < c, i.e.

B̃ < 0, or alsoxQ < 0. In case 2A)E1 is then stable. ForE2 we find the eigenvalues
b− `s̄w ≡ 0,−a, 0, k̃ V

V +W
(V + W − αW )− e, so that once again it is stable if̃G < 0

i.e. whenyR < 0. Thus in case 2A) it results unstable, while in case 2B) it is stable. For
E3 we find instead0, a, 0,−e so that it is always unstable.

It follows that ase grows, the axis intersection between the ellipses moves away
from thesv axis retaining its stability, thus giving rise to a stable manifold, the arcOP
of the ellipse not containing the pointQ, whereE∗ is located. Incidentally, it can be
shown numerically and proven theoretically that fore < 0 this would be the stable
branch of a saddle-node bifurcation of an infeasible equilibrium. Similar remarks can
be made reversing the stability concepts and exchanginge with c, P with S andQ with
R.

Condition (5.11) is equivalent to requiringy′1(O) = − B̃
C

< −F
G̃

= y′2(O). It is

equivalent toFACH > EB̃G̃D > EFCD which givesA
E

> D
H

. Upon substitution of
the parameter values and simplifications, we find(V +W−αV )(V +W−αW ) > V W
and this leads to(1−α)(V 2+W 2)+V W (1−α)2 > 0 which is clearly always satisfied.
Thus (5.11) always holds and in case 2B) we thus always have a feasible intersection.

Finally, notice also thatE(5) feasible is equivalent tõG ≥ 0, andE(6) feasible is
equivalent toB̃ ≥ 0.

6. The Hopf bifurcation

The Hopf bifurcation arises if and only if we can find purely imaginary eigenvalues, and
a kind of transversality condition is satisfied. Since the characteristic polynomial is the
quartic inλ,

4∑
i=0

biλ
i, (6.1)

to have purely imaginary eigenvalues the following condition must hold

4∑
i=0

biλ
i = (λ2 + η2)(λ2 + βλ + ζ) = 0. (6.2)

Long multiplication and comparison of coefficients of like powers gives the conditions

b3 = β, b2 = ζ + η2, b1 = βη2, b0 = η2ζ, (6.3)
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which in turn can be solved and are equivalent to just the following relationship among
the coefficients of (6.1)

b3b2b1 = b2
3b0 + b2

1. (6.4)

Now notice that the meaning of each such coefficientbi of (6.1) is as follows. Let
us denote the principal minors of orderk of the Jacobian byMk(J). We have then
b3 = −tr(J), b2 =

∑
M2(J), b1 = −∑

M3(J), b0 = det(J), where the sum is meant
over all possible principal minors of the given order. Now observe that the parametere
appears only in the elementJ44 with a negative sign. Alternatively one could consider
the parameterc appearing only inJ33 also with negative sign. The above condition (6.4)
in view of the meaning of eachbi in terms of the elements of the Jacobian, is therefore
a cubic equation ine,

b3b2b1 − b2
3b0 − b2

1 ≡
3∑

i=0

cie
i. (6.5)

In order to ensure existence of a real positive roote†, we thus need that the signs of the
constant term and of the coefficient ofe3 be opposite.

Explicitly, from (6.4) we have

tr(J)
∑

M2(J)
∑

M3(J) = (tr(J))2 det(J) + (
∑

M3(J))2, (6.6)

from which we extract the highest order terms containingJ44 obtaining

J44 × J44[J11 + J22 + J33]× J44{
∑

M2[J(1:3,1:3)]} = [J44]
2 × J44 det[J(1:3,1:3)],

whereM2[J(1:3,1:3)] denotes the principal minors of order two of the submatrixJ(1 :
3, 1 : 3) of the Jacobian, formed by its first three rows and columns, anddet[J(1:3,1:3)] is
the corresponding determinant. Notice that we have excluded the consideration of the
last term(

∑
M3(J))2, since it gives only a contribution to the coefficient ofJ2

44. The
coefficient ofJ3

44 is therefore

c3 ≡ [J11 + J22 + J33][
∑

i

M̃2]− det[J(1:3,1:3)]. (6.7)

The term independent ofe is instead

c0 ≡
∑

i

M2[J(1:3,1:3)] det[J(1:3,1:3)]− [J11 + J22 + J33][
∑

i

(−1)iM̂3(Ji4)], (6.8)

whereM̂3(Ji4) represents the minor corresponding to the elementJi4 in J . The condi-
tion for existence ofe† > 0 for which (6.2) is true, is thus given by

c0c3 < 0. (6.9)
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Then only the transversality condition still needs to be satisfied to obtain a Hopf
bifurcation. The roots of (6.2) are in general of the form

λ1(e) = ξ1(e) + iξ2(e), λ2(e) = ξ1(e)− iξ2(e), λ±(e) =
1

2

[
−b3 ±

√
b2
3 −

4

b1

b0b3

]

(6.10)
Differentiate now the characteristic equation with respect toe, to obtain after some
algebra

γ11ξ
′
1 − γ12ξ

′
2 = γ10, γ12ξ

′
1 + γ12ξ

′
2 = γ20

where

γ11 = 4ξ3
1 − 12ξ1ξ

2
2 + 3β(ξ2

1 − ξ2
2) + 2(η2 + ζ)ξ1 + η2β

γ12 = 12ξ2
1ξ2 − 4ξ3

2 + 6βξ1ξ2 + 2(η2 + ζ)ξ2

γ10 = β′(3ξ1ξ
2
2 − ξ2

1) + [(η2)′ + ζ ′](ξ2
2 − ξ2

1)− ξ1[(η
2)′β + (η2)β′]− ((η2)′ζ + η2ζ ′)

γ20 = β′(ξ3
2 − 3ξ2

1ξ2)− ξ1ξ2((η
2)′ + ζ ′)− ξ2((η

2)′β + η2β′).

Here the prime denotes derivative with respect to the parametere. On solving forξ′1 and
ξ′2 the above system, we find

ξ′1 =
γ10γ11 + γ20γ12

γ2
11 + γ2

22

, ξ′2 =
γ20γ11 − γ10γ12

γ2
11 + γ2

22

and the transversality conditionξ′1(e
†) 6= 0, in terms of the original entries in the Jaco-

bian matrix, becomes then

(d† + m†
2)(m

†
2t
† −m†

3)(t
†)4 + 2(m†

3)
4[(t†)2 + (m†

3)
3] 6= 0 (6.11)

where we used the shorthand notations

m†
2 =

∑
M2[J(1:3,1:3)(e

†)], m†
3 =

∑
M3[J(e†)]

t† = tr[J(e†)] d† = det[J(e†)].

It appears then far from easy to perform a detailed study providing analytical con-
ditions so that (6.11) is satisfied in terms of the original model parameters. We turned
at this point to numerical simulations to show evidence that the Hopf bifurcation does
arise and sustained oscillations are indeed possible. Figure 4 supports our statement, a
Hopf bifurcation is found for this system, as the simulation reported in it shows indeed
the sustained oscillations of all the model populations.

7. Spraying Effects

We investigate in this Section the results of insecticide spraying. We remark that in
general the vineyard is assumed to be sprayed from planes flying not too high above the
ground and aiming at the vineyards, but due to the wind effect the insecticide may land
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on the woods as well. Also the poison is meant to act on the insects and pests of the
vineyards, but it may very well affect the spiders too. Lettingti denote the instants in
time when the spraying occurs, we thus obtain the modified model

ẇ = w
[
b
(
1− w

W

)
− `sw

]
− h (1− q) δ (ti) (7.1)

v̇ = v
[
a

(
1− v

V

)
− ksv

]
− hqδ (ti)

ṡw = sw

[
−c + ˜̀w

(
1 + α

(
− V

V + W

))]
+

W

V + W
k̃vsvα−K (1− q) δ (ti)

ṡv = sv

[
−e + k̃v

(
1 + α

(
− W

V + W

))]
+

V

V + W
˜̀wswα−Kqδ (ti)

whereq represents the fraction of insecticide falling on the vineyards,h andK represent
its efficacy on insects and spiders respectively,δ (t) is the Dirac delta function,

δ (t) =

{
1 for t = ti
0 for t 6= ti

.

The effect of the Dirac delta function is to suddenly push downward the solutions at
the instantsti, so that if the perturbation is large enough and if another basin of attraction
of some other stable equilibrium exists, the effect of spraying may result in a move of
the system toward this alternative equilibrium instead of letting the trajectories tend to
the previous one.

8. Ecological consequences

The model we presented shows the following features. Among the equilibria which may
be stable,E(5) contains no wood insects. Its occurrence leads then to loss of diversity
and therefore is not to be desired.E(4) instead is a spider-free equilibrium, in our
settings thus a very bad situation, since it leads to predator loss and survival only of
possibly harmful insects.E(6) has instead no vineyard-living prey. Finally atE∗ ≡ E(7)

the whole ecosystem thrives, a plus from the environmental biodiversity point of view.
The stability of the equilibriaE(4)-E(7) is always conditional. While forE(4) it

reduces to upper bounds on the woods and vineyard insects carrying capacities, forE(5)

andE(6) we find instead that stability is ensured by keeping both spider populations at
a sufficiently high level.

The ecological coexistence equilibriumE∗ ≡ E(7) analyzed in Sections 5 and 6
shows a Hopf bifurcation, which is obtained also by numerical simulations, see Figure
4, the resulting oscillations being sustained in time for all the model populations.

The implications of the Hopf bifurcation are to be taken seriously into account,
as they involve the sudden shift of an apparently stable equilibrium where the whole
ecosystem coexists to fluctuating population values. If the latter become too large, due
to for instance to some external unpredictable circumstances, such as fast climatic vari-
ations, resulting in a change of the spiders death rate, the large oscillations may hit the
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coordinate axes and lead to disappearance of the limit cycle. The ecosystem would then
be seriously affected since at least one of its populations vanishes.

Finally the effect of spraying has also been simulated. Other that in adverse circum-
stances spraying may lead to environmental ecological damages, the main conclusion
we can draw here is that a further investigation of the basins of attractions of each stable
equilibria would be necessary in case the simulations were concerning a real applica-
tion. Indeed the spraying effect changes suddenly the trajectories behavior, so that if
they are moved to a different basin, the outcome of the dynamics may very well be
much different than expected.

Several studies have confirmed that pesticide spraying induces an increase in the
density of some pest populations. For instance, in [2, 10] it is found that phytophagous
pests had economically important demographical outbreaks after treatments with pes-
ticides. According to the authors, these outbreaks of pest populations after chemical
treatment were induced as a result of reduction of predators, particularly spiders. In-
deed, spiders seem to be more sensitive to pesticides compared with many phytophagous
pests [7]; in consequence, the decrease in spider populations leads to a reduction in the
predation pressure, thus favouring the outbreak of some pests.

Many studies all over the world have shown that the use of chemicals decreases
the diversity and density of spiders. In [6] it is reported that the spider population in
sprayed orchard was affected by pesticide treatments and was often eliminated alto-
gether. However, the spiders reappeared in the orchard when the interval between the
applications was long enough. Application of insecticides several times in the season
or at high dosages usually destroys spider communities [6]. The same study showed a
similar decrease in the specific diversity.

Much richer and much more complex computer models for the spider evolution in
a heterogeneous landscape have been proposed in the literature, see [16–19, 21] for
instance. Mainly, they are aimed at simulating the Danish farmland, by using a very ex-
tensive grid of cells each modelling a possibly different habitat and introducing in each
patch a spider population composed of individuals in various states of development.
The general algorithm is described in detail in [20]. These simulations aim at provid-
ing insights into the management of sustainable agricultural systems, in which natural
predators constitute a major component of pest control. In particular the numerical ex-
periments attempt at forecasting what are the consequences of varying the agricultural
field sizes and at studying spatial heterogeneity, aiming at determining the various local
conditions within a complex landscape structure. Meteorological and farming data are
used for the dispersal model, which are in support also of our assumptions. Indeed un-
der suitable good weather conditions, ballooning can disperse the spiders up to 30 km
downwind in just a few hours, [16].

Our is rather an analytical, “global” model with much more contained goals, but
a first step in the same direction. By combining indeed this approach with the results
of [4], in future works we plan to investigate the potential that spiders offer to control
the pests that affect the vineyards in Piemonte, the first wine producing region in the
world.
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Figure 2: Stability conditions forE(5) are verified but we get an unstable behavior,
in fact w vanishes and the other populations show sustained oscillations. Perhaps this
indicates that the basin of attraction of equilibriumE(5) is extremely small.
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Figure 3: Instability of equilibriumE(5), initial conditions close to it, stability conditions
not verified. Neutral cycles in a plane parallel to thesv-v phase plane, wood insects
rather attain their carrying capacity value.
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Figure 4: Sustained cycles for all populations
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Figure 5: Reference simulation for the spraying effects of the next picture.
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Figure 6: Spraying effects: the interspraying time is 3, a temporary decrease of the
insects is obtained, but they will tend to the carrying capacities anyway in the long run.
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Figure 7: Coexistence equilibrium. It is also a reference simulation for the spraying
effects of the next picture.
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Figure 8: Here the spraying effects seem to wipe out the oscillations in the populations
living in vineyards, thus affecting also the spiders. They survive, although harmed,
while the spraying seems to control the vineyard insects. The interspraying time is 1.



158 Ezio Venturino et al

Acknowledgments:The authors are indebted to A. Franc for a very useful discus-
sion on some aspects of this model.

References

[1] Greenstone, M.H., Morgan, C.E., Hultsch, A.-L., Farrow, R.A., Dowse, J.E., 1987,
Ballooning spiders in Missouri, USA, and New South Wales, Australia: family and
mass distribution, J. Arachnol. 15, 163-170.

[2] Hukusima, S., Kondo, K., 1962. Further evaluation in the feeding potential of the
predaceous insects and spiders in association with aphids harmful to apple and pear
growing and the effect of pesticides on predators, Jpn. J. Appl. Entomol. Zool. 6
(4), 274-280.

[3] Halley, J.M., Thomas, C.F.G., Jepson, P.C., 1996, A model for the spatial dynam-
ics of linyphiid spiders in farmland, J. App. Ecol. 33, 471-492.

[4] Isaia, M., Bona, F., Badino, G., 2006, Influence of landscape diversity and agri-
cultural practices on spider assemblages in Italian vineyards of Langa Astigiana
(NW-Italy), Environ. Entomol., 35(2), 297-307.

[5] Liu, W.M., 1994, Criterion of Hopf bifurcations without using eigenvalues, J.
Math. Anal. Appl. 182, 250-256.

[6] Mansour, F., Rosen, D., Shulov, A., 1980. A survey of spider populations
(Araneae) in sprayed and unsprayed apple orchards in Israel and their ability to
feed on larvae of Spodoptera littoralis (Boisd.), Acta Oecol., Oecol. Appl. 1 (2),
189-197.

[7] Mansour, F., Richman, D.B., Whitcomb, W.H., 1983. Spider management in
agroecosystems: habitat manipulation, Environ. Manage. 7 (1), 43-49.

[8] Merriam, G., 1988, Landscape dynamics in farmland. TREE 3, 16-20.

[9] Nyffeler, M., Benz, G., 1987, Spiders in natural pest control: a review, J. App.
Entomol. 103, 321-339.

[10] Putman, W.L., Herne, D.H.C., 1966, The role of predators and other biotic agents
in regulating the population density of phytophagous mite in Ontario peach or-
chards, Can. Entomol. 98, 808-820.

[11] Riechert, S.E., Bishop, L., 1990, Prey control by an assemblage of generalist
predators: spiders in garden test systems, Ecology 71, 1441-1450.

[12] Sunderland, K.D., Samu, F., 2000, Effects of agricultural diversification on the
abundance, distribution, and pest control potential of spiders: a review, Entomol.
Exp. App. 95, 113

[13] Sunderland, K.D., 1987, Spiders and cereal aphids in Europe, Bulletin
SROP/WPRS, 1987/X/1, 821-802.

[14] Sunderland, K.D., Fraser, A.M., Dixon, A.F.G., 1986a, Distribution of linyphiid
spiders in relation to capture of prey in cereal fields, Pedobiologia 29, 367-375.



Modelling the spiders ballooning effect 159

[15] Symondson, W.O.C., Sunderland, K.D., Greenstone, M.H., 2002, Can generalist
predators be effective biocontrol agents?, Annu. Rev. Entomol. 47, 561-594.

[16] Thomas, C.F.G., Brain P., Jepson, P.C., 2003, Aerial activity of linyphiid spiders:
modelling dispersal distances from meteorology and behaviour, J. of Applied Ecol-
ogy, 40, 912-927.

[17] Thomas, C.F.G., Hol, E.H.A., Everts, J.M., 1990, Modelling the diffusion compo-
nent of dispersal during recovery of a population of linyphiid spiders from expo-
sure to an insecticide, Funct. Ecol. 4, 357-368.

[18] Topping, C.J., Sunderland, K.D., 1994, A spatial population dynamics model for
Lepthyphantes tenuis (Araneae: Linyphiidae) with some simulations of the spatial
and temporal effects of farming operations and land-use, Agr. Ecosyst. Environ.
48, 203-217.

[19] Topping, C.J., 1999, An individual-based model for dispersive spiders in agroe-
cosystems: simulations of the effects of landscape structure, J. Arachnol. 27, 378-
386.

[20] Topping, C.J., Hansen, T.S., Jensen, T.S., Jepsen, J.U., Nikolajsen F., Odderskaer,
P., 2003, ALMaSS an agent-based model for animals in temperate European land-
scapes, Ecol. Modelling 167, 65-82.

[21] Thorbek, P., Topping, C.J., 2005, The influence of landscape diversity and hetero-
geneity on spatial dynamics of agrobiont linyphiid spiders: An individual-based
model, BioControl 50, 1-33.

[22] Venturino, E., Isaia M., Bona F., Ghersi A., Badino G., A wanderer spider’s model
as biological vineyard controllers in the Langa Astigiana, Proceedings of the 6th
International Conference Aplimat, Bratislava, February 6-9th, 2007, 333-340.

[23] Wiens, J.A., Stenseth, N.C., Van Horne, B., Ims, R.A., 1993, Ecological mecha-
nisms and landscape ecology, Oikos 66, 369380.

[24] Wise, D.H., 1993, Spiders in ecological webs, Cambridge Studies in Ecology.
Cambridge, UK 328 pp.


