

Pervasive Context-Aware Computing

Survey of Context-aware ubiquitious middleware systems

Author 1

Mr. Anil R. Surve

Department of Computer Science and Engineering

Walchand College of Engineering

Sangli, India

 anil.surve@walchandsangli.ac.in

Author 2

Prof. Dr. Vijay R. Ghorpade
Department of Computer Science and Engineering

 D.Y. Patil College of Engineering & Technology

Kolhapur, India

vijayghorpade@hotmail.com

Abstract
Pervasive computing is promising emerging endeavor which

focuses on the capability for users to perform daily computer
activities unobtrusively. Pervasive computing solutions are

broad to encompass variety of technologies and real life

applications. It provides an environment for people to interact

with embedded computers. Networked devices are aware of

their surrounding objects, peers and are aimed to use or

provide services from peers in an effective manner. Pervasive

applications leverages the existing blend of computing

elements that already surrounds us. It can enrich our lives by

enabling automation of mundane activities through ubiquitous

applicability. It facilitates users to move seamlessly and

provides services regardless of location, time or platform
collaboratively and proactively. To realize this notion, various

frameworks and middleware technologies of context-aware

systems are needed to be explored. This paper is an attempt to

explore those especially for potential social domains.

Keywords:Pervasive Computing; Ubiquitous Computing;

Context Awareness, Mobile Computing ; Middleware ;

Internet of Things.

Introduction

Mark Weiser, researcher at Xerox PARC who is known as

father of pervasive computing envisioned that the 21st century

will witness technological revolution which will be part of the

everyday, the small and the invisible entities around us. The

traditional computing profound technologies will almost
disappear. There will be wearable computing elements which

will weave themselves into the robes of everyday life as if

they will be indistinguishable computing entities separately

[1]. Till then as of now many research attempts are emerging

as contribution in realizing his dream vision. Pervasive

computing is integration of ubiquitous computing, context-

awareness, ambient intelligence and wearable computing [2].

Context awareness has become thrust research area in

computer science. The focus on context-aware computing

evolved from applications of desktop, web, distributed,

mobile to the Internet of Things (IoT) over the last decade [3].

In the zest of research contribution noteworthy prototypes,

systems, and solutions using context-aware computing

techniques are successfully enrolled. Among them most of the

prosperous solutions aimed to gather data from a variety of
physical (hardware) and virtual (software) sensors. Further

processing and analyzing sensor data from all the sources is

possible. The advancement in sensor technology is offering

sensors which are more powerful, cheaper and compact for

use. As a result, a large number of sensors are being deployed

and it ispredicted that the numbers will grow swiftly over the

next decade. Context-aware computing aims to store context

information associated to sensor data for its significant

interpretation as per business logic. While scaling of sensors

with generating voluminous data, the conventional application

based approach becomes infeasible. In order to address this

inefficiency, significant middleware solutions are introduced
by researchers. The notion of middleware solution also

supports different essential arenas, such as device

management, interoperability, heterogeneity, platform

portability, context-awareness, security and privacy. This

paper is a survey with the zeal of potential focus on

identifying the context-aware computing concepts, features

and functionalities. Also middleware techniques that are

utilized for potential social domain are deemed.

Concept of Pervasive Context

Context by definition means any information which will help

us to characterize the situation of an entity. An entity may be a

person, place, or object which is pertinent to the interaction

between a user and an application [3].

 The pervasive context can also be termed as circumstance,

situation, phase, position, posture, attitude, place, point, terms,

regime, footing, standing, status, occasion, surroundings,

environment, location, dependence etc.

To categorize as raw sensor data which is unprocessed and
retrieved straight from the data source, such as sensors.

Context information is generated by processing raw sensor

data. Further, it is checked for consistency and meta data is

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

411

added. For example, the sensor readings produced by GPS

sensors can be considered as raw sensor data. GPS sensor

readings are represented as geographical location of context

information. If this data can generate context information then

it is treated as context data. Therefore, mostly what is

captured from sensors are data not the context information [3].
 Also data is extended as set of interrelated events by

means of logical and timing relations among them. They also

describe an event as an incidence that triggers a condition in a

intended area. These events are categorized as: discrete events

and continuous events. In discrete events an event happens at

particular time such as a door open, lights on, object entry

etc.On the contrary, continuous events are those event

instances lasting for at least some amount of time [3].

Context Awareness Concepts

Context awareness imposes conscious focus on computer

applications and systems. A context-aware system utilizes

context to deal with relevant information and services for the

intended user. The relevancy depends on the user specific

tasks. The context awareness frameworks are typically meant

to support data acquisition, meaningful data representation,

delivery of service and reaction.

Context models recognize a tangible subset of the context that

is sensibly attainable from sensors, applications and users and

have capability to be used in the execution of the task.
Wherein the context model built for a specific context-aware

application is usually explicitly programmed by the

application developer [3].

Life Cycle of Context Awareness

Figure 1: Generic life cycle of context awareness

Figure 1 depicts generic context information life cycles

which consist of four main phases which consists of context

setting, pre-processing of sensed information, task/activity

generation & analysis mainly time series.

Models of Context awareness

The two main models exercised are Implicit and Explicit.

Implicit context model: applications are devised using
standard libraries, frameworks and toolkits for primitive

operations such as context acquisition, preprocessing, storing,

and reasoning activities. It offers a standard design to follow

which makes it easier to construct the applications quickly.

However, still the context is hard bound to the application.

Explicit context model: applications are developed with

context management infrastructure mainly using middleware

technologies. Hence, actions such as context acquisition, pre-

processing, storing, and reasoning lie outside the application

boundaries.

Context attribute is important constituent of the context model

which describes the context. It has an identifier, a type and a

value, and optionally a collection of properties describing

specific characteristics.

Context-awareness Features

Presentation: Context can be configured to choose what

information and services needed to be accessible to the user.
Providing the idea of presenting information based on context

such as location, time, etc. Main motive is to support any

service, anytime, anyplace, with anything and anyone

preferably using any path/network.

Execution: Proactive execution of service expected

automatically based on the context with node to node

communication.

Tagging: Context entities are tagged together with the sensor

data so as to infer meaningful information. As there exists a

large number of sensors attached to everyday objects to

produce large amount of sensor data that has to be collected,

analyzed, fused and interpreted.

Context types: Socializing context involves framing various

context types mainly user computational, environmental,

historical, social networking, spatial (profiled user identity,

location, time), activity based, sensor based and cognitive [4].

Context views: Context can be viewed as primary and

secondary. In primary, context information retrieved directly

without performing any kind of sensor data fusion operations.

For example, GPS sensor readings as location information,

sensor data, RFID tag identification etc. In secondary context,
information is processed or computed using primary context

elements by using sensor data fusion operations or data

retrieval operations. For example web service calls for

identifying the distance between two sensors by applying

sensor data fusion operations on two raw GPS sensor values.

Location, identity, time, and activity noted as important

context information. The categorization is dominated by who,

when, where, why, what objective factors [12].

Context awareness levels

The configuration of context awareness allows users to

organize their preferences, likes and prospect values to the

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

412

context system manually. In passive level the system

constantly monitors the environment and proposes the

appropriate options to the users for actions. In active level the

system continuously and autonomously monitors the situation

and acts proactively for the profiled user preferences.

Middleware Support for Context Awareness

Middleware is employed to create a smart context

environment with embedded and networked computing

devices. It provides profiled users aspects like seamless

service access centricity, autonomous detection of application

requirements and automatic service provisioning [4][5]. As a

matter of fact the heterogeneity of hardware, software, and

network resources pose genuine coordination issues and

demand for comprehensive knowledge of individual elements

and technologies. In order to ease coordination and to assist
application developers, different middleware platforms have

been projected by researchers [4]. Leveraging available

middleware technologies are advantageous for varied features

such as management of context, data or service in application

developments. The notion of middleware is to match context

resource specific application-demands with service

provisioning capabilities, ensuring quality and efficiency in a

truly ubiquitous manner. To list out potential applications

using middleware support are smart-spaces, health-care,

ambient living, social networking, entertainment, logistics and

intelligent transportation systems [13].

Middleware Characteristics

The requirements of pervasive applications are truly

application-specific. It demands high flexibility, re-usability,

reliability, localized scalability, adaptability and context-

awareness characteristics. Use of middleware is primarily to

hide the complexity and heterogeneity of underlying entities

and their interactions in transparent manner. Also middleware

need to provide abstraction into intuitive and accessible
programming constructs. Also special mechanisms are

available to support situation-aware services to the users.

These range from raw context collection, storage and

processing, higher-level context derivation, context

inconsistency resolution, service discovery and composition to

support users unobtrusively. It is expected that middleware

layer has to be lightweight so as to fit in wireless sensor nodes

or embedded portable devices which are having constrained

by restricted processing powers and energy backups.

Middleware Technologies

Gaia, Aura, PICO/SeSCo, CORTEX, One.World, Scenes,

Activity-oriented computing and UIO are popular middleware

systems. Main objective of which is providing programming

abstractions (high-level programming interfaces to the

application programmer) in different design choices of the

context aware middleware paradigm [4] [6] [7] [8] [9] [10].

Gaia, Aura and AoC use a component-based programming

model. There are two prime types of abstraction levels, node
level and system level. The node level abstracts the

environment as a distributed system consisting of a collection

of heterogeneous computing devices. It also provides

programming support for individual devices for their actions

and cooperation. This is well supported by Aura,

PICO/SeSCo, CORTEX and Activity-oriented computing

(AoC) middleware. Aura manages every user’s personal

information which is comprised of task manager, environment
manager, and context observer components [13]. Aura uses

task abstraction to represent user applications composed of

multiple abstract services called as Suppliers [11]. Another

type of abstraction called Connectors which is abstraction of

interconnections between the system components. Activity in

Aura is a specific task used which is such an abstraction of

user actions planned by the activity-oriented computing

model. The Aura activities are computational abstractions

which need to be initiated, suspended, stored and resumed on

computing element. It hides heterogeneity of the underlying

computing platform. Delegent is an abstraction of the mobile

software agent, and device is an abstraction of computing
devices. Delegentsneeds to be enabled by events which are

taking place in the environment.

System level abstraction enables the environment as a single

virtual system. Its main notion is to facilitate the developer to

articulate a singlecentralized program into subprograms. Also

it is intended to work with local nodes; the programmer has to

utilize minimal set of programming primitives while making

transparent the low-level worries. Typically distributed code
generation, remote data access and management, and inter-

node program flow coordination are achieved. Gaia and

One.World support system level abstraction. In Gaia, active

space is used as an abstraction of the smart physical

environment. One.World, environment comes as an

abstraction for incorporating data abstractions which are noted

as tuple and functions as a container of related user

applications. Comparatively node level abstraction facilitates

higher flexibility and energy economy, minimum

communication and interpretation overheads for application

development. System level abstractions are simpler to use.
The node level behaviors can be produced automatically

relieving programmer to concentrate on the network-level

actions, without bothering on sensor nodes collaboration to

perform the allocated tasks.

Development support

Middleware applications entail different programming

interfaces matching the underlying system architecture and
functionalities. Precisely aspect of developing programming

abstractions is interface type. This refers to the approach of

the application programming interface (API). Programming

abstraction is embodied as the programming interface. Gaia

provides a standard programming interface of the active space

model for developers to program the active space as a single

entity. Aura provides special interfaces for suppliers and

connectors. PICO/SeSCo offers resource service abstraction

through a graph model for adaptation of existing devices.

One.World gives a common API for service discovery and

communication library for programmers. CORTEX supports

APIs to enable event communication and API for timely-
computing based (TCB) model [4].In general, the system

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

413

service functionalities provided among common services

include context management, service management, reliability

& security management. Context management services are

responsible for contextual data acquisition, processing, and

derivation of higher-level contexts, context dissemination,

context inconsistency detection and resolution. Service
management is responsible for service discovery, service

composition, and service handoff in middleware environment.

Reliability and security management is responsible for

ensuring correct functioning of the system. It caters to several

hardware and software related faults and also ensures

protection of sensitive user information. Also various runtime

supports are essential for the underlying execution

environment. The running context aware smart applications

can be seen as an extension of the embedded operating

system. It supports functions such as scheduling of tasks,

inter-process communication (IPC), memory control, and

power control. Middleware runtime support is mainly in
assistance for local processing, communication, energy

management, and storage. It employs multi-thread processing,

smart task scheduling, and synchronization of memory access.

Context Management

 Managing context refers with how the data flows from phases

in context-aware applications especially where middleware

are employed. The major focus is on where the data is

generated and where the data is utilized. Context-awareness is

no longer limited to web or mobile applications. It has already

become a service namely Context-as-a-Service (CXaaS)

which are web-based context management services. The

classical context management system life cycle has main

phases such as Context acquisition, Information processing,

and Reasoning and Decision.

Context acquisition: Tobuildcontext from physical or virtual
sensors for developingcontext-aware middleware solutions,

push and pull techniques are used. These distinctions are

based on responsibility of gathering information. In push the

system requests for data from sources such as query to sensor

mechanism periodically. On contrast to this in the Push

method, information is send periodically to the system. The

frequency of information can be at periodic intervals or

instantly as per evens occurred. Sensors can be categorized

further as physical, virtual (data gathered and processed

before sending such as calendar, tweets etc), logical (web

service to combine physical and logical sensor data) [11]

Context representation:

Setting new context, information needs to be defined in terms

of attributes, characteristics and relationships. It has to

consider the previously specified context, quality-of context

attributes and the queries for synchronous context requests.

Context is modeled based on heterogeneity, mobility,

relationships, dependencies, freshness, imperfection,

reasoning, usability of modeling formalisms, and effective

context provisioning. The most popular context modeling

techniques are namely key-value, markup schemes, graphical,
object based, logic based and ontology based modeling.

Key-value modeling: models context information as key-value

pairs in different formats such as text files and binary files.

Simplest and easy to manage smaller amounts of data. Not

scalable and do not suit for storing complex data structures.

Markup scheme modeling: models data using tags where

context is stored using markup tags allows efficient data

retrieval. Validation is supported through schema definitions

using validation tools such as XML. Range checking is also

possible up to some degree for numerical values. In contrast,

do not allow reasoning. Due to lack of design specifications,

context modeling, retrieval, interoperability, and re-usability

over different markup schemes can be difficult.

Graphical modeling: models context with relationships. Some

examples of this modeling technique are Unified Modeling

Language (UML).

Object based modeling: object based modeling is suitable to

be used as an internal, non-shared, code based, run-time

context modeling, manipulation, and storage mechanism. Do

not provide inbuilt reasoning capabilities. Validation of object

oriented designs is also challenge due to the lack of standards

and specifications.

Logic based modeling: rules are mainly used to express

policies, constraints, and preferences. It provides much more

expressive prosperity compared to the other models.
Reasoning is possible up to a certain level. Lack of

standardization reduces the re-usability and applicability.

Ontology based modeling: context is organized into ontology

using semantic technologies. A number of various standards

(RDF, RDFS, OWL) and reasoning capabilities are supported

as per the requirement. Various development tools and

reasoning engines are also available. However, context

retrieval can be computationally rigorous and time consuming

as the amount of data is increased.

Context reasoning decision models

Context reasoning is method of inferring new knowledge, and

understanding better. It is based on the existing context as a

process of giving high-level context deductions from a set of

contexts. Reasoning has emerged due to imperfection (i.e.

unknown, ambiguous, imprecise, or erroneous) and

uncertainty characteristics of raw context. Reasoning

performance can be measured using efficiency, soundness,

completeness, and interoperability metrics.

There are ample numbers of context reasoning decision

models available. Popular decision models are decision tree,
naive Bayes, hidden Markov models, support vector machines,

k-nearest neighbor, artificial neural networks, Dempster-

Shafer, ontology-based, rule-based, fuzzy reasoning etc.

These are originated and are employed in the fields of

artificial intelligence and machine learning.

Generally context reasoning techniques are

categorizedintosupervised learning, unsupervised learning,

rule based, fuzzy logic, ontological reasoning and

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

414

probabilistic reasoning.Supervised learning aims to first

collect training examples and labeled according to the

expected results. Then a function is derived which can

generate the expected results using the training data. This

technique is widely used in mobile phone sensing and

activity recognition. Decision tree is a supervised learning
technique which builds a tree out of a dataset that can be used

to classify data. Artificial neural networks technique’s typical

implementation is to modelcomplex relationships

betweeninputs and outputs. Also it aims to obtain patterns in

data. Pervasive healthcare monitoring system is best suit using

body sensor networks domain experimentation. For context-

aware reasoning clustering techniques such as K-Nearest

Neighbor is prevalently employed. Precisely mentioning,

clustering is used in low-level sensor network operations

mainly for routing and indoor, outdoor positioning and

location aware systems.

Discussion

Challenges in Context aware Middleware Implementations:

In developing social context-aware applications correct

detection of user intention based on the situational knowledge

requires further exploration. Conflict resolution among the

data sensed by multiple sensor nodes is major apprehension

for research. Storage of contextual data used in pervasive

applications is also important issue. Reliability in service
management operations for multi-application service

provision is absolutely vital for context aware environments.

In social context to analyze profiled user’s personal and social

behavior to predict future actions using context aware tools

and technologies from social networks can entail major

challenges, such as devising appropriate algorithms to match

large scale data management for supporting data driven

adaptability, managing user’s privacy and security.

Acknowledgments

We express our sincere gratitude to all the authors for

inspiring research attempts by virtue of their publications.

We are thankful to all the authors whose papers are referred

for preparing this article.

References

[1] Mark Weiser, “The Computer for the 21st Century”, Scientific

American Ubicomp, 1991.

 [2] M. Satyanarayanan, Pervasive computing: vision and challenges, IEEE

Personal Communications, 2001.

 [3] “Context Aware Computing for the Internet of Things: A Survey”,

IEEE Communications Surveys & Tutorials, 2013.

[4] Vaskar Raychoudhurya, Jiannong Caob, Mohan Kumarc, Daqiang

 Zhangd ,“Middleware for pervasive computing: A survey”, Pervasive

 and Mobile Computing,2013.

[5] Daniel Schuster et.al., “Pervasive Social Context: Taxonomy and

 Survey”,ACM Transactions on Intelligent Systems and Technology,

 2013.

[6] Christian Becker et.al.,“PCOM–A Component System for Pervasive

 Computing”, IEEE Annual Conference on Pervasive Computing and

 Communications (PERCOM’04),2004.

[7] ManuelRomán et. al. , “A Middleware Infrastructure for Active

Spaces”,IEEE ,Pervasive computing,2002.

 [8] Christian Becker et. al., “ BASE - A Micro-broker-based Middleware

ForPervasive Computing”, IEEE International Conference on Pervasive

 Computing and Communications,2003.

 [9] VerenaMajuntke et.al,“A Coordination Framework for Pervasive

 Applications in Multi-User Environments”, IEEE Sixth

International Conference on Intelligent Environments, 2010.

[10] J.P. Sousa, D. Garlan, “Aura: an architectural framework for user

mobility in ubiquitous computing environments”, Proc. of the 3rd

Working IEEE/IFIP Conference on Software Architecture, 2002.

[11] D. Garlan, D.P. Siewiorek, A. Smailagic, P. Steenkiste, Project Aura:

toward distraction-free pervasive computing, IEEE Pervasive

Computing 2002.

[12] H. Truong, S. Dustdar, “A survey on context-aware web service

systems”, International Journal of Web Information Systems, 2009.

[13] VerenaMajuntke et.al. , “COMITY: Coordinated Application

Adaptation in Multi-Platform Pervasive Systems”, IEEE,

 (PerCom),2013.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

415

