CGF inequality and another operator equation

Mingyu Shi\(^1\) and Jian Shi\(^2\)

\(^1, 2\)College of Mathematics and Information Science, Hebei University, Baoding 071002, Hebei, China

Abstract: In this paper, we will prove a property of another operator equation via CGF inequality.

Keywords: CGF inequality, Douglas theorem

MSC: 47A63

INTRODUCTION

In this paper, we will prove a property of an operator equation via CGF inequality under the condition of \((p + t)s \geq 2(p + t)s_0 + r\) with \(\min\{p, 1\} + t \geq r\).

Theorem 1. (CGF Inequality, [Y]) Let \(p > 0, t \geq 0, r \geq 0, s > s_0 > 0\), if \(A \geq B \geq 0\), then

\[
\begin{align*}
(A^{t/2}(A^{t/2}B^p A^{t/2})^{\delta_{+r}} \leq (A^{t/2}(A^{t/2}B^p A^{t/2})^{\delta_{+r}})
\end{align*}
\]

where \(\delta = \min\{(p + t)s, 2(p + t)s_0 + \min\{\min\{p, 1\} + t, r\}\}\).

MAIN RESULT

Theorem 2.

For \(p > 0, t \geq 0, r \geq 0, s > s_0 > 0\), \((p + t)s \geq 2(p + t)s_0 + r\), \(\min\{p, 1\} + t \geq r\)

with \(2(p + t)s_0 + r = \frac{1}{n}\), if \(A \geq B \geq 0\), there exists a unique solution \(X, X > 0\)

with \(||x|| \leq 1\) s.t. \(F(s_0)XF^2(s_0)XF^2(s_0)X \cdots F^2(s_0)XF(s_0) = F(s)\),

where \(F(u) = A^{t/2}(A^{t/2}B^p A^{t/2})^{\delta_{+r}}\).
Proof. By Theorem 1, we have $F^2(s_0) \geq F^{1/n}(s)$. By Douglas Theorem in [D], there exists a unique operator T, $\|T\| \leq 1$, $F^{1/n}(s) = F(s_0)T = T^*F(s_0)$.

Let $X = TT^*$, then $F^{1/n}(s) = F(s_0)XF(s_0)$. It means that $F(s) = (F(s_0)XF(s_0))^n$, by which we can obtain the result.

ACKNOWLEDGMENTS
Jian Shi (the corresponding author) is supported by Hebei Education Department (Science and Technology Research Project of Colleges and Universities in Hebei Province, No. ZC2016009), Hebei University, Natural Science Foundation of Shandong Province (No. BS2015SF006)

REFERENCES

[Y] J. Yuan, Complete Form of Furuta Type Inequalities and Classes of Operators Including Hyponormal Operators [D], Dissertation of Beihang University, Beijing, China, 2008.