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Abstract

An optimal control problem is studied for a Lotka-Volterra system of three dif-
ferential equations. It models an ecosystem of three species which coexist. The
species are supposed to be separated from each others. Mathematically, this is
modeled with the aid of two control variables. Some necessary conditions of opti-
mality are found in order to maximize the total number of individuals at the end of

a given time interval.
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1. Introduction

We study the Lotka-Volterra three populations system of differential equations

Y1 =1 (a1 — b1y + 1)
Yy = Yo (—ag + bayn) (1.1)
vs = ys (az — b3yr),

wherea;, b;, c; (i = 1,2, 3) are positive constants.
It is a nonlinear mathematical model of an ecosystem consisting of a herbivorous
species (the number of individuals of whichyig, a carnivorous oney{), and of plants,
the quantity of which is denoteg .
The same model can also be applied to an ecosystem of a pest speci@pledator
(y2), and a plantys).
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Obviously, for every initial valugy; (0),y-(0),y5(0)), the above system has a
unique solution(yy, y2, y3) which is continuous of0), +o0c) ([7]). A first integral of the

system is
(42 (1)) (ys ()" " = C,
whereC' is a constant depending on the initial valug$)(

C = (y2(0))™ (y5 (0))™.

It is easy to see that, supposing also the conditica (as/b2) — (as/bs) > 0, the
componentg, y» of the solution are bounded, both from above and from below:

limsup y; () < +o0, litm infy; (¢) > 0, limsup ys () < 400, litm inf yo (t) > 0,

t—o00 t—o0

and as a consequenday sup y; (t) < +oo ([7]).

t—o00

Observe thatif;; = 0, system(1.1) reduces to the well-known prey-predator system
(see for exampl&)). If y; = 0, then the equations two and three become independent.
In the absence of the herbivorous species, the quantity of plants grows exponentially,
while the predator goes to extinction.

We now introduce in the ecosystem some control variablaadv, whose role is
to separate (partially or totally) the three populations from each other. Denate-hy
the rate of separation between the herbivorous and the carnivorous spegjesnd
by 1 — v the rate of separation between the herbivorous species and the plants. The
functionsu, v take values in the intervél, 1] . Then the controlled system is

Yy = y1 (a1 — biyou + c1y3v)
Yy = Yo (—ag + bayyu) (1.2)
ys = y3 (asz — bsy1v) .

We study it on a finite time intervad, 7'] . One imposes the initial conditions:

y1(0) =y, 12 (0) = y3, 3 (0) = 5. (1.3)

If 49 > 0,7 = 1,2,3, then the Cauchy probleifi.2) — (1.3) has a unique positive
solution, which is bounded 00, 7'] provided thatr > 0.

Whenu = 0, the rate of separation between the herbivoray¥ &nd carnivorous
(y2) species id, so thaty; andy, are completely separated, that is they do not interact.
In this case, the first equation in the system is independent,ofvhile the second
equation does not depend gn Whenu = 1, it follows that the rate of separation(s
so thaty; andy, are not separated at all. These are two extreme situations. Generally,
the interaction betweepn andys is controlled at least partially. Similarly far= 0 and
forv = 1.

We intend to maximize the total population at the end of the time inteévdl] .
Hence the functional we have to maximizeyigT") + y» (T') + y3 (T') , i.e. the control
problem is

Minimize {—y: (T) = y2 (T) — ys (T)}, (1.4)
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where the contro{u, v) belongs to the set
U= {(u,v):[0,T] — R? u,v measurable,

0<u(t)<1,0<w(t) <1, a.e.onl0,T]}, (1.5)

while (y1, y2, y3) is the solution of the Cauchy problefh.2) — (1.3) .

The boundedness @i, s, y3 allows us to use Theorem 1.2, pp. 43 in V. Barbu’s
book (5]), to obtain the existence of an optimal contfal v) in the class of bounded
measurable functions.

In Section 2, Pontrjagin’s maximum principle and its attendant transversality condi-
tion are invoked to find the optimal contr@l, v) . We deduce that andv are bang-bang
control and their values depend on the signs of the functidng; +bsp, ande, p; —bsps
respectively, wherépy, p», p3) is the solution of the adjoint system. The discussion of
these signs is the subject of Section 3. One establishes thus the final form of the optimal
control (u, v) , depending on the signs 6f — b, andc; — bs. Section 4 contains some
conclusions.

For a prey-predator systems(= 0), a similar problem was treated jh0] . In this
case, we have a unique control variable[0,7] — R, 0 < u (t) < 1 a.e. on0, 7] . If
the sizes of the prey and predator populations depend also on their position in the habitat,
the dynamics of the ecosystem is given by a nonlinear reaction-diffusion systét, In
one solves the problem of maximization of the total density of the two populations.

An optimal time problem for systerfi.1) is the subject of7]. A control variable
u is introduced in the ecosystem, actingmnas a chemical pesticide. Thus we have a
double struggle against the herbivorous species: a biological one and a chemical one.

In [6] , the authors present several predator-prey PDE models and review recent re-
sults concerning the existence of positive steady-state solutions, of non-constants posi-
tive solutions, bifurcation, and so on. [8], a discrete prey-predator system is consid-
ered. The bifurcation theory is applied to show that the system can undergo fold, flip
and Neimark-Sacker bifurcations. Necessary conditions and sufficient conditions for in-
ternal stabilizability of a Holling type Il prey-predator system are givejzjnOptimal
control problems for age-structured population dynamics models are preseiiitéd in
3]

2. Necessary optimality conditions

We find some necessary optimality conditions in order to maximize the total number
of individuals at the end of the given time interyal 7'|. In other words, we are lead

to consider the following optimal control problem: find the contralv) € ¢/ and the
corresponding statéy;, y2, y3) of the system(1.2) — (1.3), which minimize the cost
functional

D (y1,y2,y3,u,v) = —y1 (T) — y2 (T) —y3 (1) . (2.1)



126 N.C. Apreutesei

To solve this problem, one uses Pontrjagin’s maximum principle. Denote

U1 y1 (a1 — biyau + c1ysv) ydi
y=1 v |, flyuv)= Yo (—ag + bayyu) , p=1 P2
Y3 ys (a3 — b3y1v) D3

Herep is the adjoint variable, that is the solution of the associated adjoint sy&tém
below. The Hamiltonian function is

H (p,y,u,v) = p1y1 (a1 — biypu + c1ysv) +

+paya (—az + bayr1u) + pays (as — bsy1v) , (2.2)
while the adjoint system is

/

p1 = —a1p1 — Yot (—bip1 + bapa) — y3v (c1p1 — bsps)
Py = azpz — yru (=bipy + bapa) (2:3)

The transversality conditions are

Recall that, ifH is a real Hilbert space with the scalar product) , then the normal
cone to the closed and convex sub&eC H at the point: is defined by

Nk (a)={ve H, (v,a—z)>0, (V)z e K}.

If Njg.1p2 (u,v) is the normal cone t@, 1]* at the point(u, v) andf, , is the adjoint of
the Jacobian matrix, , € L (R? R?), the optimality condition

f:,v (y7 U, U) w4 (t) € ‘]\[[0,1]2 (U, U) a.e on(07 T) )

(see for examplés]) becomes

P
—biy1y2  bath o 0
< C1Y1Y3 0 —bsyiys Z € N2 (w,v) ae.on(0,7).  (2.5)

But Ny, jj2 (u,v) = N1y (u) X Ny (v) and

0, ue (0,1)
Nio1j (u) = R_,u=0
R+, u = 1

Thus the inclusiori2.5) implies that

w(t) = § O o (=0ipr+bopy) <0
L, if g1y (—bip1 + bapa) > 0
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and .
v (t) = { 0, if y1ys (c1pr — bsps) <0
1, if y1ys (cipr — bsps) > 0.

Sincey; (t) > 0, (V)t € [0,7], (V)i = 1,2,3, we get

B 0, if — blpl + bzpz <0, a.e.t € (O,T)
u(t) = { 1 i — bupy + baps > 0, aent € (0,7), (2.6)
. 0, if c1p1 — b3p3 < 0, a.e.t (O,T)
v(t) = { L, if c1p1 — bsps > 0, a.e.t € (0,7). (2.7)

In the next section, we discuss the form of the optimal cortiol) according to
the Signs Of—b1p1 + bgpg and01p1 — b3p3.

3. The form of the optimal control

We restrict ourselves to the case> a;. Observe that

{ 11w (—bipr + bapa) > 0, you (—bipy + bapa) > 0, (3.1)
Y10 (c1p1 — bsps) > 0, ysv (cipr — bsps) > 0, '

a.e.on(0,7).By (2.3) — (2.4), we can easily deduce that

T
pr(t) = e T + / [y2t (—bipy + bapa) + ysv (c1pr — bsps)](s)e” T *)ds}
t

and analogously fop,, p5. Therefore,
pr(t) > e T =1 pa(t) >0, ps () > e =1, t€(0,7). (3.2)

By (2.3) it follows thatp;, andps are nonincreasing a.e. @ 7] . We have the following
cases:

1. —b1+by < 0,¢1—b3 < 0. Inthis case(—b1p; + bapo) (T) < 0and(cip; — bsps) (T) <
0. Hence, there exists > 0 such that both-b,p; + baps < 0 @andeip; — bzps < 0 on
(T'—¢,T]. According to(2.6) , (2.7) , we haveu (t) = v (t) =0, (V)t € (T —¢,T] and
consequently, systef2.3) — (2.4) becomes

pll = —a1pPq, p,2 = Q2P2, p/3 = —Aasps, t e (T - 5,T]7 (3 3)
pi(T)=1,i=1,2,3. '

This yields

p1(t) = e T po (1) = e 2T pa(t) = 3T (W)t e (T —e,T].
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Since(—b1p1 + bgpg)/ = alblpl + a2b2p2 > 0 on (T — €,T], the inequality—blpl +
bop2 < 0 and the equality: (t) = 0 hold on the whole intervdD, 7] . Similarly, foras >
ai and01 < bg, (C1p1 — bgpg), > a1cq (pg — pl) > (0on (T—g,T] Then,Clpl—bgpg <0
holds on[0, 7] andv (t) = 0, t € [0, T].

The optimal state can be realized by syst@m) for « (t) = v (t) = 00on|0, 7] :

y1 (t) = y?e‘“t, Yo (t) = yge’”t, ys (t) = yge%t, te|0,7T]. (3.4)

2. —b; + by < 0, ¢c; = bs. As in the previous case, there exisis> 0 such that
—bip1 + bepa < 00ON(T — &1, T], sou(t) = 0on (T — &1, T]. The adjoint system has
the form

P (t) = e—a2(T—t)
P = —a1p1 + baysv (—p1 + ps3) (3.5)
Py = —asps + bsy1v (—p1 + ps3) .

Integrating the last two equations and usi@gt) , one obtains

(c1py — baps) (t) = bs (p1 — p3) (1) =

T
. / lasps — axpr -+ bsv (s — 1) (—p1 + ps)] (5) ds.
t

Hencecip; — bsps < 0 in a left neighborhoodT — &5, 7] of T. If we takee =

min (£1,€3), then —byp; + bepy < 0 @andeypy — bsps < 0 on (T — ¢,7T). Arguing

as in the first case, we see thaft) = v (t) = 0 on [0, 7] andy,, y», y3 are given by
(34).

3. —bi1+by < 0, C1—b3 > 0. By (24) , (—b1p1 + bgpg) (T) <0 and(clpl — b3p3) (T) >
0, so there exist, e, > 0 such that-b,p; +bops < 00N (T —ey, T andeyp; —bzps > 0
on (T — &5, T]. Lete = min (g1,22). On (T — &, T] we have both-b;p; + bapy < 0
andcip; — bsps > 0, thereforeu = 0 andv = 1 on (T — ¢, T]. The adjoint systen2.3)
becomes
Ds (t) — e—GQ(T—t)
Pl = —a1p1 — Y3 (c1p1 — b3ps) (3.6)

/

Py = —asps — y1 (c1p1 — bsps) ,
fort € (T'—e,T]. Put
O =inf{t € [0,T], (c1p1 — bsp3) (s) >0, (V)s € (¢t,T]}. (3.7)

If & =0, thenv =1, (V)¢ € [0,T]. Inaddition, since-b;p; + byp, is monotonically
increasing on(T" — ¢, T], we have(—bip;, + baps) (t) < 0, ¢ € [0, 7] and consequently
u(t)=0,tel0,T].

If & > 0, then(cipy — bsps) (t) >0, (V)t € (0,T],v(t) =1, (V)t € (0,7T],and

e1p1 (6) — baps (6) = 0. (3.8)
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But the function—b,p; + baps is monotonically increasing ofi” — ¢, T'); this implies
that(—blpl + bgpg) (t) <0,t € (T — g, T], SO (—b1p1 + bgpg) (t) < 0 holds on the
whole (0, T). Thenu (t) = 0 on (6, 7] and the adjoint systert8.6) is applicable even
on (6, T]. Repeating the above reasoning concerning the monotonicitygf; + baps
(usingd instead ofT"), we find that—b;p; + bepe < 0 in a left neighborhoodd — &3, 6]
of 6. The optimal controk is still 0 on (6 — €3, ].

To findv on (6 — 3, 0], we study the monotonicity af p; — bsps. System(2.3) can
be written as

/

Py = —a1p1 — y3v (c1p1 — bsps)
Py = G2pa (3.9)
Py = —asps — y1v (c1p1 — bsps)
fort € (0 — €3, 6]. One obtains

(c1p1 — b3p3), = —ajc1p1 + asbsps+
+v (bsps — ClPl) (Cl?/3 — b3y1) S (9 — €3, 9]-
By (3.8) we get

9
(c1p1 — baps) (1) = / (ayc1pr — asbsps) (s) ds+
t

0
n / 0(5) (c1p — bps) (5) (c1ys — baya) () ds, £ € (6 — 25, 0).
Since

(c1p1 — b3p3) (s) — 0, (arcip1 — asbsps) (s) — bs (a1 — a3) p3 (0),

ass — 0 — 0, it follows thatc;p; — bsps < 0,t € (6 — €3,0). Thusv = 0 for
t e ((9 — €3, 9}

The adjoint system has the for®.3) on (6 — 3, 6] and the first case can be applied
to obtain thatu (t) = v (t) = 0, t € [0,60]. We conclude that: = 0 on [0,7] andv
admits a unique switching poifite (0,7, that is

v (t) = { 1(7” [ &?% (3.10)

Therefore, in case 3y = 0 on [0,7] andv has at most one switching poifite
(0,7"), which can be found from equatidi.8) . If there is no switching point fop,
thenv = 1 on [0,7]. If there exists a unique switching poifit thenwv is given by
(3.10) . We say thav is a bang-bang control.

4. b = bQ, cp — b < 0. Then,(EI) g9 >0 such thal(clpl — bgpg) (t) < O, (V)t €
(T'— &9, T]. Thus,u = 0 on (T — &5, T| and the adjoint system has the form

Py = —a1p1 — biyau (—p1 + pa)
Ph = agpa — biyau (—p1 + p2) (3.11)

!/
b3 = —asps,
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fort € (T — ey, T)]. Since

(=bip1 + bapa) = bi[(a1p1 + agpa) + biu (y2 — v1) (p2 — p1)),

we can easily see thatb;p; + baps < 0in a small left neighborhoo@l” — &, T of T.
As in the first case, it follows that (¢) = v (t) = 0, ¢t € [0, 7] and the optimal state is
given by(3.4).

5. b; = by, ¢; = bs. Integrating systeni2.3) — (2.4) , we find

(=bip1 + bapa) (t) = b1 (—=p1 +p2) (t) =

T
= b1/ [—aip1 — agps + biu (2 — y1) (p1 — P2) — bsysv (p1 — p3)] (s) ds.
t

Since—aip; — asps — —ay — as, p1 — p2 — 0,andp; — ps — 0ass — T — 0, there
exitse; > 0 such that(—byp; + baps) (t) < 0, (V)t € (T — €1, 7). On this interval
u(t) = 0.
Similarly,
(cip1 — baps) (t) = b3 (p1 — p3) (t) =
T
= b3/ la1p1 — asps + bsv (y3 — y1) (p1 — p3) — biyou (p1 — p2)] (s) ds
t

and therefore there is a neighborhddd— ¢, 7] of T, wherec;p; — bsps < 0 and thus
v = 0. We continue like in the first case to conclude that v = 0 on|[0,7].

6. by = by, ¢ —bz > 0. There exists, > 0 such that;p; —bsps > 0 on (T —ey, T.
Let d be defined by the equality

0 =inf{t € [0,T], (c1p1 — bsps) (s) > 0,(V)s € (¢,T]}. (3.12)
Thenv (t) =1, (V)t € (6,7] and
(cip1 — bsps) (0) = 0. (3.13)
From the adjoint system we deduce

(=bip1 + bap2) (t) = by (—p1 +p2) (t) =

T
= —b; / la1p1 + as2ps + biu (y1 — y2) (01 — p2) + ys(cipr — bsps)] (s) ds,
t

hence—b;p;+byp, < 0 0n aleft neighborhoodl’—¢, T') of T'anduis0on (T —e, T).
One repeats the reasoning of the third case to concludestkad on [0, 7], while v
admits at most one switching point. If such a tithexists in(0,7") , then

0, t €[0,6]
”(t):{ 1, te (0,7).
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(The control is bang-bang.) If not, them= 1 on|[0, 7.

7. —bi +by >0, ¢, — by < 0. We can choose > 0 such that-b,p; + bap, > 0 and
c1p1 — bsps <0on(T —¢,T]. Then,u = 1 andv = 0 on (7T — ¢, T]. Denote

7 = inf {t S [07T] , (—blpl + b2p2) (S) > 0, (V) S € (t,T]} . (3.14)
Obviously,u (t) = 1 on(r,7] and
(=bip1 + bap2) (1) = 0. (3.15)

Remark that2.3) implies:
(=b1p1 + baps)' = arbipy + agbapa+

Fu(biya — bayr) (—bip1 + bapz) + vbiys(cipr — bsps), (¥)t € [0,7]. (3.16)

Now, by (3.1), (3.2) and(3.15) , we infer that—b; p; + bap, is @ monotonically increas-
ing function in a neighborhood af So, ift < 7, close tor, we have(—b,p; + baps) (1) <
0. To study the form of: andv on |0, 7] , it is enough to observe that one of the following
situations holds:

-if (c1p1 — baps) (7
thatu (t) =v (t) =0

-if (c1p1 —bsps) (7
0onl0,7].

-if (cip1 — bsps) (1) > 0, then we can invoke case 6 to conclude that 0 on [0, 7]

andv has at most one switching poififin [0, 7), i.e. eitherv = 1 on [0, 7] or

v(t)—{ 0, t €[0,6)]

) < 0, then case 4 can be applied (fomstead ofl"), to deduce
on [0, ]
) = 0, then case 5 (for instead ofl") implies thatu (t) = v (t) =

1, t e (00,7’].

Thereforeu has at most one switching pointe [0, 7') given by(3.15) . If 7 = 0,
thenu = 10on[0,7]. If 7 > 0, thenu is bang-bang, namely

w(t) = { 107’566([707’% (3.17)

We now show that has at most a finite number of switching points in the subinterval
[7,T]. Indeed, denoting = —byp; + bops andw = c¢;p; — bsps, one derives that
(z,w,p;) is a solution of the linear differential system with continuous coefficients in
each interval where andv are constant:

Z/ = [GQ +u (b1y2 — bzyl)] z 4+ vblygw -+ (a1 + GQ) b1p1
w' = —crypuz + [—az + v (bsyr — crys)]w + (a3 — a1) ey

P = —Yauz — Ysvw — a1p;.

It follows that no component of a nontrivial solution can vanish in a convergent set
of points{¢;} , and that the distance between two consecutive valuaberez, w or
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p1 vanishes is strictly positive. Consequentlyp; — bsp; < 0 on the whole[r, T or

c1p1 — bsps has a finite number of zeros in the subinteriall’] . In the first situation
v = 0on|[r,T] and, using the above discussion, we have infaet0 on [0, 7] . If the

second situation takes place, fet< 0, < ... < 6,, be the zeros of;p; — bsps in [7,T].

Then,v is bang-bang and has one of the following forms:

0, t€0,,T1]
1, t € (0,-1,0,)
v(t) =4 (3.18)
1, t € (64,6,)
0, t € 0,6

(|f c1p1 — bgpg < 0on (T, 91} and(clpl — b3p3) (T) < 0) or

(0, t€e[0,,T]
1, t € (0,-1,0,)
v (t) = < 0, t € (61, 0] (3.19)
1, t € (6y,61)
0, t € [0, 6]

(|f c1p1 — bgpz > 00N [T, 91) and0 < 6y < T) or

0, t € [0,,T]
1, t € (0h1,0n)
v(t) =<4 (3.20)
0, t € [6q,05]
1, t€[0,60,)

(|f c1p1 — bsps > 00N [T, 91) andd, = 0)

8. —bi+by > 0,c1—bs > 0. Inaleft neighborhood?’—¢, T'| of T', —byp1 +baps > 0
andcip; — bzps > 0. Then,u = v = 1 on (T — ¢, T]. Arguing as in the previous case,
we see that: has at most one switching pointe (0,7"), while v has at most a finite
number of switching point§, < ¢, < ... < 6,,in [0,T), whered, belongs to[0, 7).
Herer is defined like in(3.14) and it verifies equatiofB.15) . Moreover, ifr = 0, then
u=1on[0,7]and ifr € (0,7), thenu has the form in(3.17) . The functionv has at
most one switching timé, in [0, 7) and it is given by

1, t €0,,T]
0,t€ (0p1,60,)
v(t) =4 (3.21)
1, t € (64,0-)
0, t€[0,6y
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(if c1p1 — bsps < 0 on(7,60:] and(cipy — bsps) (7) < 0) or

(1, t€[0,,T]
0, t€ (0,1,60,)

oty=d i (3.22)

0, t € [0, 6]

\

(lf c1p1 — b'g,pg > (0on [7', 91) and0 < 90 < T) or

L, te [0, T]
0, t€ (0,-1,60,)
v(t) =4 (3.23)
0, t € [01,65]
1, t€10,0y)

(lf c1p1 — b3p3 > (0on [’7‘7 91) and00 = O)

9. —by + by > 0, c; = bs. Obviouslyu (¢) = 1 at least on a left neighborhood
(T'—¢e1,T] of T. Since

(c1p1 — 53293), = b3 (agps — a1p1) — bsya (—bip1 + bapa) + v (b3)2 (y1 — v2) (01 — ps3)

on (T — &1, 7], it follows that
t—lg}l[) (c1pr — bsps)' (t) = bs (a3 — ay) — by (=by + be) y2 (T) .
The form ofv depends on the sign of this limit. Denote bihe real number
l=a3—a; — (=by + b))y (T). (3.24)

If I > 0, thencip; — bsps is monotonically increasing in a neighborhoodigfso it
is negative. The problem can be reduced to case 7.

If I < 0,thenc,p; — bsps is monotonically decreasing and consequently it is positive
in a neighborhood of’. The problem reduces to case 8.

As a consequence of the above discussion, we can state our main result.

Theorem 3.1.Let as > a4, as, by, by, b3, c; be given positive constantgy, v) be
the optimal control(y,, y2, y3) be the optimal state, and, p», p; be the corresponding
adjoint variables. Then, we get the following cases:

[) —by + by <0,¢; — b3 <0. Thenu = v = 00n|[0,7] and the optimal state is

yi (1) = ye™, yo (t) = yoe ™', ys (1) = yge™*, t € [0, 7).
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) —by + by <0, ¢y — b3 > 0. In this caseu = 0 on [0, 7] andv admits at most one
switching pointd € (0,7") , which can be found from the equatién p; — bsps) (0) =
0.

If there is no switching point foo, thenv = 1 on [0, T'] . If there is a unique switch-
ing time#, thenv is a bang-bang control, namely

0, te€|0,6]
U(t):{ 1, t € (6, 7).

) —b; + by > 0, ¢; — by < 0. Thenu has at most one switching pointe (0,7")
andv has at most a finite number of switching poifis< 6, < ... < 6,,in [0,T"), with
0§90<Tand7‘§91<...<9n<T.

If there is no switching time fou, thenu = 1 on [0, 7] . Otherwisew is bang-bang:

0, tel0,7]
u(t):{ 1, te (r,T],

wherer € (0,T) is the switching time ofi, given by(—b;p; + baps) (7) = 0.

If there is no switching point for, thenv = 0 on [0, 7] . Otherwise,v is a bang-
bang control. It has one of the forni3.18), (3.19), (3.20), according to the sign of
c1p1 — bsps on|r, 0;) (specified above).

IV) —b; + by > 0, ¢c; — bg > 0. Then,u has the same form as in case Ill antas
at most a finite number of switching points(it 7°) . If there is no switching time, then
v=10n[0,T].If 6, < 6; < ... < 0, are its switching points (i.e: is bang-bang), then
0 <6y <7andr <6, <..<86,<T.The functionv is given by(3.21), (3.22) or
(3.23) , according to the sign afip; — bsps on|r,0;).

V) —b; + by > 0, ¢; = bz. Then the problem can be reduced to case lll or case 1V,
according to the sign df= a3 —a; — (—=by + b2) 42 (T) .

4. Conclusions

Under the above conditions, #b; + by < 0, ¢; — b3 < 0, then the maximization of
the number of individuals is obtained if the three species are completely separated from
each others.

If —b; + by <0, ¢; — b3 > 0, then the total size of the three species is maximized if
the carnivorous and herbivorous species are completely separated, while the plant and
the herbivorous species are either not separated at all, or completely separated in the
beginning (on a time interval, 4]) and next completely not separated (6n7).

If —b; + by, > 0, then the herbivorous and carnivorous populations should be either
completely not separated on the whole time intefoal’] , or separated of?, 7] and
not separated ofr, 7', wherer is the unique switching point far.

The herbivorous population and the plant are alternatively completely separated and
completely not separated, on a finite number of time subintervals. 4f b3, then the
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herbivorous species and the plant can be also completely separdtedoor at least

in a left neighborhood of the final timg. If ¢; > b3, then the herbivorous species and
the plant are not separated at all, either on the whole int@yal or at least on a left
neighborhood of".
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