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Abstract

We develop the qualitative theory of the solutions of the McKendrick partial differ-
ential equation of population dynamics. We calculate explicitly the weak solutions
of the McKendrick equation and of the Lotka renewal integral equation with time
and age dependent birth rate. Mortality modulus is considered age dependent. We
show the existence of demography cycles. For a population with only one repro-
ductive age class, independently of the stability of the weak solutions and after a
transient time, the temporal evolution of the number of individuals of a population
is always modulated by a time periodic function. The periodicity of the cycles is
equal to the age of the reproductive age class, and a population retains the memory
from the initial data through the amplitude of oscillations. For a population with a
continuous distribution of reproductive age classes, the amplitude of oscillation is
damped. The periodicity of the damped cycles is associated with the age of the first
reproductive age class. Damping increases as the dispersion of the fertility function
around the age class with maximal fertility increases. In general, the period of
the demography cycles is associated with the time that a species takes to reach the
reproductive maturity.

AMS subject classification: 92B05, 92D25.
Keywords: McKendrick equation, renewal equation, demography cycles, periodic
solutions, age-structure.

1. Introduction

The McKendrick equation describes the time evolution of a population structured in age.
The first time it appeared explicitly in the literature of population dynamics was in 1926
in a paper by McKendrick [18]. The McKendrick equation is a first order hyperbolic
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partial differential equation, with time and age as independent variables, together with a
boundary condition that takes into account the births in a population. The existence of
classical solutions of the McKendrick equation and their asymptotic time behaviour is
well established, and there exists in the literature of population dynamics a large number
of surveys. See for example the books of Cushing [3], Webb [23], Iannelli [11], Keyfitz
[13], Farkas [8], Kot [15], Charlesworth [1], Metz and Diekmann [19] and Chu [2].

Regardless the fact that the existence of classical solutions of the McKendrick equa-
tion is well established, there is a lack of specific examples and no explicit solutions of
the McKendrick equation are known. This is due to the particular form of the boundary
condition which is difficult to handle analytically, [15] and [8].

The McKendrick modelling approach is an attempt to overcome the deficiencies
shown by the Malthusian or exponential growth law of population dynamics, introducing
the dependence on age into the mortality and fertility of a population. In its simpler form,
the McKendrick model does not describe overcrowding effects, dependence on resources
or, in human populations, economic and intraspecific interactions. To include these
effects, several other models have been introduced and analyzed from the mathematical
and numerical point of view, [23], [19], [4] and [22].

In demography, in order to make predictions about population growth, another ap-
proach is in general followed. After measuring birth and death rates by age classes or
cohorts, demographers use the Leslie model [16], a discrete analogue of the McKendrick
equation, [13] and [14].

Our purpose here is to find the solutions of the McKendrick equation in the weak or
distributional sense, to calculate exactly specific examples, and to derive some of their
properties. To close the gap between theoretical and computational models, we compare
the stability properties of the McKendrick and the Leslie discrete models, unifying both
modelling approaches.

From the point of view of the qualitative theory of partial differential equations,
we show that the solutions of the McKendrick equation have cycles, (demography or
Easterlin cycles, [6] and [2]), as observed in the growth of human [21] and bacterial
populations [20]. In the Easterlin qualitative approach, [6] and [13], the period of the
cycles is estimated to be of the order of the age of two generations, which, for human
population, is of the order of 50 years. Here, we show that the period of the demography
cycles is associated with the age of the first reproductive age class, and, for human
populations, is in the range 10-20 years. The amplitudes of the cycles are damped and
the damping is associated with the dispersion of the fertility of a population around some
maximal fertility age.

In the next section, we review some of the facts about the McKendrick equation and
we describe the methodology and organization of this paper.

2. Background and Statement of Results

We denote by n(a, t) the density of individuals of a population, where a represents age
and ¢ is time. Assuming that, within a population, death occurs with an age dependent



Weak Solutions of the McKendrick Equation 3

dn(a,t)
dt

. o ) da i
a = a(t), and is measured within the same scale of time, — = 1, the function n(a, t)

mortality modulus u(a), we have, = —u(a)n(a,t). Asagingistime dependent,
obeys the first order linear hyperbolic partial differential equation,

on(a,t) n on(a,t)
ot da

= —p(a)n(a,r) 2.1)

where a > 0 and r > 0. To describe births, an age specific fertility distribution function
by age class b(a) is introduced, and new-borns (individuals with age a = 0) at time ¢
are calculated with the boundary condition,

B
n(0,1) =/ b(a)n(a, t)da. (2.2)

Supported by data from bacterial and human populations, [20] and [14], b(a) is a function
with compact support in an interval [o, 8], where @« > 0 and B < oo, and pu(a) is a
non-negative function. Equation (2.1) together with the boundary condition (2.2) is the
McKendrick equation, [18]. Knowing the solutions of the McKendrick equation, the
total population at time ¢ is given by,

+00
N(t) = / n(a, t)da. (2.3)
0

The existence of solutions of the linear equation (2.1) with boundary conditions (2.2)
has been implicitly proved by several authors and goes back to the work of McKendrick
[18], Lotka [17] and Feller [9]. More recently, Gurtin and MacCamy [10] proved the
existence of solutions of (2.1) for a class of models where the mortality modulus depends
on the total population, © = wu(a, N(t)). However, due to the particular form of the
boundary condition (2.2), no explicit solutions of the McKendrick equation have been
found.

In the development of the theory of the McKendrick equation, the efforts have been on
the derivation of existence of solutions, on the conditions for asymptotic extinction and
for positive equilibrium solutions, as well as, on the existence of stable age distributions
in finite age intervals, [23] and [8]. From the point of view of demography, most of the
conclusions derived from the McKendrick model are based on numerically constructed
solutions from particular initial data.

In the following, we consider the more general case,

B
n(0, 1) =/ b(a, t)n(a, t)da 2.4)

where the fertility modulus b(a, ) is age and time dependent, and for every t > 0, b(a, t)
has compact support in the interval [«, B8], with 0 < @ < < oo. In order to simplify
the calculations, we sometimes consider that the function b(a, ¢) has a natural extension
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as a zero function to the half real line @ > 0. This boundary condition is of special
interest in demography and economy growth models, enabling the analysis of the effect
of fluctuations of the fertility modulus along time.

To calculate the general solutions of the McKendrick equation (2.1) subject to the
boundary cc/)gndition (2.4), we take the initial data n(a, 0) = ¢ (a), for a > 0. In general,

¢(0) # b(a,0)n(a,0)da. Under these conditions, as ¢ increases, the boundary

condition 32.2) or (2.4) introduces discontinuities in the solutions of (2.1). Here, we
assume that ¢ (a) € Llloc (R4), implying that n(a, t) is also locally integrable. In this
case, the total population at time ¢ = 0, N(0), is well defined only if ¢ (a) has compact
support in R . As we shall see, this does not introduce any technical restriction because
asymptotic solutions depend on ¢ (a) in an age interval of finite length. In this framework,
the Cauchy problem for the McKendrick equation must be understood in the sense of
distributions — weak Cauchy problem.

To calculate explicitly the general solutions of the partial differential equation (2.1)

obeying the boundary condition (2.4) and prescribed initial data, we use the tech-

dn(a,t
nique of characteristics, [12] and [5]. Writing equation (2.1) in the form, n(a,t) _

t
—u(a)n(a,t), the solutions of (2.1) are also solutions of the system of ordinary differ-

ential equations,
dn

= —p(a)n
I (2.5)
o=
These two equations have solutions,
t
n(a,t) = n(ag, to) exp <_./t0 u(s +ag — to)ds) 2.6)

a—ayg=t-—1

where q is the age variable at time t = fy. The second equation in (2.6) is the equation of
the characteristic curves of the partial differential equation (2.1). Introducing the second
equation in (2.6) into the first one, we obtain the solution of the McKendrick equation
fort < a,

t
n(a,t) = ¢a—t)exp (—f M(S+ao)ds>
0

= ¢(a—1t)exp (— /a u(s)ds) (t <a) 2.7

where ¢ (a —t) = n(a —t, 0) is the initial age distribution of the population at the time
to = 0. For ¢t < a, the solution (2.7) does not depend on the boundary condition (2.4),
andif ¢ (a) € L! (Ry)or¢(a) € L}DC (R4), n(a, t) is integrable or locally integrable in
a, provided pu(a) € L}OC(R+) and p(a) > 0.
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Fort > a, by (2.6), we have,

n(a,t) =n(0,t —a)exp (— /a ,u(s)ds) =n0,t —a)m(a) (2.8)
0

and 7 (a) can be understood as the probability of survival up to age a of the individuals
of the population.

In mathematical demography, renewal theories of age-structured populations are in
general used. Due to the simple structure of the characteristic curves of equation (2.1),
Lotka [17] has shown that the density of newborns at time 7, B(¢) := n(0, t), obeys
an integral equation. Introducing (2.7) and (2.8) into the boundary condition (2.4), and
making the zero extension of b(a, t) to the half real line @ > 0, we obtain,

¢la-1n .,
m(a —t)

_ / ba, ) B(t — a)da + g(t) (2.9)
0

t +o00
B(t) = f b(a,t)m(a)B(t —a)da + / b(a,t)m(a)——
0 t

which is the renewal integral equation of demography, first introduced by Lotka [17] and
developed later by Feller [9].

If the solutions of integral equation (2.9) are known, then, by (2.7) and (2.8), the
solutions of the McKendrick equation can be written as,

w(a)
na.n =1\ za_pn?@-"n =9 (2.10)
n(a)B(t —a) (t>a).

Therefore, once the solutions of the renewal integral equation (2.9) are known, the
solutions of the McKendrick equation (2.1) with boundary condition (2.4) are readily
derived. Inversely, if we solve the initial data problem for the McKendrick equation, the
solution of the renewal equation is also easily derived.

The time independent or equilibrium solutions of the McKendrick equation obey the

ordinary differential equation d_n = —u(a)n. Therefore, any equilibrium solution has
a

n(a) = noexp (— /a M(s)ds)
0

where n is a constant. Multiplying the equilibrium solution by (a) and integrating in a,
+00 ’
by the boundary condition (2.2), it follows that / b(a)e™ Jo m®)s g4 — 1. Therefore,

0
we define the Lotka growth rate as the number,

the generic form,

+00 ;
r = / b(a)e™ Jo HO)s g 2.11)
0
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Itis a well known result that the properties of the asymptotic solutions of the McKendrick
equation are determined by the Lotka growth number.

In the following two sections, we calculate explicitly the weak solutions of the McK-
endrick equation (2.1), as well as the solutions of the renewal integral equation (2.9).

In section 3, we assume that a population has only one fertile age class. This leads
to the introduction of a new boundary condition n(0, t) = b (t)n(«, t), where by (¢) is a
positive function and a = « > 0 is the only reproductive age class. This corresponds to
the choice b(a, t) = bi(t)6(a — ), where §(-) is the Dirac delta function. In this case,
the solutions of the McKendrick equation are easily derived and the renewal integral
equation (2.9) reduces to the functional equation,

)= -1 ¢ <a)
B(t) = (o —1) (2.12)

bi()m()B(t —a) (> ).

The choice of the boundary condition n(0, t) = bi(t)n(«, t) has the advantage of
describing the overall growth patterns of a population as if fecundity were concentrated
in one reproductive age class. This enables to discuss effects associated with delays
in reproduction and, as we shall see, it is important to determine the periods of the
demography cycles. On the other hand, this boundary condition together with the linear-
ity of the McKendrick equation enables to unify the Leslie and McKendrick approach,
with considerable advantages for the qualitative understanding of growth effects in real
populations.

One of the main results of section 3 is that the solution of the McKendrick equation
is the product of an exponential function in time by a periodic function with a period
equal to the age of the only reproductive age class. The shape of the periodic modulation
depends on the initial age distribution of the population, and the amplitude depends on
the mortality modulus.

In section 4, we consider the general case where fertile age classes are distributed
along an age interval, and we derive explicit formulas for the weak solutions of the
McKendrick and the renewal equations. The asymptotic behaviour of the solutions is
derived as a function of the Lotka growth rate. Then, we explicitly calculate the solutions
of the renewal and of the McKendrick equation for the case where b(a, t) is constant in
the age interval [«, B].

We show that the stability and instability of the solutions of the McKendrick equation
in the weak sense are determined by the Lotka growth rate. In the present theory of the
McKendrick equation, the stability and instability of the solutions are given implicitly
by the real roots of the characteristic equation associated with the Laplace transform
of (2.1), [1], [3] and [11]. An algorithmic procedure to determine the roots of the
characteristic equation has been recently derived by Farkas [7]. However, it is not always
possible to locate these roots, [7]. With the approach developed here, the stability and
instability of solutions of the McKendrick equation are directly calculated from the
fertility function b(a) and the mortality modulus w(a), parameters directly measured in
demography, [13] and [14].
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The technique developed in section 5 enables to relate and calibrate the parameters
of both the McKendrick continuum model and the Leslie discrete model, [16], used in
demography studies, [14]. It is shown that when the number of age classes of the Leslie
model goes to infinity, the inherent net reproductive number of a population converges
to the Lotka growth rate.

In general, we conclude that if the time intervals in the time series of a population
equals the age of maximal fertility, this time series has an exponential or Malthusian
growth. For smaller time intervals, the time series is modulated by a periodic func-
tion in time. This proves that, in a time scale of the order of 10-20 years, there exists
cycling behaviour in the pattern of growth of a population. Approximating the age
distribution of a population by the sum of Dirac delta functions concentrated at con-
secutive age classes, a modelling possibility from the computational point of view, the
modulation of the pattern of growth of a populations becomes almost periodic in time
(section 6).

At the end of each section, we discuss the qualitative aspects of the solutions we have
analysed. The main conclusions of the paper for demography and population dynamics
are discussed in the concluding section 7.

3. Populations with one Fertile Age Class

We suppose that births occur at some fixed age a = o > 0, and we assume that the
fertility function is b(a, t) = b1(t)é(a — «), where §(-) is the Dirac delta function, and
b1 (t) is a differentiable, positive and bounded function of time. For this particular case,
the boundary condition (2.4) becomes,

n(0,t) =bi(t)n(a,t) 3.1

with ¢ > 0. Note that, if « = 0, the Cauchy problem for the McKendrick equation is
only determined for ¢ < a. Fort > a, by (3.1), n(0, ) becomes undetermined, as well
asn(a,t) witht > a.

To extend the solution (2.7) of the McKendrick equation as a function of the initial
data to all the domain of the independent variables a and ¢, taking into account the
boundary condition (3.1), we first consider the case t = a. By (2.8), and for t = a,

n(a,t) =n(0,0)exp (— /a /L(s)ds) .
0

As newborns at time ¢t = 0 are calculated from the boundary condition (3.1), to make
this solution dependent on the initial data, we must have,

n(a,t) = b1(0)¢p(x) exp (— /‘a ,u(s)ds) , if t=a 3.2)
0

where n (o, 0) = ¢ (), see Figure 1.
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a

Figure 1: Characteristic curves a — ag = t — to for the McKendrick equation (2.1). The
interior points of the sets Tm ={(a,t):t<a+ma,t>a+ (m—1Da,a >0,t >0},
with m > 1, and TO = {(a,t) :t <a,a > 0,t > 0} are denoted by T, with m > 0.
The vertical line a = « represents the age of the unique reproductive age class of the
population. The boundary condition at time ¢ is calculated according to the value of
n(a, t). Att = 0, n(a,0) = ¢(a). Given an arbitrary point (a*, t*) in the domain of
the partial differential equation (2.1), n(a*, t*) is obtained following the solution n(a, 1)
along the dotted line until r = 0.

We now introduce the sets T, = {a,t):t<a+ma,t >a+m—Da,a>0,t>
0}, where m is a positive integer, and To={(a,t):t <a,a>0,1>0}, Figure 1. We
denote by 7, the interior of the sets T,,. So, given the point with coordinates (a, t), we
have, (a,t) € T,n, withm > 1, if and only if,# > a and [1 + (t — a)/«a] = m, where we
have used the notation [x] for the integer part of x. A point (a, ) € T, if and only if,
t < a. Note that, the domain of the solution (2.7) is the interior of the region labelled
Ty in Figure 1.

Fort > a and t < a + «, we take the point (a*, t*) on the line r = r*. Therefore,
t* > a* and t* < a* + «. This point is in the region labelled 7} in Figure 1. By (2.6),
the characteristic line that passes by (a*, t*) crosses the line @ = 0 at some time 7 = 7],
and,

t*
n(a*, t*) = n(0, t{) exp (—/ u(s — tf‘)ds)
t*

1

where 1{ = t* — a*. Imposing the boundary condition (3.1) on this solution, we obtain,

t*
n(a@*, t*) = bi(t])n(a, t7) exp (—/ w(s — t;“)ds). By hypothesis, as 1{' = (t* —
t

*
1
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a*) < a, we are in the conditions of solution (2.7) for t = #{ and a = «, and we have,

[*
na*, t*) = b1 (t* —a®n(a, t* —a*)exp (— / u(s — ti")ds)
t

*
1

=b1(t" —aM)Pp(a +a* —17)

F—a* *
X exp (—/ u(s + ap)ds — / w(s +a* — t*)ds)
0 t*—ag*

=b1(t" —aM)p(a +a* —1%)

t*—a*
X exp (—f wis +a+a* — t*)ds)
0
£
X exXp —/ wis +a* —1t*ds | .
t*—a*

Therefore, we have shown that, forr > aandt < a + «,

n(a,t) = bi(t —a)p(a+a—r)
t—a a (33)
X exp <—/ us +a+a—t)ds — / ,u(s)ds) .
0 0

Note that, for ¢+ < a, the solution n(a, t) given by (2.7), (3.2) and (3.3) is in general
discontinuous when the line ¢ = a is crossed transversally.

We now proceed by induction. Suppose that, up to some integer k > 1, the solutions
of the McKendrick equation (2.1) with the boundary condition (3.1) can be written in
the form,

na.t)= ¢pma+a—t)[[bit —a—(—1a)
i=1

t—a—(m—1)x
X exp —/ w(s +mo +a —t)ds (3.4)
0

X exp (—(m -1 fa u(s)ds — /a ,u(s)ds)
0 0

where m = [(t —a)/a + 1], (a,t) € Ty, m < k and m > 1. As we have shown, 3.4)
is true for m = 1. Suppose now that (a*, t*) € Ty11. Then, by (2.6), the characteristic
curve that passes by (a*, t*) crosses the line @ = 0 at some time 7{' = t* — a*, and,

t*
n(a*, t*) = n(0, t7) exp <—f u(s — ti")ds) .
t

*
1
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Imposing the boundary condition (3.1) on this solution, we obtain,

t*
n(a*, t*) = b1 (t{)n(a, 1) exp <—/ u(s — tf)ds) )

*
1

As [(t* —a* —a)Ja + 1] = [(t* — a*)/a] = k, we have, (a, t]) € Ty, and by (3.4),

n(a*, t*) = by (t{)n(a, 1) exp (—/ wis — ti")ds)
t

*
1

*

=b1(t* —a®)n(a, t* —a*)exp (— /a ,u(s)ds)
0

k
= (l_[ bi(t —a— ia)) Oo((k+ Da+a* —t*)exp(—E)

i=0
where,
t*—a*—ka
E:/ w(s + (k+ Da +a* —t%)ds
0
o a*
+ kf u(s)ds + / w(s)ds.
0 0
Hence, (3.4) remains true for m = k + 1, and we have:

Proposition 3.1. Letn(a,0) = ¢(a) € CI(R+) be an initial condition for the McK-
endrick partial differential equation (2.1), with a > 0, r > 0, and boundary condition
(3.1). Assume that u(a) € CO(R+) is a non negative function and b (¢) € CI(R+) is
positive. Then, in the interior of the sets Tm , with m > 0, the solution of the McKendrick
equation (2.1) is differentiable in a and ¢ and is given by:

a)If, (a,t) € Ty,

n(a,t) = ¢(a —t)exp (—/ u(s + ao)ds)
0

where ag = a — t.
b)If, (a,t) € T,, and m > 1,

n(a,t) = Hbl(t —a— (@i — Da)

i=1

t—a—(m—1a
X ¢(ma +a —t)exp (—/ u(s + ao)ds>
0

X exp (—(m -1 /01 u(s)ds — fa ;L(s)ds))
0 0
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where ag = ma +a —t,m = [(t — a)/a + 1], [x] stands for the integer part of x, and
o > 0.

Proof. As¢(a) € C'(Ry), u(a) € CO(Ry) and by (1) € C(Ry), itis straightforwardly
checked by differentiation that, in the interior of the sets 7,,, with m > 0, the solution
obtained by the method of characteristics obeys the McKendrick equation (2.1). [

In the construction preceding Proposition 3.1, we have shown that the solutions of
the McKendrick equation hold formally at the boundary of the sets Tm, m > 0, where
n(a, t) is discontinuous because, in general, ¢ (0) # b1(0)¢ (o). To extend the solution
of the equation (2.1) as stated in Proposition 3.1 to all the domain of the independent
variables, we introduce the concept of weak solution in the sense of distributions, [12].
We consider the space of test functions that is, the space of functions of compact support
in Ri with derivatives of all the orders. Let D(R%r) be the space of test functions. If f(x)

is a locally integrable function, then f[{] = / ¥ (x) f (x)dx is a continuous functional

in the sense of the distribution in D(Ri), [12]. Taking equation (2.1) and making the

inner product with a function v (a, t) € D(Ri), as ¥ has compact support in R2, and
after integrating by parts, we naturally arrive at the following definition:

Definition 3.2. A locally integrable function n(a, t) (€ L}OC (Ri)) is a weak solution
in the sense of the distributions of the McKendrick partial differential equation (2.1), if,

f/ (it/r(a, t) + i1//(61, t) — u(a)y(a, t)) n(a, t)dadt =0
RZ+ ot da

for any ¥ (a, 1) € D(R3).
In the conditions of Definition 3.2, we have:

Theorem 3.3. Letn(a,0) = ¢(a) (e L lloc (R4)) be alocally integrable initial condition
for the McKendrick partial differential equation (2.1), with a > 0, ¢ > 0, and boundary
condition (3.1). Assume that u(a) € L }OC RN CO(R+) is a non negative function and
bi(t) e C ! (R4) is positive. Then, the weak solutions of the McKendrick equation (2.1)
are:

a)If, (a,1) € Tp,

n(a,t) =¢(a —1)exp <—/ (s +ao)dS)
0

where ag = a — t.
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b)If, (a,1) € T, and m > 1,

nia,t) = Hbl(t —a— (@i — Da)

i=1

t—a—(m—1)a
X ¢(mo +a —t)exp (—/ uis + ao)ds>
0

X exp (—(m -1 ’ u(s)ds — /a ;L(s)ds)
0 0

where agp = ma +a —t,a > 0, m = [(t —a)/a + 1], and [x] stands for the integer
part of x.

Proof. 'We have shown previously that the solutions of the McKendrick equation as
in Proposition 3.1 hold at the boundary of the sets Tm, with m > 1. However, at these
boundary points the solutions in Proposition 3.1 are not differentiable and must be under-
stood as weak solution in the sense of distributions. So, for n(a, t) as in Proposition 3.1
to be a solution of the McKendrick equation in all the domain of the 1ndependent vari-
ables, it must satisfies the conditions in Definition 3.2 for any v (a, t) € D(R ). As by
hypothesis ¢ (a) and p(a) are locally integrable, we are in the conditions of Deﬁnltlon
3.2, and we can verify if n(a, t) given by Proposition 3.1 can be extended as a weak so-
lution in all the domain of a and 7. For that, we write the solution in a) in Proposition 3.1
in the form, n(a, 1) = ®(a — t)e” Y@ where Y(a — t,t) = Y(ao, 1) is a generic
function reflecting the functional dependency of the exponential term, and we calculate

the integral,
I = // (— +— - ,u(a)t//) ®(a —1)e Y@ Ddadt
R% da

where @ (y) = 0,fory < 0, ®(y) = ¢(y),fory > 0,and ®(y) € L}OC(R). Introducing
the new coordinates y = a — f and x = ¢, we have,

I= f / («2_w — p(x + yw) d(y)e” YO dxdy.
RxR4 X

X

oY
As, Y(a—t,t) =Y(y,x) = / u(s + y)ds, and i = u(x 4+ y) = u(a), almost

everywhere, the above integral evaluates to,

= / /RXR+ % (ve 00 @(y)dxdy = /R [we*”%”]? ®(y)dy =0.

Therefore, the solution a) is a weak solution of the McKendrick equation. For the case
b), we introduce the new coordinates y = ¢ — a and x = ¢. Writing the solution
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in b) in the form, n(a,1) = @ — a)e” ("% and as m = m(y), it follows that

oY

. = u(x —y) = u(a). By an analogous calculation, we have I = 0, and the solution
X

b) is also a weak solution of the McKendrick equation. |

For the particular case a = 0, Theorem 3.3 gives the explicit solution of the renewal
functional equation (2.12).

Corollary 3.4. Letn(a,0) = ¢(a) (€ Llloc (R4)) be a locally integrable initial condi-
tion for the McKendrick partial differential equation (2.1), witha > 0, t > 0. Assume
that u(a) € L},.(Ry) N C°(Ry) is a non negative function and b (t) € C'(Ry) is
positive. Then the solution of the renewal functional equation (2.12) is,

B(t) = ¢(ma—1) [ [ b1t — G = D)

i=1

t—(m—1)a
X exp (—/ u(s +mo — t)ds)
0
X exp (—(m —1) /0! ,u(s)ds)
0

where o > 0, m = [t/a + 1], and [x] stands for the integer part of x.

In the particular case where by (¢) is a constant, b1 () = b1, we have, in Theorem 3.3
and Corollary 3.4, bi(t —a)...bi(t —a — (m — D)a) = b}". If u(a) = p > 0 and
bi(t) = by > 0 are constant functions, the solution of the McKendrick equation is,

{ da—te ™™ (t <a)
na,t) =

Toma+a—t)e ™ (>a)

where m = [(t — a)/a + 1]. For the same case, the solution of the renewal equation
(2.12) is,
B(t) = bi¢p(sa — t)e ™

where s = [t/a + 1].
To analyze the asymptotic behaviour in time of the solution of the McKendrick
equation with time independent fertility function, we define the function ¢(a, t) by,

ea, )= —-a)ja+1—m=(t—a)jou+1—[{t—a)ja+1] (3.5)

where [(t — a)/a + 1] = m, and m > 1 is an integer. For fixed @ and witht —a > 0,
the function ¢(a, t) takes values in [0, 1), is piecewise linear and is time periodic with
period T = «. Then, we have:

Theorem 3.5. Suppose that ¢ (a) is positive and bounded in the interval (0, «] and
the fertility function b is a positive constant. Then, in the conditions of Theorem 3.3,
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we have:

o
a) If, Inb; = f wu(s)ds, then, for fixed @ and t > a, n(a, t) is time periodic with
0

period T = «.

o
b) If, Inb; > / u(s)ds, then, for fixeda and t > a, n(a,t) - o0, ast — oQ.
0

o
c) If, Inb; < / (s)ds, then, for fixed a and t > a, n(a,t) — 0, ast — oo.

0
Moreover, for fixed a, the asymptotic behaviour in time of n(a, t) depends on the
initial condition ¢ (a) with a in the interval (0, «].

Proof. By (3.5), withag = ma +a — ¢,

t—a—(m—1)a o
bY" exp (—/ u(s + ag)ds — (m — 1)f ,u(s)ds)
0 0

X exp (— /a M(s)ds)
0
= exp (m(ln by — /a u(s) ds)) exp <— /a ,u(s)ds)
0 0

ae(a,t) o
X exp —/ u(s +o —ae(a, t))ds + / wu(s)ds
0 0

1= exp (m(ln by — /a u(s) ds)) exp (—fa w(s) ds) x(a,t)
0 o

ae(a,t)
x(a,t) =exp (—f uis +«a —ozs(a,t))ds)
0

= exp (— /a ,u(s)ds) . 3.6)
a—ae(a,t)

Due to the periodicity of €(a, t) in ¢, for fixed a and t > a, x(a, t) is also periodic in ¢,
and we can write the solution b) of Theorem 3.3 in the form,

where,

na,t) =¢(a —aea,t))x(a,t)

X exp <m(ln b — /a u(s) ds)) exp <_/a w(s) ds) . 3.7
0 o

o
Therefore, if In b; — f w(s)ds = 0andt > a, the solution of the McKendrick partial
0

o

differential equation becomes oscillatory in time. If, Inb; > / u(s)ds, then, in
0
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the limit ¥ — oo, m — o0, and the population density goes to infinity. If, Inb; <
o
/ w(s)ds, then, in the limit t — oo, the population density goes to zero. By (3.7), the
0
asymptotic distribution of a population depends on ¢ (a) with a € (0, «]. |

o
If we fix an arbitrary large value of a, and if In by > / u(s)ds,thenn(a,t) — oo,

as t — oo, implying that asymptotically there is not a lin%it in life expectancy.
Due to the periodicity in time of ¢(a, t), the functions yx (a, t) and ¢ (0 — ae(a, t))
are time periodic with period T = «, the age of the only reproductive age class.
Defining the Lotka growth rate of a population as r = n(a,t + «)/n(a,t), by
Theorem 3.3 and as [(t + @ —a)/a + 1] = m + 1, the Lotka growth rate associated
with the McKendrick equation is constant and is given by,

= nla.t + o) = exp (lnb1 — /a M(s)ds) = by exp (— /0‘ M(S)ds> (3.8)
nia,t) 0 0

which coincides with (2.11) for the choice b(a) = b15(a — ).

The Lotka growth rate (3.8) has a simple interpretation. By Theorem 3.3 and (3.8),
for t > a, we have n(a,t + sa) = n(a, t)r’, where s is an integer. With ¢t = « and
o + sa = T, we obtain, n(a, 1) = n(a, @)r""*/%  Defining the Malthusian density
growth function as ny(a, t) = n(a, @)r'""*/% and integrating ny(a, t) in a, the total
population varies in time according to,

Ny (1) = N(a)r—o/« (3.9)

which is the Malthusian growth function associated to the McKendrick equation. There-
fore, within an observation time step equal to the age of the only reproductive age class,
the solutions of the McKendrick equation grow exponentially in time, with the Lotka
growth rate (3.8).

The qualitative difference between the asymptotic behaviour of the solutions of the
McKendrick equation and the simple Malthusian exponential growth without age struc-
ture is associated with the existence of a periodic modulation in the growth of populations.
This periodic modulation with period « corresponds to the demography cycles observed
in real populations, [20] and [21].

The stability condition for the persistence of non-zero solutions as stated in Theo-
rem 3.5 is determined by the growth rate r: stability or periodicity of solutions if r = 1;
exponential growth if r > 1, and population extinction if r < 1, provided ¢ (a) is not
identically zero in (0, «].

Theorem 3.6. If ¢ (a) is bounded in the interval (0, ] and the fertility function b is a
positive constant, then, in the conditions of Theorem 3.3, for fixed a, and t > a,

n(a,t) a

Fm :X(a,l)¢(a—a8(a,t))exp <_/

w(s) ds)

is a time periodic function with period o, and m = [(t — a)/a + 1].
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Proof. The theorem follows by (3.5), (3.6), (3.7) and (3.8). [ |

By the above Theorem, the population age density and in the total population has
a periodic modulation in time. These oscillations occur around the Malthusian growth
curve (3.9).

The amplitude of oscillations of the function n(a, t)/r"™ can be easily determined.
From Theorem 3.6 the amplitude of oscillations is,

ae(0,a]

A = max x(a,t)¢(a —ace(a,t))exp _/a u(s)ds
o (3.10)

— min x(a,t)¢(o —ace(a,t))exp _/a w(s)ds

ae(0,a]

Assuming that the initial distribution of the population is constant in the interval (0, «],
and as €(a, 1) takes values in [0, 1), n(a, t)/r™ varies in the interval,

I:(f)e*f(;x w(s) dse*faa u(s)ds ¢e*/aal“(s) ds:| .

Then, for a uniform initial age density of individuals, the periodic modulation has the
age dependent amplitude,

A(a) = ¢pexp (/a w(s) ds) (1 — exp (— /a w(s) a’s)) . 3.11)
a 0

In the particular case where w(a) = u, the amplitude simplifies further and is given
by A(a) = ¢pe" @9 (1 — e **). Therefore, the newborns age-class has the maximum
amplitude of oscillations, A(0) = ¢e"*(1 — e™#*), and the amplitude of oscillations
increases (resp. decreases) when w increases (resp. decreases).

Another consequence of Theorem 3.6 is that, in the limit # — oo, the population
retains the memory from the initial data through the amplitude of oscillations of the
growth cycles, (see the discussion in lannelli [11], pp. 37).

In Figure 2, we depict the time and age evolution of the density n(a, t) of a population
from a uniform initial age distribution with a maximal age class, and Lotka growth rate
r = 1. We have chosen the age-dependent mortality modulus p(a) = puo + p1a, and as
initial condition the density function with compact support, ¢ (a) = 2, fora < 100, and
¢(a) =0, fora > 100. By (2.3), this corresponds to an initial population N (0) = 200.
The birth constant b; has been chosen in such a way that r = 1. After the transient
time «, and for fixed age, the population density becomes periodic in time with period
7 = «. In Figure 2a, the decrease of the amplitude of oscillations with increasing u(a)
is in agreement with (3.11).

In Figure 3, we show the total population N as a function of time calculated from
(2.3) and Thgorem 3.3. In Figure 3a), the Lotka growth rate is r = 1. In Figure 3b),

by > exp( | wm(s)ds),andthe Lotka growthrateisr = 1.09. Inboth cases, we compare

0
the solution N (¢) calculated from Theorem 3.3 and the Malthusian growth curve (3.9).
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b)

0 0
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
t a

Figure 2: a) Time evolution of the solution of the McKendrick equation (2.1) for age
classes a = 8 and a = 35, in a population with one reproductive age class o« = 25.
The mortality modulus is u(a) = 0.05 + 0.001a and b; = 4.77. b) Distribution of the
density of individuals as a function of age for # = 10 and + = 100. In both cases, we
have the stability condition b = ", implying that the Lotka growth rate is r = 1.
All the solutions have been calculated from Theorem 3.3, with the initial data condition
¢(a) =2, fora < 100, and ¢ (a) = 0, for a > 100.

200 200
180 a) 180 b)
160 160
140] N® 140] N®
N 120 N 120
100 100
80 N ¢ 80
60 2 )
0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140
t t

Figure 3: Total population number N as a function of time calculated from Theorem 3.3
and (2.3). The age of the only reproductive age class is « = 25 and the initial conditions
o

are as in Figure 2. In a), Inb; = f u(s)yds = 4.77, where pu(a) = 0.05 + 0.001a,

by = 4.77 and the Lotka growth ratoe or stability condition is » = 1. Inb), by = 5.2,
the Lotka growth rate is » = 1.09 and the number of individuals of the population goes
to infinity. We also depict the Malthusian growth function (3.9), N (), measured in
the time scale of the unique reproductive age class. In all the cases and after a transient
time, the growth curve of the population is modulated by a periodic function with period
T=a.

If the fertility function b; as considered in Theorem 3.5 depends on time, in general,
the stability can not be decided in finite time. This follows by a similar analysis to the
one in the proof of Theorem 3.5.

The main conclusion about the solutions of the McKendrick equations for the bound-
ary condition (3.1) with b{(t) = b, is that the pattern of growth of a population is
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modulated by a periodic function with a period equal to the age of the only reproductive
age class. The shape of the periodic modulation depends on the initial age distribution of
the population, and the amplitude depends on the mortality modulus. In time steps of the
order of the age of the first reproductive class, the growth is Malthusian. Pure Malthusian
growth is obtained if the mortality modulus approaches zero and the population has an
uniform initial age distribution.

4. Populations with Several Fertile Age-Classes

We consider now that the fertile ages of the individuals of a population are distributed in
some age interval [«, 8], with 0 < @ < B < 0o. The boundary condition is now,

B
n(O,t)=/ b, t)n(a,t)da. “4.1)

The constants o and B represent the ages of the first and the last reproductive age classes,
respectively.
Asin (2.7), if, t < a, the solution of the McKendrick equation (2.1) is given by,

n(a,t) = ¢p(a — t)e~ Jorista=nds 4.2)

where ¢ (a) = n(a, 0) is the initial age distribution of the population.
The general solution of the McKendrick equation in all the domain of the independent
variables is obtained in the following way:

Theorem4.1. Letn(a,0) =¢(a)(e L }OC (R4)) be alocally integrable initial condition
for the McKendrick partial differential equation (2.1), with a > 0, ¢ > 0, and boundary
condition (4.1). Assume that pu(a) € Llloc Ry)NC 0 (R4) is a non negative function,
and that, for every r > 0, b(a, t) is locally integrable and differentiable. Then, in the
strip § = {(a,t) :a > 0,0 <t < «a}, the weak solution of the McKendrick equation
(2.1) with initial data ¢ (a) and boundary condition (4.1) is:

¢(a—1t)e” Ja—i n(s)ds , if t<a

ns(a,t) = 4.3)

B _ _
n(a)/ b(c,t—a)¢p(c—t+a)dc, if,t>a,andt <«
o

where,
7(a) = e~ Jo w)ds
b(a,t) =b(a,t) 7(a)
b(a) = ¢ (a)elo H®)ds

and the function ng(a, t) as in (4.3) is locally integrable (ngs(a, t) € L}OC(S)). Writing
ns(a,t) asng(a,t; ¢), and defining the functions,

¢iv1(a) =ng(a, a; ¢;)
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where i > 0 and ¢o(a) = ¢(a), we can construct recursively the general solution of
the McKendrick equation as n(a, t) = ng(a,t — qu; ¢,), where g = [t/a], and [ /o]
stands for the integer part of (¢ /).

Proof. To construct the solution of the McKendrick equation in the strip S, the case
(a = 0,t = 0) follows from the boundary condition (4.1). The case t < aandt > 0
has been proved in (4.2). We now construct the solution for (a, 1) € Ti, Figure 1, which
implies thata > 0,7 > a and t < a + «. Let (a*, t*) be the point such that, t* > a*
and t* < a* + «a. By (2.6), the characteristic line that passes by (a*, r*) crosses the line

l*
. — (% u(s—tds
a = 0 at some time ¢ = ], and n(a*, t*) = n(0, t;)e f’l HETIE Where tf =t"—a*.

Imposing the boundary condition (4.1) on this solution, we obtain,

ot s B
na*,t*)y=e f’tT wis tl)ds/ b(a,tl*)n(a,tjk)da.

o

By hypothesis, as 1{' = t* — a* < «, we are in the conditions of solution (4.2), and we
have,

ot s B
na*,t*)y=e f’% nis tl)dsf b(a,tik)n(a,tf‘)da

o

:/ b(a,1f)¢(a—1])e Jo' wlska=tids [y pls=ri)ds ;
o
Therefore, we have shown that, for t > a and t < a + «, that is, for (a, 1) € T,
ﬂ r—a X d t d
n(a,t) = / b (c,t —a) ¢ (c—t+a) e—fo n(s+c—t+a) S_ft—a u(s—t+a) Sde
o
B . )
= / b(c,t —a)¢p(c—1t+a) o Jemra H&)ds—[g p(s)ds g .
o
a ﬁ = c—t+a
:e_.fO I'L(S)dS/ b(c,l—a)¢(c—t+a)€fo ,LL(S)deC (44)
o

where, .
b(c,t —a)=b(c,t —a)e” Jo 1s)ds

Fora =0andt = «,
B
n0,a) = / b(c,a)n(c,a)dc. 4.5)
o

As,forc > a,n(c,a) € 7_"0, we introduce (4.2) into (4.5), and we obtain (4.3). Therefore,
we have constructed the solution of the McKendrick equation in the strip S.

As ¢ (a) is locally integrable, the integrals in (4.3) are bounded for r < « and
¢1(a) =ng(a, a; P) € Llloc (R4). In order to construct the solution of the McKendrick
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equation for any ¢+ > «, we proceed by induction and take at each step the new initial
condition ¢;1(a) = ng(a,a; ¢;) with i > 0. This justifies the formula n(a,t) =
ns(a,t — qa; ¢n), where g = [t /a]. u

We introduce now a technical simplification. Defining the new function p(a,t)
through,

n(a,t) = e_f(;l “(s)dsp(a, 1)

and introducing it in the McKendrick equation (2.1), we obtain,

0 t 0 t
pla.n)  dpan _
ot da

(4.6)

Assuming that the boundary condition for equation (4.6) is,

B
(0, t)=/ b(a,t)p(a,t)da

with b(a, 1) = b (a, t) e~ o #©)95 and the initial condition is,
¥(a) = el KO8 q)

the Cauchy problem for the McKendrick equation (2.1) is simply transformed into the
Cauchy problem for the equation (4.6).

By hypothesis, for every , b(a, 1) is zero outside the interval [, 8]. As, in general,
the constant 8 is not an integer multiple of «, for every ¢, we can extend the function
b(a, t) as a zero function in the interval [8, 8'], where 8’ = ga, g > 2 is an integer, and
(g — 1)a < B. Hence, without loss of generality, we assume that 8 = ga, where g > 2
is an integer. In the following, and to simplify the notation, we take this approach.

Theorem4.2. Letn(a,0) = ¢(a) (e Llloc (R4)) be alocally integrable initial condition
for the McKendrick partial differential equation (2.1), with a > 0, ¢ > 0, and boundary
condition (4.1). Assume that pu(a) € L}OC Ry)NC 0 (R4) is a non negative function.
Assume further that, for every t > 0, b(a, t) is locally integrable and differentiable,
and has compact support in the interval [, 8], where « < B, B = ga, and g > 2 is
an integer. Define the integer m = [¢/a 4+ 1]. Then, the general solution of the Lotka
renewal integral equation is determined recursively and is given by:

alf,0<t<a,
B _ -
Bl(f):/ b(c1, )p(c1 —1)dcy 4.7)

where Bj(t) = B(t),for0 <t < «.
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b)If,x <t <2a«a,
r B B
By (1) = / b(cz, 1) B1(t — c2)dcy +/ b(ca, )p(cr — 1) dcr
1
Olt ) '3 ] '
= / b(Cz,l)f b(ci,t —c2)p(c1 +c2 —t)dcide
o o

B _ _
+ / b(cy, )p(co —t)dc.

4.8)
olf,ma <t <(m+ l)a,withm >2andg > m + 1,
t—(m—-2)a _
B, (1) :f b(cm, t)By—1(t —cp)dey
m—1 t—(m—i)a+a _
+ Z / b(cm, t)Bp—i(t — cp) dey,
i=2 t—(m—i)a
B _ _
—|—/ b(cm, t)p(cym —t)dcy, . 4.9)
t

Moreover, B(t) is continuous, and n(a, t) is also continuous for t > B and a € [0, B].
For t > a, the general solution of the McKendrick equation is,

n(a,t) =n(a)B@ — a) (4.10)
where 7 (a), b and q_ﬁ are as in Theorem 4.1.

Proof. As we have seen in the discussion preceding the theorem, it is sufficient to prove
the Theorem for p(a) = 0. By Theorem 4.1, form = 1 and t < o, we have,

B _
B(t) == B1(t) = / b(c1,t)¢p(c1 —t)dcy . (4.11)

For i # 0, we make the substitution ¢ — ¢, as discussed above, and we obtain a).
We consider now the case ¢ < ¢t < 2«. Then,

r B _
Bz(t)Zf b(Cz,t)l’l(Cz,t)dCz+/ b(ca, t)p(cr —t)dcr

r B _
=/ b(Cz,t)l’l(O,t—Cz)dCz-i-/ b(ca, t)p(cr —t)dcr

t

r B _
= / b(cy, )B1(t — c2)dcy + / b(ca, )p(cr —t)dcr 4.12)

t
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where B(t) = By(t) for @ <t < 2«. Introducing (4.11) into (4.12), and with ¢ — o,
we obtain b).

With m = [t/a + 1] > 2, and assuming that 8 > (m + 1), due to the particular
form of the characteristic curves in Figure 1, we obtain,

t—(m—2)a
By (1) :/ b(cm, 1) Bin—1(t — cp) dep
a

m—1 t—(m—i)a+a _
+ Z f b(cm, t)By—i(t —cm)dey
t

i=2 —(m—i)a
B _
+/ b(cm, P (cm — 1) dep (4.13)
t

where ma <t < (m + 1)a and m > 2, proving c). Clearly, B(t) is continuous for
t € [0, B], and B(¢) depends on ¢ (a) witha € [0, B]. Asn(a, B) = n(a)B(B —a), due
to the continuity of B(¢) in the interval [0, ], n(a, B) is now continuous for a € [0, B].
As B(t) remains continuous for + > B, then n(a, t) is also continuous for r > 8 and
a € [0, B].

Defining the new initial condition ¢(a) = B(B — a), the solution of the renewal
equation is recursively constructed in the intervals [8, 28], [28, 38], ...

To derive the general solution of the McKendrick equation, we use (2.10), and we
obtain the Theorem. [ |

Theorems 4.1 and 4.2 give the general solutions of the McKendrick equation and of
the Lotka renewal equation as a function of the initial data and of the boundary condition.
The fertility modulus is assumed time and age dependent, and the mortality modulus age
dependent.

Dropping the time dependence on the fertility function b, the stability or instability
of the solutions of the Lotka renewal integral equation and of the McKendrick equation
follow from the previous Theorems.

Theorem 4.3. If the fertility function is time independent and in the conditions of
Theorem 4.2, we have:

a) Ifr = 1, then, foreverya € [0, Bl and t > a, n(a, t) remains bounded as t — oo.
b) If r > 1, then, for every a € [0, 8]l and t > a, n(a,t) — 00, ast — oo.

c) If r < 1, then, foreverya € [0, fland t > a,n(a,t) — 0,ast — oo, where r is
the Lotka growth rate of the population, as defined in (2.11). In the limit t — oo,
the solution of the Lotka renewal equation behaves as B(t) >~ r' /B,

Proof. By Theorem 4.2, B(t) is continuous, and, as n(a, B) = w(a)B(B — a), n(a, B)
is continuous in the closed interval [0, 8]. Therefore, there exist numbers m and M such
that,

m<n(,B) <M. (4.14)



Weak Solutions of the McKendrick Equation 23

By Theorem 4.1, for 0 < #; < «, we have,

B _
n,t + B) = B(t1 + B) =/ b(c)n(c—1t,B)dc.

o

As,c —t1 € [0, B] forc € [a, ] and 0 < #; < «, by (4.14), we obtain,
mr < B(t; + B) < Mr (4.15)

where, by (2.11),
B _ p C
r :/ b(C)dC:/ b(c)e_fg /L(S)dsdc
¢ o

is the Lotka growth rate, and 0 < o« < B < oo. Let us calculate now a bound for
n(a,a + B), with a € [0, B]. By (4.15), and considering the case u = 0, due to the
particular form of the characteristic curves of Figure 1, we have,

mr <n(a,a+pB) <M if r<1
m<n(a,ax+p) < Mr if r>1. (4.16)

Then, by (4.16),

B _
B(t1+a+,3)=/ b()n(c—t,a+ pB)dc

o

and,

mrsz(t1+oz+,8)§Mr if r<1
mr<B(ti+a+p)<Mr* if r>1 (4.17)

where 0 < #; < «. Repeating this procedure up to ¢ = B/«, and as, for u = 0,
n(a,2B) = B(2B — a), the bound for n(a,2p), with a € [0, 8], must obey to the
inequalities (4.15), (4.17), etc., which gives,

mr <n(a,28) < Mr. (4.18)

Comparing (4.14) and (4.18), the theorem follows by induction. In the asymptotic limit,
the solution of the Lotka renewal equation behaves as B(sf8) = r*, where s is an integer. l

With b(c) = bé(a — a) in Theorem 4.3, we obtain Theorem 3.3.

Let us see a simple example that shows that for a fertility function distributed along an
age interval, we have damped growth cycles with a period equal to the age «. Suppose
that b(a) = b is constant in the interval [, 8 = 2«], the mortality modulus is age
independent, and the initial population is constant in the interval (0, 8]. Let us denote
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the solution of the renewal equation by B;(¢) fort € [(i — 1)«, ie], withi > 1. Then,
by Theorem 4.2, we have,

Bi(t) = pe Mba
Br(t) = pe Mb(ba(t —a) + 2o —1)). (4.19)

By (4.19) and (2.10), we have,

de " bba(a —a) +a), if a<a
(be_“zaboc, if a<a<2.

n(a,2a) =n(a)BQRu —a) = { (4.20)

With the new initial conditions ¢ (a) = n(a, 2«), by Theorem 4.2a) and b), we obtain,
1
Bi(t) = pe M b*(a® + E(z —20)%(ba — 1))

1
Ba(t) = ¢e—ﬂfb26 (b1 (ba — 1) — t*(9b*a* — 6bar — 3)
+ 3ta(9b*a* — ba — 8) — 30> (9b*a* + Sha — 16)) . (4.21)

In this case we have, B(0) = ¢ba, B(a) = ¢pe "*ba, BRa) = pe H*b%a?,
BBa) = ¢peH*p2a%(1 + bar)/2 and B(4a) = pe **b3a’(5 + ba) /6. In Figure 4,
we show the time behaviour of B(¢) fora = 10, b = 1, ¢ = 1 and mortality modulus
u = 0.05. In this case, the Lotka growth rate is r = b(e "% — ¢~2*%) /i = 4.77. From
this example, we conclude that there are two time scales associated to the growth of new
borns. The first time scale « is related with the transition from the solutions B;(¢) to
B;i+1(t). The second time scale B is associated with the Malthusian growth behaviour.
From the above computed values of B(i«), with i > 0, we have B(io) >~ rlie/Bl in
agreement with Theorem 4.3. In this example, there exists a damped modulation in the
asymptotic time behaviour with period «.

From Theorem 4.1, we can derive the Leslie discrete Model of population dynamics,
[16], and relate the stability properties of both the continuous and discrete models.

5. From the McKendrick model to the Leslie Discrete Model

In this section, we assume that the fertility modulus is time independent. Suppose that
the age axis is partitioned into intervals of length Aa and the extreme of these intervals
are indexed by the integers i > 0: a; = i Aa. Assume that Aa is small, in the sense that
Aa < a. With At = Aa, by Theorem 4.1, we have, fori > 1,

_fiAa ( )d
ns(iAa, At) =ng(iAa — Aa, 0)e™ Jira—aa D,

Defining n®' = ng(i Aa, At), we can write,

iAa .
niAt = e Jida-ha “(S)dsn?_l = pi_ln?_l = e_A“’“‘((’_I)A“)n?_l i>1 (5.1)
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Figure 4: Time evolution of new-borns B(¢) for an initial uniform population, calculated
from (4.19) and (4.21). The initial condition is ¢ (a) = 1, fora € (0, 2o = B], and the
parameter values are: b = 1.0, « = 10 and p = 0.05.

where we have approximated the integral by its Riemann sum, nl-m is the density of

individuals with age a; = i Aa at time At, and p;_ is the survival transition probability
between age classes i — 1 and i. Fori = 1, by Theorem 4.1,

ﬂ Aa
nM = ng(Aa, At) = f b(c)gp(c)e o m&dsge, (5.2)

o
Approximating the integrals by Riemann sums, we obtain,

s—1 s—1

n = mAar0) 7 g Z b (mAa) ¢ (mAa) = Z em® (mAa) (5.3)

where ¢ = [a/Aal, s = [B/Aa], and e, are fertility coefficients. Writing (5.1) and
(5.3) in matrix form, we obtain,

ey e
n pr 0 -« 0 -~ O 0 nY
: -l o pp -~ 0 -~ 0 0 : (5.4)
nsA_t1 S : : ng_]
: 0 ps—

which is the discrete Leslie model for age-structured populations, [16]. The parametric
relations in (5.1) and (5.3) enable the comparison of both models, and in the limit
Aa — 0, the solutions of the McKendrick equation converge to the solution of the Leslie
model (5.4). On the other hand, a fast way of computing numerically the solutions of
the McKendrick equation is through (5.4) with Aa small.

Given an initial distribution of population numbers (1n?, ..., n%_|) % 0, the asymp-
totic state of the linear system (5.4) is zero or goes to infinity, depending on the magnitude
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of the dominant eigenvalue of the matrix in (5.4). If the dominant eigenvalue of the ma-
trix in (5.4) is A = 1, bounded and non-zero population distributions are obtained. The
eigenvalues of the matrix in (5.4) are determined by solving its characteristic polynomial
equation, [4],

s—1

Py =DM A =Y e [ [ pjr | =0. (5.5)
j=2

i=q

As we have assumed that « < B, and Aa is sufficiently small, then e;_; > 0 and
es—>» > 0. Hence, the matrix in (5.4) is primitive and, by the Frobenius-Perron theorem,
the dominant root of the characteristic polynomial P (A) is simple, real and positive, [3].
Therefore, the condition for the existence of a bounded and stable nonzero asymptotic
solution for Leslie map (5.4) is,

s—1

G(Aa) = Zei Hpj—l =eypl...Pg—1+--+te_1p1...ps2=1 (5.6)
i=q j=2

where the parameter G (Aa) is the inherent net reproductive number of the population
associated with the Leslie model (5.4), [3]. Introducing the parameters p; and e; as
defined in (5.1) and (5.3) into (5.6), we obtain,

s—1 i

G(Aa) = e~ Bar0) A 4 Zb (i Aa) 1_[ e~ Aan((j—1Aa)
! = (5.7)

i—1 .
= Aa) b(ida)e ™ SIZhn(()Aa)
i=q

In the limit Aa — 0, passing from Riemann sums to integrals, and as ¢ = [«/Aa] and
s = [B/Aa], we obtain for the inherent net reproductive number of the population,

B ]
Jim G(Aa) = / b(c)e™ Jo H®dsgo — (5.8)
a—

o

which equals the Lotka growth rate (2.11). Therefore, in the limit Aa — 0, the Lotka
growth rate and the inherent net reproductive number of the population are the same
quantities.

In the case of one fertile age class, the only non-zero fertility coefficients in (5.4) is
es—1, and the matrix in (5.4) is non primitive but irreducible. In this case, by (5.5), we
have,

s—1
PV =D 2 —e [ i1 | =0
j=2



Weak Solutions of the McKendrick Equation 27

and the s — 1 roots of the Leslie matrix are within the circle with radius,

1/(s=1)

€s—1 l_[ijl

j=2

Therefore, when the fertility modulus is concentrated at a point, the ratio n(a, t) /Ny (t)
is an oscillatory function of time, as it has been shown in Theorem 3.6, and Ny, (¢) is
the Malthusian growth function (3.9). If the fertility modulus shows dispersion around
some age class, the matrix in (5.4) becomes primitive. In this case, for r > 1 but close
to 1, the complex eigenvalues of the matrix in (5.4) are in the interior of the circle with
radius r and, asymptotically in time, oscillations dye out. However, as we have seen
previously in (4.20), the persistence or the damping of the amplitude of the oscillations
depend on the initial distribution of the population.

1l =1.89056 1o +=1.89019
= 1. = 0.1
0.8 L4 0.8 r=0
b 6 b 6
0.4 0.4
0.2 0.2 /\
0 0
10 20 30 40 50 10 20 30 40 50
a a

Figure 5: Fertility modulus (5.9) as a function of the dispersion parameter . We show
the corresponding Lotka growth rates r calculated from (5.8), for the mortality modulus
u(a) = 0.00140.0001a, dispersion y, and parameter values: o« = 12, g = 25, 8 = 45
and b; = 2.

To study the fertility dispersive behaviour when we pass from one reproductive age
class to several reproductive age classes, we introduce the Gaussian shaped fertility
modulus,

b(a):bl\/ze_y(“_"“))z with a € [a, 8] (5.9)
T

where b1, o and y are parameters. If y — 0, the fertility of the population is distributed

among several age classes. If y — oo, the fertility is concentrated at the age class a = «y,
+00

in the sense that, lim Y(a)b(a)da = b1y (xp), where Y (a) € D(Ry). In Figure
Yy —>00 00

5, we show the behaviour of the fertility modulus (5.9) as a function of a for several
values of the dispersion parameter and consequently different Lotka growth rates.

In Figure 6, we show the ratios n(a, t)/Ny(¢t) and N(t)/Np(t), where Ny (t) =
p(1=0)/20 jg the Malthusian growth function as in (3.9), but with r given by (5.8). Asitis
expected, for small dispersion around the class of maximal fertility, oscillations persist
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for a long transient time, but as we increase dispersion, their amplitude decreases in time.
In the limit + — oo, the oscillations disappear. Therefore, in the asymptotic limit, the
solution of the McKendrick equation have the form n(a, t) ~ c;r?', where ¢ and c;
are constants and r is given by (5.8).

N Ny (1)
240}

n(a, )Ny ()
U 220}

200

180}

- o
0 oo 200 0 100 200 300 | 400

§—T—T————— 260 [

n{a, () NGy NM(ztz10

al
2201

2001

180}

‘ 180 e
200 0 100 200 300 400

Figure 6: Ratios n(a, t)/ Ny () and N (t)/ Ny (t) for McKendrick equation with bound-
ary condition (4.1), calculated from initial data ¢ (a) = 2, fora < 100, and ¢ (a) = 0,
for a > 100. The Malthusian growth function is Ny (¢) = p=@0)/@0 1p a) and c) the
ratio of age distributions has been calculated at the time ¢ = 400. a) and b) correspond
to the fertility function of Figure 5a), and c¢) and d) correspond to the fertility function
of Figure 5b). As it has been shown, small dispersion in the fertility modulus imply
population oscillations. If fertility is not concentrated in one single age class, in the limit
t — 00, oscillatory behaviour dies out.

6. Predictions from Demography Data

For a population with n age classes corresponding to reproductive ages «;, with i =
1, ..., n, we define the fertility function,

b(a) = Zbi(S(a — ;) 6.1)
i=1
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and the boundary condition for the McKendrick equation is now,

n0,1) =Y bin(a. ). (6.2)

i=1
By (2.11), the growth rate of the population is,

n

13 a n o
r= / bl@ye Jo "B dg =Y e St 1O =Ny (6.3)
o

In this case, the asymptotic behaviour of the solution of the McKendrick equation is
determined by the Lotka growth rate of each cohort.

Due to the linearity of the McKendrick equation (2.1), and the boundary condition
(2.2), the general solution is now the sum of the solutions for each r; as in Theorem
3.3 for time independent fertility function. In this case, each individual solution will
have an exponential pattern of growth, modulated by a periodic function with period
a;. Therefore, the pattern of growth of a population with several fertile age classes is
almost periodic with several periodicities or frequencies. If the dispersion of the fertility
around the maximal fertility age class is large, the pattern of growth is almost periodic in
time. If, in addition, we consider time variations in the fertility function and mortality
modulus, the pattern of growth can show strong fluctuations deviating from the periodic
or exponential growth. This introduces a higher degree of unpredictability for the long
time behaviour of population growth.

One of the important aspects of these results is that the period of oscillations of
population cycles are of the order of the age of one generation, as observed in human
populations, [21]. In the Easterlin model, the period of the cycles are of the order of two
generations, [13].

7. Conclusions

We have obtained the weak solutions in the sense of distributions of the McKendrick
equation and of the Lotka renewal integral equation. We have assumed an age and time
dependent fertility modulus and an age dependent mortality modulus.

If u(a) is the age dependent death rate of a species, and b(a) is the age dependent
fertility modulus, the Lotka growth rate is defined by,

p c
r=/ b(c)e™ Jo HOBge (7.1)

where « and S are the first and last reproductive age classes. The Lotka growth rate r
determines the stability of the solutions of the McKendrick equation, in the sense that,
asymptotically in time, we have exponential growth if » > 1, and extinction if r < 1.
If r = 1, we have an asymptotically stable population and the equilibrium solution is

a
n(a) = noexp (— / u(s)ds |, where ng is a constant.
0
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From the demography data point of view, (7.1) implies that measured fertility numbers
by age class are given by

b(a)e_foa u(s)ds

partially justifying the general non symmetric shape of the fertility curves in human
populations, [14].

One of the important features of the solutions of the McKendrick equation relies
on the existence of a natural time scale determined by the age of the first fertile age
class. In this case, a constant initial population will present cycling behaviour in the
patterns of growth. The period of these cycles is equal to the age of the first fertile age
class. This contrasts with the prediction of Easterlin where the period equals twice the
mean age of one generation, [13]. Observations in human populations corroborate this
result, [21]. These oscillations are in general damped, and the damping is proportional
to the magnitude of the dispersion of the fertility function around the most fertile age
class. These demography oscillations have been observed in human populations, [21],
and in bacterial growth in batch cultures, [20].

On the other hand, it has been shown that the general solutions of the McKendrick
equation and of the Lotka renewal equation retain the memory from initial data.

In the limiting case of a population with only one reproductive age class, the mod-
ulation of the growth curve is always periodic and has no damping. The amplitude of
oscillations increases if the mortality modulus decreases, and the limit of pure Malthu-
sian growth is obtained if the mortality modulus goes to zero. The population retains
the memory from the initial data through the amplitude of oscillations of the Easterlin
cycles.

It follows also from this approach that the McKendrick equation is associated with a
small time scale, when we compare it with the time scale associated with the Malthusian
growth law. These two time scales describe the evolution of a population at two different
long range levels. In other words, the Malthusian growth law can be obtained from the
McKendrick equation if the mortality is zero, the fertility is concentrated at one age,
and the initial population is uniform along the age variable. Denoting by «( the age
of the unique fertile age class, the population growth measured in time steps of «g is
exponential or Malthusian. That is, the asymptotic solution of the McKendrick equation
behaves as,

n(a,t = kag) = n(a, ag)rk0=/20 = p(q, qo)r*&=

fork=1,2,...

We have explicitly derived the Leslie time discrete model of population dynamics
from the general solutions of the McKendrick equation, enabling a direct calibration of
the solutions of the McKendrick equation with population data. We have shown that,
if the length of the age classes goes to zero, the inherent net reproductive number of a
population, the growth parameter of the Leslie model, converges to the Lotka growth
rate.
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