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Abstract

A large variety of complex spatio-temporal patterns emerge from the processes
occurring in biological systems, one of them being the result of propagating phe-
nomena (see, for example [35]). This wave-like structures can be modelled via
reaction-diffusion equations. If a solution of a reaction-diffusion equation rep-
resents a travelling wave, the shape of the solution will be the same at all time
and the speed of propagation of this shape will be a constant. Travelling wave
solutions of reaction-diffusion systems have been extensively studied by several
authors from experimental, numerical and analytical points-of-view (see, for exam-
ple, [14], [16], [18], [22], [23], [24], [41], [45], [48], [49]).

In this paper we focus on two reaction-diffusion models for the dynamics of
the travelling waves appearing during the process of the cells aggregation. Using
singular perturbation methods to study the structure of solutions, we can derive
analytic formulae (like for the wave speed, for example) in terms of the different
biochemical constants that appear in the models. The goal is to point out if the
models can describe in quantitative manner the experimental observations.

AMS subject classification: 35B25, 35K57,92C37.
Keywords or Phrases: Reaction-diffusion systems, travelling waves, singular per-
turbation methods.
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1. Introduction

1.1. Biological background

One of the most important mechanisms of cell biology is the chemotaxis, the ability of
the cells to migrate towards regions of higher concentrations of a chemical attractant.
The cell migration is an important factor for cellular communication. Communication by
chemical signals determines how cells organize themselves and has an important role in
embryogenesis, development of nervous system, immunity, angiogenesis, inflammatory
diseases or metastasis. The competition between the diffusive dispersal of the chemical
attractant and the chemotactic aggregation can give rise to complex and varied geometric
patterns.

In a vast number of natural phenomena a key element is the propagation of some
substance, or some mechanical deformation like a travelling wave. Spatio-temporal wave
phenomena were observed, for example, in neuromuscular activity in heart tissue, wound
healing, tumor growth, embryology, cell-cell interaction, or in the aggregation in fields
of social amoebae. A particulary good biological example is provided by the species
Dictyostelium discoideum (Dd hereafter) which are able to alternate between unicellular
and multicellular forms. One reason for the interest in these cellular organisms was
caused by the fact that the processes of morphogenesis and pattern formation occur in
a similar manner as in many higher organisms. They are used as model for studying
cell motility and transduction, cell-type differentiation, and developmental processes.
Taking into account the experimental data for the biological processes that occur in this
organism (see, for example, [3], [10], [11], [15], [32], [36], [40]), there have been different
mathematical models describing the developmental cycle of Dd (see, for instance, [7],
[13], [19], [20], [28], [29], [30], [37], [38], [42], [47]).

Social amoebae Dd are soil organisms which feed on bacteria and multiply by binary
fission. Upon depletion of their food source, individual Dd cells aggregate to form, first,
hemisherical aggregates called mounds that evolve later to a functional multicellular
organism, the slug, and culminate in a fruiting body. This process of aggregation is
controlled by a signalling mechanism based in the propagation of a chemoattractant (that
is cyclic adenosine 3’5’-monophosphate, hereafter cAMP). A schematic description of
the signal transduction/relay process is the following (for more details see [2], [15], [33],
[38], [39], [42]). Some randomly located individual Dd, called pacemakers, begin to
secrete in a pulsatile manner cAMP which propagates outward as concentric or spiral
waves that spread through the population density. This extracellular signal, detected
by highly specific cAMP receptors of the surrounding cells, initiates a complex genetic
process determining which cells become relay competent. After the extracellular cAMP
binds to the receptors, the complex cAMP-receptor activate the adenylate cyclase via
G-proteins. The resulting receptor-adenylate cyclase complex catalyzes the conversion
of ATP (adenosine triphosphate) to intracellular cAMP, part of which is secreted into
the extracellular medium. Also, binding of receptors leads to a refractory period during
which the cell cannot respond to constant external cAMP concentration, but respond to
variations of cAMP concentration.
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There are many mathematical models describing different stages of Dd development.
Some of the most widely used models for cAMP propagation in early stage of aggrega-
tion are Martiel-Goldbeter’s model [33], Monk-Othmer’s model [34] and Tang-Othmer’s
model [39]. These models are able to account for the most relevant features of cAMP
signals during the cell aggregation process, namely the presence of autonomous oscil-
lations of cAMP, the relay of suprathreshold cAMP pulses, the existence of a refractory
period in which cells are unable to answer to additional stimuli. Travelling waves also
exist, for certain parameter domains, in model chemotaxis mechanisms such as proposed
by Keller and Segel [27] and Keller and Odell [25], [26]. However, none of these models
has a confirmed molecular background, as some of the features of the biological pro-
cesses are not totally measurable. Nevertheless, this temporary lack of knowledge of
these processes involved does not, we think, diminish the interest of a theoretical study
of a model, what is more if the results fit with the experimental data.

In a recent paper [31], we have focused on the mathematical analysis of two contin-
uum models for cAMP relay response, based on the kinetics rate laws of the Martiel-
Goldbeter model [33] and Goldbeter-Segel [17], respectively. Our goal was to study,
using singular perturbation methods, these models for cAMP wave propagation. We
have considered the one-dimensional spatial problem and we have made the assump-
tion that extracellular cAMP is the only diffusible chemical of the systems. The model
proposed by Martiel and Goldbeter [33], is based on the receptor modification for the
cAMP signaling system that controls the process of aggregation. As in [44], in order to
deal with nonspatially homogeneous solutions, we include in the model diffusion for the
extracellular cAMP. The main results that we have obtained are formulae for the speed
of the extracellular cAMP-pulses, for the width of the pulses, and for the time that the
cells remain in the excited state. These formulae are valid in a parameter domain that
is consistent with the experimental values used in the original paper [33]. We used a
similar approach to study also the so-called Goldbeter-Segel model [17]. In the assump-
tion that the cAMP-receptor on the cell surface is a regulatory part of adenylate cyclase,
this model is less realistic from the biological point of view, but we can see a rather
similar underlying mathematical structure in both problems in spite of the fact that they
are based in different biochemical assumptions.

After 8–10 hours, aggregation centers of Dd results in the formation of a mound,
a complex of up to 104–105 cells. All cells of the mound differentiate into two cell
types: pre-spore and pre-stalk. Although the mechanism of cell sorting are still under
debate, some experimental data suggest that the coordinated upward movement of the
cells in the later stages of aggregation can by organized by cAMP waves ( [8], [9], [47]).
Also cell-cell adhesion and cell-substratum adhesion seem to play an important role in
regulating cell movements.

This paper is organized as follows. In Section 2 we briefly describe the main results
that we have obtained for the existence of the pulse-like solutions in a model for cAMP
signalling in early stage of cells aggregation, based on the kinetics rate laws of the
Martiel-Goldbeter model [33]. The detailed proofs of the mean results that are presented
in this Section can be found in [31]. In Section 3 we discuss a mathematical model
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proposed by Vasiev and Weijer [47] for cAMP signalling in mound formation. The key
focus of attention is on how the pulse speed depends on the various system biological
parameters in both models.

1.2. Asymptotic notations

Definition 1.1. Let f and g be two functions defined in a neighborhood of x0, that do
not vanish on their domain.

◦ The notation
f (x) � g(x), x → x0

which is read ”f (x) is much smaller than g(x), as x tends to x0" or "g(x) is much larger
than f (x), as x tends to x0", means lim

x→x0
[f (x)/g(x)] = 0.

◦ The notation
f (x) ∼ g(x), x → x0

which is read ”f (x) is asymptotic to g(x), as x tends to x0", means lim
x→x0

[f (x)/g(x)] =
1, or, equivalently, f (x) − g(x) � g(x) as x → x0.

◦ The notation
f (x) = O[g(x)], x → x0

which is read ”f (x) is at most of order g(x), as x tends to x0", means |f (x)/g(x)| < M ,
for some constant M if x is in a neighborhood of x0.

Remark 1.2. Throughout the paper we use also the notation f (x) � g(x), x → x0 to
indicate in an informal, non-rigorous manner that the functions f and g have the same
order of magnitude.

2. A mathematical model for cAMP signalling in
early stage of cells aggregation

2.1. Description of the model

In [33], Martiel and Goldbeter proposed a model which is based on receptor modification
for the cAMP sinalling system in Dd, characterized by the following set of three ordinary
differential equations:

dr

dt
= −f1(u)r + f2(u)(1 − r) (2.1)

dw

dt
= qσφ(r, u) − (ki + kt )w (2.2)

du

dt
= kt

h
w − keu (2.3)

where r is the total fraction of activated receptors, w is the intracellular cAMP concentra-
tion and u is the extracellular cAMP concentration. The functions f1(u), f2(u), φ(r, u)
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                        are given by:

f1(u) = k1 + k2u

1 + u
, f2(u) = k1L1 + k2L2cu

1 + cu
(2.4)

φ(r, u) = α(λθ + εY 2)

1 + αθ + εY 2(1 + α)
; Y = ru

1 + u
(2.5)

The various parameters appearing in the equations (2.1)–(2.3) and in the formulae
(2.4), (2.5) are some biological parameters (we refer to the original article [33] for
details).

In order to study the propagation of cAMP pulses for a system having as underlying
kinetics the equations (2.1)–(2.3), we assumed that the extracellular cAMP diffuses
according to the standard Fick’s law. Then we obtain, in the one-dimensional case, the
following system of equations:

∂r

∂t
= −f1(u)r + f2(u)(1 − r) (2.6)

∂w

∂t
= qσφ(r, u) − (ki + kt )w (2.7)

∂u

∂t
= kt

h
w − keu + D

∂2u

∂y2
(2.8)

where D is the diffusion coefficient and the variables r , w, and u depend on the space y

and the time t .
The numerical parameter values which give a good quantitative agreement between

experimental data and theoretical solutions of the model (2.6)–(2.8) are indicated in
Table 1. All of them have been chosen from [33], except the diffusion coefficient that
has been taken from [12].

Table 1. Numerical parameter values.

Parameter
Numerical
value

Dimensionless
parameter

Numerical
value

k1 0.4
−1

min c 100

k2 0.004
−1

min L2 0.1

σ 0.57
−1

min L1 (= cL2) 10

ki 1
−1

min q 4 × 103

kt 0.9
−1

min h 5

ke  4
−1

min α 3
D 4 × 10−6cm2/sec λ 0.01

θ 0.01
ε 0.15
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Remark 2.1. Let us remark that in the quasi-steady condition:

w = keh

kt

u (2.9)

the system (2.6)–(2.8) reduces, in the homogeneous spatially case, to two equations for
the variables r and u. For the parameter values as in Table 1, the dynamics of the variable
u is much faster than the one of r . In a straightforward manner one can check that the
nullclines of the reduced system give rise to a monostable excitable medium. The unique

equilibrium point is placed to the leftmost branch of the curve
du

dt
= 0, but close to its

local maximum (see Figure 1).
An interesting feature of this reduced system is the small value for the threshold of

excitability.

0.2 0.4 0.6

0.2

0.6

1
r

du
dt

=0

dr
dt

=0

10 20 30 40
u

0.5

1.5

2.5

3.5

du
dt

=0

dr
dt

=0

Figure 1: The nullclines corresponding to the system (2.6)-(2.8) in the homogeneous spatially
case and the quasi-steady condition (2.9). The parameter values are the same as in Table 1.

2.2. Mathematical analysis. Existence of pulse-like solutions

In this Subsection we present briefly the results concerning the existence of pulse-like
solution for the system (2.6)-(2.8) (for more details see [31]).

We introduce a new time scale τ and dimensionless space variable x̃ by means of:

τ = (ki + kt ) · t, x̃ =
√

ki + kt

D
· y (2.10)

In the model (2.6)-(2.8) there are many parameters of different sizes and a priori is
not clear which combination of these parameters can be assumed to be small or large.
For this reason, we rewrote it in a way in which the new dependent variables are of order
one. Then, rescaling the variables r, w, u in the following way:

r(y, t) = L2(m + 1)

(1 + L2)(m + d)
· R(̃x, τ )

w(y, t) = Mkeh

kt

· W(̃x, τ)

u(y, t) = M · U(̃x, τ )
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and taking into account the formulae (2.4), (2.5), the equations (2.6)–(2.8) become, after
rearranging some terms:

∂R

∂τ
= κ(U + Pε)

[
µ(U + ε) − (U + dε)R

(U + ε
c
)(U + ε)

]
(2.11)

∂W

∂τ
= bε(U + ε)2 + �R2U2

(U + ε)2 + �R2U2
− W (2.12)

∂U

∂τ
= ∂2U

∂x̃2
+ 
 [W − U ] (2.13)

where M is the largest root of the equation (u − b) (u + 1)2 − ((m + 1)2 u2 (B − u))/

(m + d)2 = 0, m is the unique positive root of the equation A (x − b) (x + d)2 −
x2 (B − x) = 0 and the other parameter definitions are given in Table 2.

Our goal was to define a singular perturbation problem for the system of equations
(2.11)–(2.13) consistent with the values of the parameters in Table 1. The system param-
eters must satisfy some rather stringent inequalities in order to give rise to a monotone
excitable medium, namely:

1 � 4bB < A(2b + d)2 < 4bB + 4bB

(
b + d

2b + d

)2

(2.14)

3b � 2d − b <
B

A
< 2d − b + √

3d(d − 2b) < 1 (2.15)

These relations between the parameters of the system (2.11)–(2.13) are essential
for obtaining the type of pulse-like dynamics. Reversing some of them, the nullclines
structure can be changed in and this would have as a consequence that the system ceases
to be excitable, or that the stability of the steady state is lost due to the onset of a
bifurcation.

Let us now look for pulse-like solutions of the system (2.11)–(2.13) under the as-
sumptions for the parameter magnitude orders as in Table 2. If a pulse solution exists, it
can be written in the form

R (̃x, τ ) = R (x) , W (̃x, τ ) = W (x) , U (̃x, τ ) = U (x) (2.16)

where x = x̃ − Vτ and the pulse speed V > 0 is to be determined in the course of the
analysis (V depends on the parameters of the system).

Substituting the pulse-form (2.16) into (2.11)–(2.13), the system becomes:

−VR′ = κ(U + Pε)

[
µ(U + ε) − (U + dε)R

(U + ε
c
)(U + ε)

]
(2.17)

−VW ′ = bε(U + ε)2 + �R2U2

(U + ε)2 + �R2U2
− W (2.18)

−VU ′ = U ′′ + 
 [W − U ] (2.19)
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Table 2. Orders of magnitudes and parameters numerical values.

Parameter Definition Parameters
relations

Magnitude
order

Numerical
value
(from Table 1)

Small parameters
κ k2(1 + L2)/ (ki + kt ) � 1 0.0023
µ (m + d) / (m + 1) µ ∼ d � 1 0.1274
ε M−1 ε � µ � 1 0.1258
d (1 + L1) / (c + L1) d � 1/c � 1 0.1
b (αqσktλθ) / (keh(ki + kt ) (1 + αθ)) 8b � ε � 1 0.0157

Parameters of order one

 ke/ (ki + kt ) � 1 2.1052

�
(
Aµ2

)−1 � 1 0.2966

� �Bε � 1 1.5087
κP k1(1 + L2)/ (ki + kt ) � 1 0.2315

Parameters much larger than one
Pε k1/ (Mk2) � 1 (or � 1) 12.582
P k1/k2 � 1 100

A (1 + αθ) (1 + L2)2 /
(
εL2

2 (1 + α)
)

� 1 207.7

B (αqσkt ) / (keh(ki + kt ) (1 + α)) � 1 40.5
c � 1 100

where primes denote differentiation with respect to x. This is an eigenvalue problem
to determine the value (or values) of V such that a non-negative solution (R, W, U) of
(2.17)–(2.19) exists and satisfies:

lim|x|→∞ R (x) = Rs, lim|x|→∞ W (x) = Ws, lim|x|→∞ U (x) = Us (2.20)

where (Rs, Ws, Us) � (1, bε, bε) are the values for the unique spatially homogeneous
equilibrium state of (2.11)–(2.13).

A schematic diagram of the U pulse-like solution of (2.17)–(2.19) is shown in Fig-
ure 2, where the relevant regions are labeled.

2.2.1 Upjump front (fast transition)

This thin region of the pulse, of size ε
1
4 , is characterized by the abrupt change of the

variables W, U of an amount of order one, while the variable R remains approximately
constant, R = Rs . Hence, in this region the system (2.18)–(2.19) reduces to

−VW ′(x) = bε(U + ε)2 + �R2
s U

2

(U + ε)2 + �R2
s U

2
− W (2.21)

−VU ′(x) = U ′′ + 
 [W − U ] (2.22)
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x

U

Upjump front

Pulse top

Downjump front

speed

Figure 2: Schematic diagram of a pulse-like solution.

We seek a solution of the system (2.21)–(2.22) such that

lim
x→−∞ U(x) = a, lim

x→−∞ W(x) = a (2.23)

lim
x→+∞ U(x) = bε, lim

x→+∞ W(x) = bε (2.24)

where

a = �R2
s

1 + �R2
s

� 1 (2.25)

Region I (U � ε) Letting ε → 0, the system (2.21)–(2.22) can be approximated in
this first sublayer by

−VWx = a − W (2.26)

−VUx = Uxx + 
 [W − U ] (2.27)

where a is given in (2.25) and we rewrite the limit conditions (2.23)–(2.24) as

lim
x→−∞ U(x) = a, lim

x→−∞ W(x) = a (2.28)

lim
x→+∞ U(x) = 0, lim

x→+∞ W(x) = 0 (2.29)

The problem (2.26)–(2.27) is linear and it can be explicitly solved. It has the solution:

W(x) = a − Ce
x
V (2.30)

U(x) = a + C

V2

1 + V2(1 − 
)
e

x
V + Ke

1
2 (−V+√

V2+4
)x, (2.31)

where

C = 2a
[
1 + V2(1 − 
)

]
V

[√
V2 + 4
 − (2
 − 1)V

] � 0

K = a(
√

V2 + 4
 + V)

(2
 − 1)V−√
V2 + 4
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The solutions (2.30) and (2.31) satisfy also the limit condition (2.28), but they do not
satisfy the boundary conditions (2.29) because, for x → +∞ the variable U becomes
of order ε or smaller and the system (2.26)–(2.27) cease to be valid. For this region we
shall introduce another suitable boundary sublayer.

Near to the point x = 0, the variable U behaves quadratically on x due to (2.31),
and W is a linear function of x (see Figure 3). This fact is relevant for matching with the
next sublayer (U � ε).

−6 −4 −2 2
x

0.2

0.6

1

1.4

U,W

W

U

α

Figure 3: The shape of the solutions W and Ugiven by (2.30)-(2.31) (the curves are obtained
for the parameter values as in Table 1).

Region II (U � ε): a key non-linear eigenvalue problem This region is the important
one for determining the upjump pulse speed. The following change of variables

V = ε− 1
4 · v, x = ε

1
4 v−1 · z, U(x) = ε · u(z), W(x) = ε

1
2
�R2

s

v2
· w(z),

transforms the system (2.17)-(2.19), together with the matching conditions with the
previous sublayer (in the intermediate limit x → 0, η → −∞, ε → 0) and the boundary
conditions, into the following non-linear eigenvalue problem:

− wz = u2

(u + 1)2 + κu2
− ∞ < z < ∞ (2.32)

− uz = uzz + χ−4w − ∞ < z < ∞ (2.33)

w(z) ∼ − 1

1 + κ

z, u(z) ∼ χ−4

2(1 + κ)
z2, z → −∞ (2.34)

lim
z→∞ w(z) = 0, lim

z→∞ u(z) = 0 (2.35)

where

κ = �R2
s , χ−4 = 
�R2

s

v4
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Theorem 2.2. For each κ � 0 there exists at least a value of χ = χ(κ) > 0 such that
(2.32)–(2.35) has a solution.

Proof. We sketch out some ideas for the proof (for details see [31]).
We use a standard ”shooting” method. For each fixed κ and χ , there exists a unique

positive solution of the system (2.32)-(2.33) satisfying the limit condition (2.35). Such
a solution has the following asymptotic behaviour

u(z) ∼ e−z, w(z) ∼ 1

2
e−2z, z → +∞ (2.36)

uz(z) ∼ L(χ)e−z, z → −∞ (2.37)

where

L(χ) = χ−4

∞∫
−∞

w(τ)eτdτ − 1 (2.38)

The integral in (2.38) converges and L(χ) is a continuous function of χ.

We show that the function L(χ) changes the sign as χ varies from 0 to +∞. In
the limit χ → 0+, the function u becomes negative at some finite value of z and when
χ → +∞, the function u increases exponentially as z decreases to −∞. We illustrate
this fact in Figure 4.

Figure 4: The curves represent the numeric u−approximation in the case χ → +∞ (solid
line) and respectively when χ → 0+ (dashed line) using the parameters from Table 1.

As L(χ) is a continuous function and changes the sign as χ varies from 0 to +∞,
there exists χ0 > 0 such that L(χ0) = 0. For concluding the proof of the theorem, we
show that for this value of χ , χ = χ0, we obtain the asymptotics

w(z) ∼ − 1

1 + κ

z, as z → −∞

u(z) ∼ χ−4

2(1 + κ)
z2, as z → −∞

This means that the matching with the previous sublayer is possible. �

u
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Remark 2.3. Numerical computation strongly suggests that the function L(χ) is strictly
decreasing and there exists a unique value of χ , χ = χ0, such that L(χ0) = 0.

The shape of the variable u is illustrated in Figure 5.

−2 −1 1 2 3 4
z

0.5

1

1.5

2

u

Figure 5: The shape of the solution u of the system (2.32)-(2.35) (the curve is obtained by
numerical computation for the parameter values as in Table 1).

2.2.2 Pulse top (high concentration of W and U )

After the upjump, the variables W, U remain close to their equilibrium values in the
equations (2.18)–(2.19), for each value of R. As the variable R becomes of order one at
distances x of order κ−1ε−1/4, we introduce a new rescaling as follows

x̂ = κε1/4

v
· x

Taking into account Table 2, the system (2.17)–(2.19) reduces in the considered
asymptotic limit to

R′(x̂) = R

U
· (U + Pε) (2.39)

W(x̂) = U(x̂) = �R2

1 + �R2
(2.40)

where primes denote differentiation with respect to x̂. The matching with the upjump
requires

R(0) = Rs (2.41)

lim
x̂→0

U(x̂) = lim
x→−∞U(x) = a (2.42)

lim
x̂→0

W(x̂) = lim
x→−∞W(x) = a (2.43)

The solution of (2.39)–(2.40), that satisfies the condition (2.41), is given by

R(x̂) =
√

Pε

� + �Pε

[
e

2(�+�Pε)
�

(x̂−x̂1) − 1
]

(2.44)
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U( x̂) = W(x̂) = �

�
· e

2(�+�Pε)
�

(x̂−x̂1) − 1

e
2(�+�Pε)

�
(x̂−x̂1) + �

�Pε

(2.45)

where

x̂1 = �

2(� + �Pε)
ln

Pε

Pε + R2
s (� + �Pε)

< 0 (2.46)

The approximation formulae (2.44) and (2.45) are valid in the interval x̂1 � x̂ � 0.

The shape of the solution U in this region is given in Figure 6.

−50 −40 −30 −20 −10

0.2

0.6

1

U

Figure 6: The shape of the solution U(x̂) of the system (2.32)-(2.35) (the curve is obtained by
numerical computation for the parameter values as in Table 1).

2.2.3 Downjump front

In the last part of the pulse the variables W, U do not change adiabatically with R any
longer, and all the variables return to the equilibrium state (Rs, Ws, Us) . The width of
this layer is of order ε−1/4 up to logarithmic corrections. Due to the complexity of the
nonlinearities in (2.17)–(2.19), the detailed study of this region requires to decompose it
in several sublayers taking into account the orders of magnitude of the variables (U � ε,
UR � µε, U � dε, bε � U � dε, U ∼ bε).

This analysis is quite cumbersome and we shall not present it in detail here. The
main reason is that the description of the downjump front is independent on the value of
v, up to a rescaling of the lenght, so the effect of this boundary layer for the shape of the
pulse is very small.

Only by self-consistency of the pulse construction, we indicate in Figure 7 the be-
haviour of the solution U in the first sublayer of this region.

2.2.4 Pulse speed. Comparison with experimental data

The formulae for the pulse speed and pulse width, as functions of the biochemical
parameters of the initial problem, are given by

speedcAMP pulse = √
D ·

(
αqσkt

h(1 + α)

)1/4

· κ
1/4 · χ(κ) (2.47)
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Figure 7: The shape of the solution U in the first sublayer of the downjump front (the curve is
obtained by numerical computation for the parameter values as in Table 1).

widthcAMP pulse =
√

D

2k2(1 + L2)
·
(

αqσkt

h(1 + α)

)1/4

·
(

1 − 1

ϒ

)
· κ

1/4 · χ(κ) · ln (1 + ϒκ) (2.48)

where

κ = (1 + α)ε

(1 + αθ)
·
(

L2(c + L1)

1 + L2

)2

·
(

2αqσktλθ + keh(ki + kt )(1 + αθ)

2αqσktλθ(c + L1) + keh(ki + kt )(1 + αθ)(1 + L1)

)2

ϒ = 1 + αqσktk2

k1keh(ki + kt )(1 + α)

Taking into account the numerical values of the parameters given in Table 1, we
obtain κ ≈ 0.2966 and the corresponding eigenvalue χ (κ) of the problem (2.32)-(2.35),
numerically computed, is χ ≈ 0.3377. Then, the numerical value for the pulse speed
and width are

speedcAMP pulse ≈ 162µm/min

widthcAMP pulse ≈ 1848.5µm

The experimental value for the cAMP pulses speed is 250 − 300 µm/min (see [1],
[2], [20], [30], [37]) and for the pulse width is about 1400µm (see [20]).

On can see that the the pulse speed and pulse width values obtained here are reasonable
approximations and agree with the order of magnitude obtained in the experimental
observations.
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3. A mathematical model for cAMP signalling in mound stage

3.1. Description of the model

In [47], Vasiev and Weijer explain the cell movement pattern in the mound assuming that
the cells move chemotactically in response to a scroll-shaped cAMP wave rotating in the
mound. To model propagating cAMP waves, they consider this FitzHugh-Nagumo type
system:

∂g

∂t
= D�g − kg(g − g0)(g − g1)(g − g2) − krr (3.1)

∂r

∂t
= (g − g0 − r)/τ (3.2)

Here the variable g(y, t) is assumed to define the level of extracellular cAMP, and the
variable r(y, t) represents either the proportion of active and inactive cAMP receptors
(like in [33]), or activated α subunits of the inhibitory G-proteins (like in [39], [42]).
The parameters appearing in (3.1)-(3.2) have the following meanings: D is the cAMP
diffusion coefficient, kg and kr define the rate of cAMP production and hydrolysis respec-
tively, τ is a time scaling factor for the variables g and r . The dimensionless parameters
considered in [47] are: D = 1, g0 = 0.3, g1 = 0.35, g2 = 1.3, kr = 1.5, τ = 4 and kg

take values between 5.4 and 6.0. They are chosen to fit with experimentally measurable
data.

Making the following transformations

x =
√

kg

D
· y, s = kg · t, u(x, s) = g(y, t) − g0, w(x, s) = kr

kg

· r(y, t)

from (3.1)-(3.2) we obtain the following system:

∂u

∂s
= �u + u(u − ε)(a − u) − w (3.3)

∂w

∂s
= ε1+δ(u − uw) (3.4)

where the parameter definitions and the numerical values are given in Table 3.

Table 3. Numerical parameter values.
Dimensionless
parameter

Numerical
value

ε = g1 − g0 0.05
ε1+δ = kr/τk2

g 0.013 − 0.01
a = g2 − g0 1
u = kg/kr 3.6 − 4
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The parameters ε and ε1+δ should be considered like independent parameters. We
use in a abusive manner these notations because we want to suggest that ε1+δ is much
smaller that ε. The idea in the following analysis is that we have the following asymptotic
relations 0 < ε1+δ � ε � 1.

3.2. Mathematical analysis

We consider the system (3.3)–(3.4) with a = 1, in one spatial dimension:

∂u

∂s
= �g + u(u − ε)(1 − u) − w (3.5)

∂w

∂s
= ε1+δ(u − uw) (3.6)

Remark 3.1. The system (3.5)-(3.6) is the FitzHugh-Nagumo system with a small
threshold of excitability. There is an exhaustive literature about this widely known model
describing an excitable medium (see, for example, [4], [5], [6], [21], [23], [24], [35], [48]).
It is known that the pulse-like solutions consist in two thin layers (upjump and downjump)
where the fast variable changes abruptly from the excitable to the excited state and
viceversa respectively. The essential fact is that the wave speed of the upjump must be
the same as of the downjump. This abrupt transitions are separated by a region where
the fast variable remains attached to its equilibrium value and the slow variable has a
change of order one.

Considering the travelling wave coordinate ξ = x − Vs, the system (3.5)–(3.6)
becomes

u′′ + Vu′ + u(u − ε)(1 − u) − w = 0 (3.7)

Vw′ + ε1+δ(u − uw) = 0 (3.8)

where the primes denote differentiation with respect to ξ .
Here we are not interested in obtaining a complete description of a pulse solution for

(3.7)-(3.8) in the limit ε → 0, we only want to determine the pulse speed, so we look
only at the pulse upjump.

If we put ε1+δ = 0 in (3.8) we obtain w′(ξ) = 0. We assume that lim
ξ→∞ w(ξ) = 0,

hence w is everywhere zero. From (3.7)-(3.8) we get

u′′ + Vu′ + u(u − ε)(1 − u) = 0 (3.9)

This is the bistable equations with the value of the threshold equal to ε. Since the
wave solutions are invariant up to translations, let us take u(0) = 1/2 and it is known
that this equation admits one unique wavefront solution satisfying the limit conditions

lim
ξ→∞ u(ξ) = 0, lim

ξ→−∞ u(ξ) = 1 (3.10)
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                      which it is given by the formula

u(ξ) = 1

1 + eV0ξ
(3.11)

with the wave speed

V0 = 1√
2
(1 − 2ε) (3.12)

(see, for example [16], [35]).
Although the speed and wavefront solution formulae are well known, let us make

some remarks about the equation (3.9). Starting with this equation and considering ε

as a small parameter, one can work out a procedure based on perturbations methods in
order to obtain the travelling wave solution (3.11), and the formula for the wave speed
(3.12). More precisely, if we assume that u and V are perturbation series in ε, then they
have expansions of the form

u(ξ ; ε) = u0(ξ) + εu1(ξ) + ε2u2(ξ) + · · · (3.13)

V(ε) = V0 + εV1 + ε2
2V2 + · · · (3.14)

Considering the case when V is strictly of order unity, this means that V0 > 0.
The boundary conditions at ±∞, the fact that u(0) = 1/2 and (3.13)-(3.14) give the
conditions for the ui(x), i = 0, 1, 2, . . .:

lim
ξ→∞ u0(ξ) = 0, lim

ξ→−∞ u0(ξ) = 1, u0(0) = 1

2
(3.15)

lim
ξ→∞ ui(ξ) = 0, lim

ξ→−∞ ui(ξ) = 0, for i = 1, 2, . . . (3.16)

u0(0) = 1

2
, ui(0) = 0, for i = 1, 2, . . . (3.17)

By substituting (3.13), (3.14) into (3.9) and equating powers of ε, we get the following
eigenvalue problems

O(1) : u′′
0 + V0u

′
0 + u2

0(1 − u0) = 0 (3.18)

O(ε) : u′′
1 + V0u

′
1 + u0(2 − 3u0)u1 = u0(1 − u0) − V1u

′
0 (3.19)

O(ε2) : u′′
2 + V0u

′
2 + u0(2 − 3u0)u2 = u2

1(3u0 − 1) − u1(2u0 − 1) − V1u
′
1 − V2u

′
0

(3.20)

and so on for higher orders of ε. Using the explicit solution formulae for the correspond-
ing homogeneous equations, matching conditions and orthogonality restrictions, it can
be shown that

u0(ξ) = 1

1 + eV0ξ
, ui(ξ) = 0, for i = 1, 2, . . . (3.21)

V0 = 1√
2
, V1 = −√

2, Vi = 0 for i = 1, 2, . . . (3.22)
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and in this way the formulae (3.11) and (3.12) can be recover by using perturbation
methods.

Remark 3.2. We mention that (3.18) is the Zeldovich equation and it is known that
this equation admits precisely one distinct wavefront solution from 1 to 0 for every
wave speed V0 � 1/

√
2 and no such solution for any wave speed V0 < 1/

√
2 (see, for

example [16], [35]).

The result can be formulated in a more general manner (see [16]):

Theorem 3.3. The equation (3.9) admits exactly one distinct wavefront solution from ε

to 0 for all wave speeds V � −2
√

ε(1 − ε), exactly one distinct wavefront solution from
1 to ε for all wave speeds V � (1 + ε)/

√
2, exactly one distinct wavefront solution from

1 to 0 with wave speeds V = (1 − 2ε)/
√

2 and no other decreasing wavefront solutions.

3.3. Pulse speed. Comparison with experimental data

The formula for the pulse speed, as a function of the biochemical parameters of the initial
problem, is given by

speedcAMP pulse = (1 − 2(g1 − g0))
√

Dkg/2 (3.23)

Taking into account the parameter numerical values given in [47], we obtain

speedcAMP pulse ≈ 1.478 − 1.558 (3.24)

The measured value of the cAMP pulses speed in mould of Dd in [47] is 1.2 space
units per time unit, which agrees with the order of magnitude obtained in (3.24).

4. Conclusions

The goal of this work was to find analytical formulae in terms of biological parameters
for two 1-dimensional spatial models of cAMP signalling. The common feature of the
two models is the threshold that approaches to zero in the considered asymptotic limit.
However, there are also some differences between them. The main one is that the presence
of three equations in the kinetics of the first model, instead of two, makes harder to derive
closed form formulae. In the case of the FHN system for obtaining a nondeformed pulse
is essential that the speed of the upjump and downjump, where the fast variable changes
abruptly, to be the same. On the contrary, in the first model considered in this paper, the
downjump does not require any choice of the pulse speed, up to a rescaling of the length.
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