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Abstract

An optimal control problem is studied for a Lotka-Volterra system of three dif-
ferential equations. It models an ecosystem of three species which coexist. The
species are supposed to be separated from each others. Mathematically, this is
modeled with the aid of two control variables. Some necessary conditions of opti-
mality are found in order to maximize the total number of individuals at the end of
a given time interval.
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1. Introduction

We study the Lotka-Volterra three populations system of differential equations




y′1 = y1 (a1 − b1y2 + c1y3)
y′2 = y2 (−a2 + b2y1)
y′3 = y3 (a3 − b3y1) ,

(1.1)

whereai, bi, c1 (i = 1, 2, 3) are positive constants.
It is a nonlinear mathematical model of an ecosystem consisting of a herbivorous

species (the number of individuals of which isy1), a carnivorous one (y2), and of plants,
the quantity of which is denotedy3.

The same model can also be applied to an ecosystem of a pest species (y1), a predator
(y2), and a plant (y3).
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Obviously, for every initial value(y1 (0) , y2 (0) , y3 (0)) , the above system has a
unique solution(y1, y2, y3) which is continuous on[0, +∞) ([7]). A first integral of the
system is

(y2 (t))b3 (y3 (t))b2 eb2b3t = C,

whereC is a constant depending on the initial values ([7]):

C = (y2 (0))b3 (y3 (0))b2 .

It is easy to see that, supposing also the conditionσ = (a2/b2) − (a3/b3) > 0, the
componentsy1, y2 of the solution are bounded, both from above and from below:

lim sup
t→∞

y1 (t) < +∞, lim inf
t→∞

y1 (t) > 0, lim sup
t→∞

y2 (t) < +∞, lim inf
t→∞

y2 (t) > 0,

and as a consequence,lim sup
t→∞

y3 (t) < +∞ ([7]).

Observe that ify3 ≡ 0, system(1.1) reduces to the well-known prey-predator system
(see for example[9]). If y1 ≡ 0, then the equations two and three become independent.
In the absence of the herbivorous species, the quantity of plants grows exponentially,
while the predator goes to extinction.

We now introduce in the ecosystem some control variablesu andv, whose role is
to separate (partially or totally) the three populations from each other. Denote by1− u
the rate of separation between the herbivorous and the carnivorous speciesy1, y2 and
by 1 − v the rate of separation between the herbivorous species and the plants. The
functionsu, v take values in the interval[0, 1] . Then the controlled system is





y′1 = y1 (a1 − b1y2u + c1y3v)
y′2 = y2 (−a2 + b2y1u)
y′3 = y3 (a3 − b3y1v) .

(1.2)

We study it on a finite time interval[0, T ] . One imposes the initial conditions:

y1 (0) = y0
1, y2 (0) = y0

2, y3 (0) = y0
3. (1.3)

If y0
i > 0, i = 1, 2, 3, then the Cauchy problem(1.2) − (1.3) has a unique positive

solution, which is bounded on[0, T ] provided thatσ > 0.
Whenu = 0, the rate of separation between the herbivorous (y1) and carnivorous

(y2) species is1, so thaty1 andy2 are completely separated, that is they do not interact.
In this case, the first equation in the system is independent ofy2, while the second
equation does not depend ony1. Whenu = 1, it follows that the rate of separation is0,
so thaty1 andy2 are not separated at all. These are two extreme situations. Generally,
the interaction betweeny1 andy2 is controlled at least partially. Similarly forv = 0 and
for v = 1.

We intend to maximize the total population at the end of the time interval[0, T ] .
Hence the functional we have to maximize isy1 (T ) + y2 (T ) + y3 (T ) , i.e. the control
problem is

Minimize {−y1 (T )− y2 (T )− y3 (T )} , (1.4)
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where the control(u, v) belongs to the set

U = {(u, v) : [0, T ] → R2, u, v measurable,

0 ≤ u (t) ≤ 1, 0 ≤ v (t) ≤ 1, a.e. on[0, T ]}, (1.5)

while (y1, y2, y3) is the solution of the Cauchy problem(1.2)− (1.3) .
The boundedness ofy1, y2, y3 allows us to use Theorem 1.2, pp. 43 in V. Barbu’s

book ([5]), to obtain the existence of an optimal control(u, v) in the class of bounded
measurable functions.

In Section 2, Pontrjagin’s maximum principle and its attendant transversality condi-
tion are invoked to find the optimal control(u, v) . We deduce thatu andv are bang-bang
control and their values depend on the signs of the functions−b1p1+b2p2 andc1p1−b3p3

respectively, where(p1, p2, p3) is the solution of the adjoint system. The discussion of
these signs is the subject of Section 3. One establishes thus the final form of the optimal
control(u, v) , depending on the signs ofb2 − b1 andc1 − b3. Section 4 contains some
conclusions.

For a prey-predator system (y3 ≡ 0), a similar problem was treated in[10] . In this
case, we have a unique control variableu : [0, T ] → R, 0 ≤ u (t) ≤ 1 a.e. on[0, T ] . If
the sizes of the prey and predator populations depend also on their position in the habitat,
the dynamics of the ecosystem is given by a nonlinear reaction-diffusion system. In[4] ,
one solves the problem of maximization of the total density of the two populations.

An optimal time problem for system(1.1) is the subject of[7] . A control variable
u is introduced in the ecosystem, acting ony1 as a chemical pesticide. Thus we have a
double struggle against the herbivorous species: a biological one and a chemical one.

In [6] , the authors present several predator-prey PDE models and review recent re-
sults concerning the existence of positive steady-state solutions, of non-constants posi-
tive solutions, bifurcation, and so on. In[8] , a discrete prey-predator system is consid-
ered. The bifurcation theory is applied to show that the system can undergo fold, flip
and Neimark-Sacker bifurcations. Necessary conditions and sufficient conditions for in-
ternal stabilizability of a Holling type II prey-predator system are given in[2] . Optimal
control problems for age-structured population dynamics models are presented in[1] ,
[3] .

2. Necessary optimality conditions

We find some necessary optimality conditions in order to maximize the total number
of individuals at the end of the given time interval[0, T ]. In other words, we are lead
to consider the following optimal control problem: find the control(u, v) ∈ U and the
corresponding state(y1, y2, y3) of the system(1.2) − (1.3) , which minimize the cost
functional

Φ (y1, y2, y3, u, v) = −y1 (T )− y2 (T )− y3 (T ) . (2.1)
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To solve this problem, one uses Pontrjagin’s maximum principle. Denote

y =




y1

y2

y3


 , f (y, u, v) =




y1 (a1 − b1y2u + c1y3v)
y2 (−a2 + b2y1u)
y3 (a3 − b3y1v)


 , p =




p1

p2

p3


 .

Herep is the adjoint variable, that is the solution of the associated adjoint system(2.3)
below. The Hamiltonian function is

H (p, y, u, v) = p1y1 (a1 − b1y2u + c1y3v) +

+p2y2 (−a2 + b2y1u) + p3y3 (a3 − b3y1v) , (2.2)

while the adjoint system is




p′1 = −a1p1 − y2u (−b1p1 + b2p2)− y3v (c1p1 − b3p3)
p′2 = a2p2 − y1u (−b1p1 + b2p2)

p′3 = −a3p3 − y1v (c1p1 − b3p3) , t ∈ [0, T ] .
(2.3)

The transversality conditions are

p1 (T ) = p2 (T ) = p3 (T ) = 1. (2.4)

Recall that, ifH is a real Hilbert space with the scalar product(., .) , then the normal
cone to the closed and convex subsetK ⊆ H at the pointa is defined by

NK (a) = {v ∈ H, (v, a− x) ≥ 0, (∀) x ∈ K}.
If N[0,1]2 (u, v) is the normal cone to[0, 1]2 at the point(u, v) andf ∗u,v is the adjoint of
the Jacobian matrixfu,v ∈ L (R2,R2) , the optimality condition

f ∗u,v (y, u, v) · p (t) ∈ N[0,1]2 (u, v) a.e on(0, T ) ,

(see for example[5]) becomes

( −b1y1y2 b2y1y2 0
c1y1y3 0 −b3y1y3

) 


p1

p2

p3


 ∈ N[0,1]2 (u, v) a.e. on(0, T ) . (2.5)

But N[0,1]2 (u, v) = N[0,1] (u)×N[0,1] (v) and

N[0,1] (u) =





0, u ∈ (0, 1)
R−, u = 0
R+, u = 1.

Thus the inclusion(2.5) implies that

u (t) =

{
0, if y1y2 (−b1p1 + b2p2) < 0
1, if y1y2 (−b1p1 + b2p2) > 0
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and

v (t) =

{
0, if y1y3 (c1p1 − b3p3) < 0
1, if y1y3 (c1p1 − b3p3) > 0.

Sinceyi (t) > 0, (∀) t ∈ [0, T ] , (∀) i = 1, 2, 3, we get

u (t) =

{
0, if − b1p1 + b2p2 < 0, a.e.t ∈ (0, T )
1, if − b1p1 + b2p2 > 0, a.e.t ∈ (0, T ) ,

(2.6)

v (t) =

{
0, if c1p1 − b3p3 < 0, a.e.t ∈ (0, T )
1, if c1p1 − b3p3 > 0, a.e.t ∈ (0, T ) .

(2.7)

In the next section, we discuss the form of the optimal control(u, v) according to
the signs of−b1p1 + b2p2 andc1p1 − b3p3.

3. The form of the optimal control

We restrict ourselves to the casea3 > a1. Observe that
{

y1u (−b1p1 + b2p2) ≥ 0, y2u (−b1p1 + b2p2) ≥ 0,
y1v (c1p1 − b3p3) ≥ 0, y3v (c1p1 − b3p3) ≥ 0,

(3.1)

a.e. on(0, T ) . By (2.3)− (2.4) , we can easily deduce that

p1 (t) = ea1(T−t){1 +

∫ T

t

[y2u (−b1p1 + b2p2) + y3v (c1p1 − b3p3)](s)e
−a1(T−s)ds}

and analogously forp2, p3. Therefore,

p1 (t) ≥ ea1(T−t) ≥ 1, p2 (t) > 0, p3 (t) ≥ ea3(T−t) ≥ 1, t ∈ (0, T ) . (3.2)

By (2.3) it follows thatp1 andp3 are nonincreasing a.e. on[0, T ] . We have the following
cases:

1.−b1+b2 < 0, c1−b3 < 0. In this case,(−b1p1 + b2p2) (T ) < 0 and(c1p1 − b3p3) (T ) <
0. Hence, there existsε > 0 such that both−b1p1 + b2p2 < 0 andc1p1 − b3p3 < 0 on
(T − ε, T ]. According to(2.6) , (2.7) , we haveu (t) = v (t) = 0, (∀) t ∈ (T − ε, T ] and
consequently, system(2.3)− (2.4) becomes

{
p′1 = −a1p1, p′2 = a2p2, p′3 = −a3p3, t ∈ (T − ε, T ],

pi (T ) = 1, i = 1, 2, 3.
(3.3)

This yields

p1 (t) = ea1(T−t), p2 (t) = e−a2(T−t), p3 (t) = ea3(T−t), (∀) t ∈ (T − ε, T ].
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Since(−b1p1 + b2p2)
′ = a1b1p1 + a2b2p2 > 0 on (T − ε, T ], the inequality−b1p1 +

b2p2 < 0 and the equalityu (t) = 0 hold on the whole interval[0, T ] . Similarly, fora3 >
a1 andc1 < b3, (c1p1 − b3p3)

′ > a1c1 (p3 − p1) > 0 on(T−ε, T ]. Then,c1p1−b3p3 < 0
holds on[0, T ] andv (t) = 0, t ∈ [0, T ] .

The optimal state can be realized by system(1.2) for u (t) = v (t) = 0 on [0, T ] :

y1 (t) = y0
1e

a1t, y2 (t) = y0
2e
−a2t, y3 (t) = y0

3e
a3t, t ∈ [0, T ] . (3.4)

2. −b1 + b2 < 0, c1 = b3. As in the previous case, there existsε1 > 0 such that
−b1p1 + b2p2 < 0 on (T − ε1, T ], sou (t) = 0 on (T − ε1, T ]. The adjoint system has
the form 




p2 (t) = e−a2(T−t)

p′1 = −a1p1 + b3y3v (−p1 + p3)
p′3 = −a3p3 + b3y1v (−p1 + p3) .

(3.5)

Integrating the last two equations and using(2.4) , one obtains

(c1p1 − b3p3) (t) = b3 (p1 − p3) (t) =

= −b3

∫ T

t

[a3p3 − a1p1 + b3v (y3 − y1) (−p1 + p3)] (s) ds.

Hencec1p1 − b3p3 < 0 in a left neighborhood(T − ε2, T ] of T. If we take ε =
min (ε1, ε2) , then−b1p1 + b2p2 < 0 and c1p1 − b3p3 < 0 on (T − ε, T ). Arguing
as in the first case, we see thatu (t) = v (t) = 0 on [0, T ] andy1, y2, y3 are given by
(3.4) .

3.−b1+b2 < 0, c1−b3 > 0. By (2.4) , (−b1p1 + b2p2) (T ) < 0 and(c1p1 − b3p3) (T ) >
0, so there existε1, ε2 > 0 such that−b1p1+b2p2 < 0 on(T−ε1, T ] andc1p1−b3p3 > 0
on (T − ε2, T ]. Let ε = min (ε1, ε2) . On (T − ε, T ] we have both−b1p1 + b2p2 < 0
andc1p1− b3p3 > 0, thereforeu = 0 andv = 1 on (T − ε, T ]. The adjoint system(2.3)
becomes 




p2 (t) = e−a2(T−t)

p′1 = −a1p1 − y3 (c1p1 − b3p3)
p′3 = −a3p3 − y1 (c1p1 − b3p3) ,

(3.6)

for t ∈ (T − ε, T ]. Put

θ = inf {t ∈ [0, T ] , (c1p1 − b3p3) (s) > 0, (∀) s ∈ (t, T ]} . (3.7)

If θ = 0, thenv = 1, (∀) t ∈ [0, T ] . In addition, since−b1p1+b2p2 is monotonically
increasing on(T − ε, T ], we have(−b1p1 + b2p2) (t) < 0, t ∈ [0, T ] and consequently
u (t) = 0, t ∈ [0, T ] .

If θ > 0, then(c1p1 − b3p3) (t) > 0, (∀) t ∈ (θ, T ], v (t) = 1, (∀) t ∈ (θ, T ], and

c1p1 (θ)− b3p3 (θ) = 0. (3.8)
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But the function−b1p1 + b2p2 is monotonically increasing on(T − ε, T ]; this implies
that (−b1p1 + b2p2) (t) < 0, t ∈ (T − ε, T ], so (−b1p1 + b2p2) (t) < 0 holds on the
whole (θ, T ]. Thenu (t) = 0 on (θ, T ] and the adjoint system(3.6) is applicable even
on (θ, T ]. Repeating the above reasoning concerning the monotonicity of−b1p1 + b2p2

(usingθ instead ofT ), we find that−b1p1 + b2p2 < 0 in a left neighborhood(θ − ε3, θ]
of θ. The optimal controlu is still 0 on (θ − ε3, θ].

To findv on (θ− ε3, θ], we study the monotonicity ofc1p1− b3p3. System(2.3) can
be written as 




p′1 = −a1p1 − y3v (c1p1 − b3p3)
p′2 = a2p2

p′3 = −a3p3 − y1v (c1p1 − b3p3) ,
(3.9)

for t ∈ (θ − ε3, θ]. One obtains

(c1p1 − b3p3)
′ = −a1c1p1 + a3b3p3+

+v (b3p3 − c1p1) (c1y3 − b3y1) , t ∈ (θ − ε3, θ].

By (3.8) we get

(c1p1 − b3p3) (t) =

∫ θ

t

(a1c1p1 − a3b3p3) (s) ds+

+

∫ θ

t

v (s) (c1p1 − b3p3) (s) (c1y3 − b3y1) (s) ds, t ∈ (θ − ε3, θ).

Since

(c1p1 − b3p3) (s) → 0, (a1c1p1 − a3b3p3) (s) → b3 (a1 − a3) p3 (θ) ,

as s → θ − 0, it follows that c1p1 − b3p3 < 0, t ∈ (θ − ε3, θ). Thus v = 0 for
t ∈ (θ − ε3, θ].

The adjoint system has the form(3.3) on (θ− ε3, θ] and the first case can be applied
to obtain thatu (t) = v (t) = 0, t ∈ [0, θ] . We conclude thatu = 0 on [0, T ] andv
admits a unique switching pointθ ∈ (0, T ) , that is

v (t) =

{
0, t ∈ [0, θ]
1, t ∈ (θ, T ].

(3.10)

Therefore, in case 3,u = 0 on [0, T ] andv has at most one switching pointθ ∈
(0, T ) , which can be found from equation(3.8) . If there is no switching point forv,
then v = 1 on [0, T ] . If there exists a unique switching pointθ, then v is given by
(3.10) . We say thatv is a bang-bang control.

4. b1 = b2, c1 − b3 < 0. Then,(∃) ε2 > 0 such that(c1p1 − b3p3) (t) < 0, (∀) t ∈
(T − ε2, T ]. Thus,v = 0 on (T − ε2, T ] and the adjoint system has the form





p′1 = −a1p1 − b1y2u (−p1 + p2)
p′2 = a2p2 − b1y1u (−p1 + p2)

p′3 = −a3p3,
(3.11)
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for t ∈ (T − ε2, T ]. Since

(−b1p1 + b2p2)
′ = b1[(a1p1 + a2p2) + b1u (y2 − y1) (p2 − p1)],

we can easily see that−b1p1 + b2p2 < 0 in a small left neighborhood(T − ε1, T ] of T.
As in the first case, it follows thatu (t) = v (t) = 0, t ∈ [0, T ] and the optimal state is
given by(3.4) .

5. b1 = b2, c1 = b3. Integrating system(2.3)− (2.4) , we find

(−b1p1 + b2p2) (t) = b1 (−p1 + p2) (t) =

= b1

∫ T

t

[−a1p1 − a2p2 + b1u (y2 − y1) (p1 − p2)− b3y3v (p1 − p3)] (s) ds.

Since−a1p1 − a2p2 → −a1 − a2, p1 − p2 → 0, andp1 − p3 → 0 ass → T − 0, there
exits ε1 > 0 such that(−b1p1 + b2p2) (t) < 0, (∀) t ∈ (T − ε1, T ]. On this interval
u (t) = 0.

Similarly,
(c1p1 − b3p3) (t) = b3 (p1 − p3) (t) =

= b3

∫ T

t

[a1p1 − a3p3 + b3v (y3 − y1) (p1 − p3)− b1y2u (p1 − p2)] (s) ds

and therefore there is a neighborhood(T − ε2, T ] of T, wherec1p1 − b3p3 < 0 and thus
v = 0. We continue like in the first case to conclude thatu = v = 0 on [0, T ] .

6. b1 = b2, c1−b3 > 0. There existsε2 > 0 such thatc1p1−b3p3 > 0 on(T −ε2, T ].
Let θ be defined by the equality

θ = inf{t ∈ [0, T ] , (c1p1 − b3p3) (s) > 0, (∀) s ∈ (t, T ]}. (3.12)

Thenv (t) = 1, (∀) t ∈ (θ, T ] and

(c1p1 − b3p3) (θ) = 0. (3.13)

From the adjoint system we deduce

(−b1p1 + b2p2) (t) = b1 (−p1 + p2) (t) =

= −b1

∫ T

t

[a1p1 + a2p2 + b1u (y1 − y2) (p1 − p2) + y3(c1p1 − b3p3)] (s) ds,

hence−b1p1+b2p2 < 0 on a left neighborhood(T−ε1, T ) of T andu is0 on(T−ε1, T ].
One repeats the reasoning of the third case to conclude thatu = 0 on [0, T ] , while v
admits at most one switching point. If such a timeθ exists in(0, T ) , then

v (t) =

{
0, t ∈ [0, θ]
1, t ∈ (θ, T ].
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(The controlv is bang-bang.) If not, thenv = 1 on [0, T ] .

7.−b1 + b2 > 0, c1 − b3 < 0. We can chooseε > 0 such that−b1p1 + b2p2 > 0 and
c1p1 − b3p3 < 0 on (T − ε, T ]. Then,u = 1 andv = 0 on (T − ε, T ]. Denote

τ = inf {t ∈ [0, T ] , (−b1p1 + b2p2) (s) > 0, (∀) s ∈ (t, T ]} . (3.14)

Obviously,u (t) = 1 on (τ, T ] and

(−b1p1 + b2p2) (τ) = 0. (3.15)

Remark that(2.3) implies:

(−b1p1 + b2p2)
′ = a1b1p1 + a2b2p2+

+u(b1y2 − b2y1) (−b1p1 + b2p2) + vb1y3(c1p1 − b3p3), (∀) t ∈ [0, T ] . (3.16)

Now, by(3.1) , (3.2) and(3.15) , we infer that−b1p1 + b2p2 is a monotonically increas-
ing function in a neighborhood ofτ. So, if t < τ, t close toτ, we have(−b1p1 + b2p2) (t) <
0. To study the form ofu andv on [0, τ ] , it is enough to observe that one of the following
situations holds:

- if (c1p1 − b3p3) (τ) < 0, then case 4 can be applied (forτ instead ofT ), to deduce
thatu (t) = v (t) = 0 on [0, τ ] .

- if (c1p1−b3p3) (τ) = 0, then case 5 (forτ instead ofT ) implies thatu (t) = v (t) =
0 on [0, τ ] .

- if (c1p1− b3p3) (τ) > 0, then we can invoke case 6 to conclude thatu = 0 on [0, τ ]
andv has at most one switching pointθ0 in [0, τ), i.e. eitherv = 1 on [0, τ ] or

v (t) =

{
0, t ∈ [0, θ0]
1, t ∈ (θ0, τ ].

Therefore,u has at most one switching pointτ ∈ [0, T ) given by(3.15) . If τ = 0,
thenu = 1 on [0, T ] . If τ > 0, thenu is bang-bang, namely

u (t) =

{
0, t ∈ [0, τ ]
1, t ∈ (τ, T ].

(3.17)

We now show thatv has at most a finite number of switching points in the subinterval
[τ, T ] . Indeed, denotingz = −b1p1 + b2p2 and w = c1p1 − b3p3, one derives that
(z, w, p1) is a solution of the linear differential system with continuous coefficients in
each interval whereu andv are constant:





z′ = [a2 + u (b1y2 − b2y1)] z + vb1y3w + (a1 + a2) b1p1

w′ = −c1y2uz + [−a3 + v (b3y1 − c1y3)] w + (a3 − a1) c1p1

p′1 = −y2uz − y3vw − a1p1.

It follows that no component of a nontrivial solution can vanish in a convergent set
of points{ti} , and that the distance between two consecutive valuesti wherez, w or
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p1 vanishes is strictly positive. Consequently,c1p1 − b3p3 < 0 on the whole[τ, T ] or
c1p1 − b3p3 has a finite number of zeros in the subinterval[τ, T ] . In the first situation
v = 0 on [τ, T ] and, using the above discussion, we have in factv = 0 on [0, T ] . If the
second situation takes place, letθ1 < θ2 < ... < θn be the zeros ofc1p1− b3p3 in [τ, T ] .
Then,v is bang-bang and has one of the following forms:

v (t) =





0, t ∈ [θn, T ]
1, t ∈ (θn−1, θn)

.............
1, t ∈ (θ1, θ2)
0, t ∈ [0, θ1]

(3.18)

(if c1p1 − b3p3 < 0 on (τ, θ1] and(c1p1 − b3p3) (τ) ≤ 0) or

v (t) =





0, t ∈ [θn, T ]
1, t ∈ (θn−1, θn)

.............
0, t ∈ [θ1, θ2]
1, t ∈ (θ0, θ1)
0, t ∈ [0, θ0]

(3.19)

(if c1p1 − b3p3 > 0 on [τ, θ1) and0 < θ0 < τ ) or

v (t) =





0, t ∈ [θn, T ]
1, t ∈ (θn−1, θn)

.............
0, t ∈ [θ1, θ2]
1, t ∈ [0, θ1)

(3.20)

(if c1p1 − b3p3 > 0 on [τ, θ1) andθ0 = 0).

8.−b1+b2 > 0, c1−b3 > 0. In a left neighborhood(T−ε, T ] of T,−b1p1+b2p2 > 0
andc1p1 − b3p3 > 0. Then,u = v = 1 on (T − ε, T ]. Arguing as in the previous case,
we see thatu has at most one switching pointτ ∈ (0, T ) , while v has at most a finite
number of switching pointsθ0 < θ1 < ... < θn in [0, T ), whereθ0 belongs to[0, τ).
Hereτ is defined like in(3.14) and it verifies equation(3.15) . Moreover, ifτ = 0, then
u = 1 on [0, T ] and if τ ∈ (0, T ) , thenu has the form in(3.17) . The functionv has at
most one switching timeθ0 in [0, τ) and it is given by

v (t) =





1, t ∈ [θn, T ]
0, t ∈ (θn−1, θn)

.............
1, t ∈ (θ1, θ2)
0, t ∈ [0, θ1]

(3.21)
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(if c1p1 − b3p3 < 0 on (τ, θ1] and(c1p1 − b3p3) (τ) ≤ 0) or

v (t) =





1, t ∈ [θn, T ]
0, t ∈ (θn−1, θn)

.............
0, t ∈ [θ1, θ2]
1, t ∈ (θ0, θ1)
0, t ∈ [0, θ0]

(3.22)

(if c1p1 − b3p3 > 0 on [τ, θ1) and0 < θ0 < τ ) or

v (t) =





1, t ∈ [θn, T ]
0, t ∈ (θn−1, θn)

.............
0, t ∈ [θ1, θ2]
1, t ∈ [0, θ1)

(3.23)

(if c1p1 − b3p3 > 0 on [τ, θ1) andθ0 = 0).

9. −b1 + b2 > 0, c1 = b3. Obviouslyu (t) = 1 at least on a left neighborhood
(T − ε1, T ] of T. Since

(c1p1 − b3p3)
′ = b3 (a3p3 − a1p1)− b3y2 (−b1p1 + b2p2) + v (b3)

2 (y1 − y2) (p1 − p3)

on (T − ε1, T ], it follows that

lim
t→T−0

(c1p1 − b3p3)
′ (t) = b3 (a3 − a1)− b3 (−b1 + b2) y2 (T ) .

The form ofv depends on the sign of this limit. Denote byl the real number

l = a3 − a1 − (−b1 + b2) y2 (T ) . (3.24)

If l > 0, thenc1p1 − b3p3 is monotonically increasing in a neighborhood ofT, so it
is negative. The problem can be reduced to case 7.

If l < 0, thenc1p1−b3p3 is monotonically decreasing and consequently it is positive
in a neighborhood ofT. The problem reduces to case 8.

As a consequence of the above discussion, we can state our main result.

Theorem 3.1. Let a3 > a1, a2, b1, b2, b3, c1 be given positive constants,(u, v) be
the optimal control,(y1, y2, y3) be the optimal state, andp1, p2, p3 be the corresponding
adjoint variables. Then, we get the following cases:

I) −b1 + b2 ≤ 0, c1 − b3 ≤ 0. Thenu = v = 0 on [0, T ] and the optimal state is

y1 (t) = y0
1e

a1t, y2 (t) = y0
2e
−a2t, y3 (t) = y0

3e
a3t, t ∈ [0, T ] .
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II) −b1 + b2 ≤ 0, c1− b3 > 0. In this case,u = 0 on [0, T ] andv admits at most one
switching pointθ ∈ (0, T ) , which can be found from the equation(c1p1 − b3p3) (θ) =
0.

If there is no switching point forv, thenv = 1 on [0, T ] . If there is a unique switch-
ing timeθ, thenv is a bang-bang control, namely

v (t) =

{
0, t ∈ [0, θ]
1, t ∈ (θ, T ].

III) −b1 + b2 > 0, c1 − b3 < 0. Thenu has at most one switching pointτ ∈ (0, T )
andv has at most a finite number of switching pointsθ0 < θ1 < ... < θn in [0, T ), with
0 ≤ θ0 < τ andτ ≤ θ1 < ... < θn < T.

If there is no switching time foru, thenu = 1 on [0, T ] . Otherwise,u is bang-bang:

u (t) =

{
0, t ∈ [0, τ ]
1, t ∈ (τ, T ],

whereτ ∈ (0, T ) is the switching time ofu, given by(−b1p1 + b2p2) (τ) = 0.
If there is no switching point forv, thenv = 0 on [0, T ] . Otherwise,v is a bang-

bang control. It has one of the forms(3.18) , (3.19) , (3.20) , according to the sign of
c1p1 − b3p3 on [τ, θ1) (specified above).

IV) −b1 + b2 > 0, c1 − b3 > 0. Then,u has the same form as in case III andv has
at most a finite number of switching points in(0, T ) . If there is no switching time, then
v = 1 on [0, T ] . If θ0 < θ1 < ... < θn are its switching points (i.e.v is bang-bang), then
0 ≤ θ0 < τ andτ ≤ θ1 < ... < θn < T. The functionv is given by(3.21) , (3.22) or
(3.23) , according to the sign ofc1p1 − b3p3 on [τ, θ1).

V) −b1 + b2 > 0, c1 = b3. Then the problem can be reduced to case III or case IV,
according to the sign ofl = a3 − a1 − (−b1 + b2) y2 (T ) .

4. Conclusions

Under the above conditions, if−b1 + b2 ≤ 0, c1 − b3 ≤ 0, then the maximization of
the number of individuals is obtained if the three species are completely separated from
each others.

If −b1 + b2 ≤ 0, c1 − b3 > 0, then the total size of the three species is maximized if
the carnivorous and herbivorous species are completely separated, while the plant and
the herbivorous species are either not separated at all, or completely separated in the
beginning (on a time interval[0, θ]) and next completely not separated (on(θ, T ]).

If −b1 + b2 > 0, then the herbivorous and carnivorous populations should be either
completely not separated on the whole time interval[0, T ] , or separated on[0, τ ] and
not separated on(τ, T ], whereτ is the unique switching point foru.

The herbivorous population and the plant are alternatively completely separated and
completely not separated, on a finite number of time subintervals. Ifc1 < b3, then the
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herbivorous species and the plant can be also completely separated on[0, T ] or at least
in a left neighborhood of the final timeT. If c1 > b3, then the herbivorous species and
the plant are not separated at all, either on the whole interval[0, T ] or at least on a left
neighborhood ofT.
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