

Review of Inter-App Permission Leakage and Malware Characterization in

Android Operating System

Nitesh A. Patil

Department of Computer Science and Engineering,

D. Y. Patil College of Engineering,

Kolhapur, Maharashtra, India

Dr. K. V. Kulhalli

Professor, Department of Information Technology,

D. Y. Patil College of Engineering,

Kolhapur, Maharashtra, India.

Dr. S. Seema

Professor, Dept. of Computer Science and Engineering,

M S Ramaiah Institute of Technology, Bangalore,

Karnataka, India

Abstract

Android operating system is extremely popular because of its

openness to developers as well as freely availability of

numerous apps. It also supports third party developed apps

which might be developed intentionallyto grab private

information of the user. Currently many scenarios have

proved that because of inter app messagingmechanisms in

android operating system; the user privacy is at risk.

Android app markets like Google Play Store are at

the hit of malware attacks and it seriously threatening users’

security. This paper presents a survey on inter apppermission

leakage in android operating system. Furthermore android

apppermission categories and malware characterization in

androidalso highlighted.

Keywords:Android Security, Android Permissions, Inter-app

permission, Android Malware Characterization, Malware

Detection.

1. Introduction

All Today the boom of the android phones, the users are using

more and more applications in almost all sectors suchas

health, entertainment, office, college, banking etc. Android

device activations are hitting near about 1.5 million perday

and unfortunately, privacy leakage issues in android devices

are also increasing in same flow. In app store, there aremany

applications those are free but they are relying on

advertisement for their income. These applications can get

auser’s private information easily and use it for target

advertisements. Users also accept this business model, but

they areunaware about his private information is being leaked

by certain applications without his permission.

Android system provides sharing of data and services between

apps using inter-app communication system.

Androidpermission system controls access of resources of the

mobile device. Hence permissions can be misused

intentionally soenforcing permissions is not enough to prevent

from permission violations. Android’s enforcement of the

permissions isat the level of individual apps, allowing

multiple malicious apps to collude and combine their

permissions or to trickvulnerable apps to perform actions on

their behalf that are beyond their individual privileges [1].

Application components are basic logical building

blocks of Android apps. Each component can run

individually,either by its embodying application or by system

upon permitted requests from other applications. Android

apps havefour types of components: (1) Activity components

provide the basis of the Android user interface. Each

Applicationmay have multiple Activities representing

different screens of the application to the user. (2) Service

components providebackground processing capabilities, and

do not provide any user interface. Playing music and

downloading a file while auser interacts with another

application are examples of operations that may run as a

Service. (3) Broadcast Receivercomponents respond

asynchronously to system-wide message broadcasts. A

receiver component typically acts as agateway to other

components, and passes on messages to Activities or Services

to handle them. (4) Content Providercomponents provide

database capabilities to other components. Such databases can

be used for both intra-app datapersistence as well as sharing

data across applications [1].

Privacy violations can occur even when a user grants

access to protected data (e.g. contact list, exact location, etc.)

to abenign app, i.e. one not trying to violate user’s privacy.

This holds true, since the app may either be used as a

confuseddeputy [12, 13], i.e. accidentally allowing other

malicious apps to use its functionality to access the resources,

or bebundled with a malicious advertisement library [14],

which misuses the shared permissions to violate user privacy.

Also,benign Android apps tend to request more permissions

than needed for their intended functionality [11].

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

896

2. Literature Survey

Hamid Bagheri, AlirezaSadeghi, et. al[1] presents

novel approach, called COVERT, for compositional analysis

ofAndroid inter-app permission leakage vulnerabilities.

COVERT’s analysis is modular to enable incremental analysis

ofapplications as they are installed, updated, and removed. It

statically analyzes the reverse engineered source code of

eachindividual app and extracts relevant security

specifications in a format suitable for formal verification.

AlexiosMylonas, MarianthiTheoharidou, and

DimitrisGritzalis [2] provides taxonomy of user data found on

asmartphone, their respective Android permissions and

discussed ways to disclose their data. They have identified

privacythreats applicable to user data, crawled apps from

Google Play and used this sample to list descriptive statistics

forpermission combinations that may violate user privacy.

Li Li, AlexandreBartel, et. al, [3]. In this paper,

authors have proposed IccTA, a static taint analyzer to detect

privacyleaks among components in Android applications.

IccTA goes beyond state-of-the-art approaches by supporting

inter-componentdetection. By propagating context

information among components, IccTA improves the

precision of theanalysis. IccTA outperforms existing tools on

two benchmarks for ICC-leak detectors: DroidBench and

ICC-Bench.

Li Li, AlexandreBartel, et. al [4], In this paper,

author presented potential component leaks (PCLeaks), a tool

toexploit potential component leaks and PCLeaksValidator, a

tool which automatically generates a correspond

maliciousapps to validate the results of PCLeaks. Concretely,

PCLeaks first builds a precise control-flow graph for the

analyzedapps. Then, it performs static taint analysis with a

well-defined set of source and sink methods to identify

potential activecomponent leaks and also potential passive

component leaks.

Drago S, Michael G. Burke, Salvatore Guarnieri, [5],

Author has identifed three types of inter-application

Intentbasedattacks that rely on information flows in

applications to obtain unauthorized access to permission-

protectedinformation. Two of these attacks are of previously

known types: confused deputy and permission collusion

attacks. Thethird attack, private activity invocation, is new

and relies on the existence of dificult-to-detect

misconfigurationsintroduced because Intents can be used for

both intra-application and inter-application communication.

Suchmisconfigured applications allow protected information

meant for intra-application communication to leak

intounauthorized applications. This breaks a fundamental

security guarantee of permissions systems: that application

can onlyaccess information if they own the corresponding

permission.

Yajin Zhou, Xuxian Jiang [6] focuses on the Android

platform and aim to systematize or characterize

existingAndroid malware. Particularly, with more than one

year effort, they have managed to collect more than 1,200

malwaresamples that cover the majority of existing Android

malware families, ranging from their debut in August 2010 to

recentones in October 2011. In addition, they systematically

characterize them from various aspects, including their

installationmethods, activation mechanisms as well as the

nature of carried malicious payloads.

FranziskaRoesner and his team [7] has taken the

approach of user-driven access control, where permission

grantingis built into existing user actions in the context of an

application, rather than added via manifests or system

prompts. Toallow the system to precisely capture permission-

granting intent in an application’s context, they introduce

access controlgadgets (ACGs). Each user-owned resource

exposes ACGs for applications to embed. The user’s authentic

UI interactionswith an ACG grant the application permission

to access the corresponding resource. Their prototyping and

evaluationexperience indicates that user driven access control

enables in-context, non-disruptive and least-privilege

permissiongranting on modern client platforms.

Yi Ying Ng, Hucheng Zhou, et. al [8] presents a

comprehensive study on the trustworthy level of top popular

Androidapp stores in China, by discovering the identicalness

and content differences between the APK files hosted in the

appstores and the corresponding official APK files. First, they

have selected 25 top apps that have the highest installations

inChina and have the corresponding official ones downloaded

from their official websites as oracle; and have collected

total506 APK files across 21 top popular app stores (20 top

third party stores as well as Google Play). Afterwards,

APKidentical checking and APK difference analysis are

conducted against the corresponding official versions.

Next,assessment is applied to rank the severity of APK files.

All the apps are classified into 3 severity levels: ranging from

safe(identical and higher level), warning (lower version or

modifications on resource related files) to critical

(modifications onpermission file and/or application codes).

Finally, the severity levels contribute to the final trustworthy

ranking score of the21 stores.

YuryZhauniarovich, Olga Gadyatskaya and Bruno

Crispo [9] present how to enable the deployment of

applicationcertification service, we called TruStores, for the

Android platform. In their approach, the TruStore client

enabled on theend-user device ensures that only the

applications, which have been certified by the TruStore

server, are installed on theuser smartphone. They envisage

trusted markets (TruStore servers, which can be, e.g.,

corporate application markets) thatguarantee security by

enabling an application vetting process. The TruStore

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

897

infrastructure maintains the open nature of theAndroid

ecosystem and requires minor modi_cations to Android stack.

3. Malware Characterization

3.1 What is Malware?

Malware is software which is designed to damage or

disrupt a System. Malicious software is abbreviated as

Malware. Generally, software is considered malware based on

the intent of the creator rather than its actual features. It can be

classified as Viruses, worms, Trojanhorses, rootkits,

backdoors, spyware, loggersand adware.

Trojan horse is any program that invites the user to

run it, concealing a harmful or malicious payload. The
payload may take effect immediately and can lead to many

undesirable effects, such as deleting the user's files or further

installing malicious or undesirable software. Rootkits

Originally, a rootkit was a set of tools installed by a human

attacker on a Unix system, allowing the attacker to gain

administrator (root) access. Today, the term rootkit is used

more generally for concealment routines in a malicious

program.Once a malicious program is installed on a system, it

is essential that it stays concealed, to avoid detection and

disinfection. Backdoors may also be installed prior to

malicious software, to allow attackers entry.
Spyware is a type of malicious software that can be

installed on computers, and which collects small pieces of

information about users without their knowledge. The

presence of spyware is typically hidden from the user, and can

be difficult to detect. Spyware programs can collect various

types of personal information, such as Internet surfing habits

and sites that have been visited, but can also interfere with

user control of the computer in other ways, such as installing

additional software and redirecting Web browser activity.

Keystroke logging (often called keylogging) is the action of

tracking (or logging) the keys struck on a keyboard, typically

in a covert manner so that the person using the keyboard is
unaware that their actions are being monitored. There are

numerous keylogging methods, ranging from hardware and

software-based approaches to electromagnetic and acoustic

analysis. Adware, or advertising-supported software, is any

software package which automatically plays, displays, or

downloads advertisements to a computer. These

advertisements can be in the form of a pop-up. The object of

the Adware is to generate revenue for its author. Adware, by

itself, is harmless; however, some adware may come with

integrated spyware such as keyloggers and other privacy-

invasive software. [15]
Malware writers/users go by a variety of names.

Some of the most popular names are black hats, hackers, and

crackers. In creating new malware, black hats generally

employ one or both of the following techniques: obfuscation

and behavior addition/modification in order to circumvent

malware detectors [16]. Hacker is any highly skilled computer

expert capable of breaking into computer systems and

networks using bugs and exploits. A cracker (also known as a

black hat hacker) is an individual with extensive computer

knowledge whose purpose is to breach or bypass internet

security or gain access to software without paying royalties.
The malware detector attempts to help protect the

system by detecting malicious behavior. The malware detector

may or may not reside on the same system it is trying to

protect. The malware detector performs its protection through

the manifested malware detection technique.

Systematic characterization of existing malware into

three broad categories as follow: Installation, Activation,
Carried Payloads. [17]

3.2 Installation

Android malware use to install onto user phones and

generalize them into three main social engineering-based

techniques, i.e., repackaging, update attack, and drive-by

download. These techniques are not mutually exclusive as

different variants of the same type may use different

techniques to entice users for downloading.

Repackaging is one of the most common techniques

malware authors use to piggyback malicious payloads into

popular applications (or simply apps). In essence, malware

authors may locate and download popular apps, disassemble
them, enclose malicious payloads, and then re-assemble and

submit the new apps to official and/or alternative Android

Markets.

Update attack, second technique makes it difficult for

detection. Specifically, it may still repackage popular apps.

But instead of enclosing the payload as a whole, it only

includes an update component that will fetch or download the

malicious payloads at runtime.

The drive-by download technique applies the

traditional drive-by download attacks to mobile space.

Though they are not directly exploiting mobile browser
vulnerabilities, they are essentially enticing users to download

interesting apps.

3.3 Activation

Android malware can rely on the built-in support of

automated event notification and callbacks on Android to

flexibly trigger or launch its payloads.

3.4 Carried Payloads

The payload functionalities partition into four

different categories: privilege escalation, remote control,

financial charges, and personal information stealing.

The Android platform is a complicated system that

consists of not only the Linux kernel, but also the entire
Android framework with more than 90 open-source libraries

included, such as WebKit, SQLite, and OpenSSL. The

complexity naturally introduces software vulnerabilities that

can be potentially exploited for privilege escalation.

During analysis to examine the remote control

functionality among the malware payloads, authors are

surprised to note that 93.0% turn the infected phones into bots

for remote control. One profitable way for attackers is to

surreptitiously subscribe to (attacker-controlled) premium-rate

services, such as by sending SMS messages.

In addition to the above payloads, malware are
actively harvesting various information on the infected phones

including SMS messages, phone numbers as well as user

accounts. For Android apps without root exploits, their

capabilities are strictly constrained by the permissions users

grant to them. Therefore, it will be interesting to compare top

permissions requested by these malicious apps with top

permissions requested by benign ones.

4. Permission Categories

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

898

Most device access in android is controlled by

permissions. Applications can define their own extra

permissions, but here the permissions defined by Android OS

are considered only. There are 134 permissions in Android2.2.

Permissions are categorized into following threat levels

Level 1: API calls with annoying but not harmful
consequences are protected with Normal permissions.

Example: accessing information about available Wi-Fi

networks, vibrating the phone, and setting the wallpaper.

Level 2: API calls with potentially harmful consequences.

Example: Opening a network socket, recording audio, and

using the camera.

Level 3: The most sensitive operations are protected with

Signature permissions. These permissions are only granted to

applications that have been signed with the device

manufacturer’s certificate. Example: Ability to inject user

events.

Level 4: This category includes signed applications and
applications that are installed into the/system/app folder.

Example: Preinstalled applications, applications protecting the

ability to turn off the phone. During installation permission

prompt is displayed to the user for level 2 permissions.

Warnings are categorized according to functionality. For

example, Dangerous location related permissions are included

in location related warning. Level 1 permissions are hidden in

a collapsed menu. Level 3 permissions are not shown at

all.[10] Following table shows available android permission

groups with respective permissions.

Permi

ssion

Group

Permission

androi

d.per

missio

ngrou

p.CAL

ENDA

R

android.permission.READ_CALENDARandroid

.permission.WRITE_CALENDAR

androi

d.per

missio

ngrou

p.STO

RAGE

android.permission.READ_EXTERNAL_STOR

AGEandroid.permission.WRITE_EXTERNAL_

STORAGE

androi

d.per

missio

ngrou

p.SMS

android.permission.SEND_SMSandroid.permissi

on.RECEIVE_SMSandroid.permission.READ_S

MSandroid.permission.RECEIVE_WAP_PUSH

android.permission.RECEIVE_MMSandroid.pe

rmission.READ_CELL_BROADCASTS

androi

d.per

missio

ngrou

p.SEN

SORS

android.permission.BODY_SENSORS

androi

d.per

missio

ngrou

android.permission.CAMERA

p.CA

MER

A

androi

d.per

missio

ngrou

p.CO

NTAC

TS

android.permission.READ_CONTACTSandroid

.permission.WRITE_CONTACTSandroid.permi

ssion.GET_ACCOUNTS

androi

d.per

missio

ngrou

p.LO

CATI

ON

android.permission.ACCESS_FINE_LOCATIO

Nandroid.permission.ACCESS_COARSE_LOC

ATION

androi

d.per

missio

ngrou

p.MIC

ROPH

ONE

android.permission.RECORD_AUDIO

androi

d.per

missio

ngrou

p.PH

ONE

android.permission.READ_PHONE_STATEand

roid.permission.CALL_PHONEandroid.permissi

on.READ_CALL_LOGandroid.permission.WRI

TE_CALL_LOGcom.android.voicemail.permissi

on.ADD_VOICEMAILandroid.permission.USE_

SIPandroid.permission.PROCESS_OUTGOING

_CALLS

Table 1 :Android Permissions

Conclusion

During this review, it was observed that there is need of more

study on detection of inter-app permission leakage withany

dynamic strategy which will guide users to identify hidden

malwares in android operating system. This paper also focuses

on a huge demand of new solution for user centric risks

control and giverequisite information to the user about app

behavior with user centric risks available into it.

References

[1] G. Hamid Bagheri, AlirezaSadeghi, Joshua Garcia and

Sam Malek, “COVERT: Compositional Analysis

ofAndroid Inter-App Permission Leakage”, IEEE

TRANSACTIONS ON SOFTWARE ENGINEERING,

2015.

[2] AlexiosMylonas, MarianthiTheoharidou, and

DimitrisGritzalis, “Assessing Privacy Risks in Android:

A UserCentricApproach”, DOI: 10.1007/978-3-319-

07076-6_2, Springer International Publishing

Switzerland 2014.

[3] Li Li, AlexandreBartel, Tegawende F. Bissyand,“IccTA:

Detecting Inter-Component Privacy Leaks in Android

Apps”, 37th International Conference on Software

Engineering (ICSE 2015), ITALY,2015.

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

899

[4] Li Li, AlexandreBartel, Jacques Klein, Yves le Traon,

“Automatically Exploiting Potential Component Leaks

in Android Applications”, IEEE Conference, Sept 2014.

[5] Drago S, Michael G. Burke, Salvatore Guarnieri,

“Automatic Detection of Inter-application Permission

Leaksin Android Applications”, IEEE Conference,

Nov.2013 .

[6] Yajin Zhou, Xuxian Jiang, “Dissecting Android

Malware: Characterization and Evolution”, Security and

Privacy (SP), IEEE, May 2012.

[7] FranziskaRoesner, Tadayoshi Kohno, Alexander

Moshchuk, Bryan Parno, “User-Driven Access Control:

Rethinking Permission Granting in Modern Operating

Systems”, IEEE ,2012.

[8] Yi Ying Ng , Hucheng Zhou , ZhiyuanJi , HuanLuo,

“Which Android App Store Can be Trusted in

China?”,Computer Software and Applications

Conference (COMPSAC), IEEE, July 2014.

[9] YuryZhauniarovich, Olga Gadyatskaya, and Bruno

Crispo, “Trustore: Implementing A Trusted Store

ForAndroid”, DISI - Via Sommarive 5 - 38123 Povo -

Trento (Italy), May 2014.

[10] Hari H. Rajai, Prof. SachinBojewar, “Study Of

Permissions And Risk Communication Mechanisms In

Android”,International Research Journal of

Engineering and Technology (IRJET),2015

[11] Felt, A., Chin, E., Hanna, S., Song, D., Wagner, D.,

“Android permissions demystified.”, Proceedings of

the 18thACM Conference on Computer and

Communications Security, pp. 627–638. ACM (2011).

[12] Felt, A., Hanna, S., Chin, E., Wang, H.J., Moshchuk, E.

“Permission redelegation: attacks and defenses” In:

20thUsenix Security Symposium (2011).

[13] Grace, M., Zhou, Y., Wang, Z., Jiang, X. “Systematic

detection of capability leaks in stock

Androidsmartphones.”, Proceedings of the 19th

Network and Distributed System Security Symposium

(2012).

[14] Pearce, P., Felt, A.P., Nunez, G., Wagner, D. “Android:

privilege separation for applications and advertisers in

android.”,Proceedings of the 7th ACM Symposium on

Information, Computer and Communications Security,
pp.71–72. ACM (2012)

G.Y.Goldstein.“StrategicInnovationManagement:Trend

s, Technology,

Practice:AMonograph”.Taganrog:PublishingHouseTR

TU, 2002.

[15] http://www.idconline.com/technical_references/pdfs/inf

ormationtechnology/Malware%20and%20its%20types.

pdf

[16] NwokediIdika, Aditya P. Mathur, “A Survey of

Malware Detection Techniques”, February 2, 2007.

[17] Yajin Zhou, Xuxian Jiang “Dissecting Android

Malware: Characterization and Evolution”, North

Carolina State University, 2013

International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 10, Number 1 (2017)
 © International Research Publication House http://www.irphouse.com

900

