DOCCCII based Configurable Analog Block Design for FPAA Implementation in 16nm Technology

Sadia Shireen¹, Mohd. Faseehuddin², M.Y. Yasin³

¹ & ² M.Tech Students, ³ Asst. Prof., Electronics & Communication Department, Integral University, Lucknow, India
¹ sadiashireen53@gmail.com ² faseehuddin03@gmail.com ³ mmyasin@rediffmail.com

Abstract

Field programmable analog array (FPAA) is the rapid emerging technology for hardware prototyping of analog applications where low power, small design time and low design cost are required. Its requirement of less area and reduced power makes it more efficient than digital counterparts. In this paper we propose a 2nd generation Dual output current controlled current conveyor (DOCCCII) in 16nm bulk CMOS technology using PTM (High Performance 16nm Metal Gate / High-K / Strained-Si parameters published by the Arizona State University, USA) and discuss its dynamic characteristic. A configurable analog block (CAB) is also proposed, which mainly consists of a DOCCCII and minimum number of MOSFET switches, to make it readily configurable to realize analog applications. This CAB is used for realization of the integrators and differentiators. The CAB is versatile enough to realize different second order function involving systems like filters and oscillators. Performance of the CAB based realization is compared with their normal realizations. The results of comparison are quite satisfactory.

Keywords— DOCCCII applications, Electronically tunable design, Configurable Analog Block, Field Programmable Analog Array.

Introduction

So far, digital VLSI has generally enjoyed a dominant market share, whereas the analog remained in a position of interfacing the digital systems with the real world. However, analog signal processing shows higher bandwidth, capable of handling far higher frequencies than their digital counterparts [1] and a capability of handling lower voltage /current signals, compared to the fixed levels of digital systems, enables...
the analog VLSI to offer huge power savings, 10,000 times [1] and an area saving by 100 times [1]. FPAA is a promising design approach for analog VLSI that provides a platform for new innovations in implementing the complex circuit applications in a small design time by the end user. For need of low design cost, testing time and design efforts, the demand for FPAA is increasing. In neural networks, signal conditioning, fuzzy controls, multi valued logic and high frequency applications FPAA proves its importance [2]. In publications of the recent past, many authors have proposed schemes for FPAA based on current mode circuit techniques, including the current feedback operational amplifier (CFOA), 2nd generation current conveyor (CCII) and the allied current conveyor devices [3-6]. In these schemes, significant considerations are given to various design issues like high frequency, low power and low voltage, small area [3-5] etc. Barrie Gilbert introduced the term current mode [7]. Among various current mode approaches current conveyor (CC) attains greater popularity for its versatility rendering it more suitable for LV and LP applications [8]. A CC simultaneously offers both low impedance and high impedance inputs along with a virtual voltage short among them [8]. It exhibits very high gain bandwidth product, improved slew rate, improved dynamic range, greater linearity, small chip area and low power consumption [8-11]. By considering the input impedance of the low impedance input node, Current controlled current conveyor (CCC) was introduced [12]. It is reported that a CCC is more flexible [13], basically analog, but extendible to digital applications [13-15]. Applications like passive comparator, regenerative comparator [14], D flip flop [14, 15], XOR/XNOR [13], CMOS clock generator etc. can be seen in literature. Current negation and current duplication is very easy to obtain in case of a CCC, leading to DOCCC, MOCCC etc. 2nd generation is generally preferred, therefore CCII, DOCCII etc. are readily seen in literature.

In this paper we present a design of a configurable analog block (CAB) using the translinear DOCCII, realized in 16nm bulk CMOS Technology using the PTM [16] CMOS model parameters. Switching arrangement is also included in the CAB, and by appropriate selection, numerous applications based on 2nd order polynomials can be realized. However, here the results of integrator and differentiator are presented.

CIRCUIT DISCRIPATION OF DOCCII
CCCII has parasitic resistance R_X at the current input node and is tunable by the biasing current I_B [13]. A DOCCII provides $±$ output current signals simultaneously. The block diagram of a DOCCII is given in Fig. 1.

![Figure 1: Block Diagram of DOCCII](image_url)
DOCCCII based Configurable Analog Block Design

The basic governing equation of the DOCCCII is given in Eq.1.

\[
\begin{bmatrix}
 Y \\
 X \\
 Z
\end{bmatrix} =
\begin{bmatrix}
 0 & 0 & 0 \\
 1 & R_x & 0 \\
 0 & \pm 1 & 0
\end{bmatrix}
\begin{bmatrix}
 V \\
 I \\
 Z
\end{bmatrix}
\]

(1)

The CMOS implementation of a class AB translinear DOCCCII is presented in Fig.2.

Figure 2: Implementation of CMOS DOCCCII

DOCCCII BASED CAB

A CAB is the functional block for implementing various analog applications configurable in user domain. The CAB proposed in the present work is shown in Fig.3. The CAB is designed for implementing circuit applications which require a second order polynomial like bi-quadratic filters and oscillators. The proposed CAB contains a DOCCCII, a conjoin of capacitor and resistor at node Y and at node Z+, a capacitor at node Z- and X and switches S1 – S6. In order to implement an application, switches are operated to include the required capacitors, resistors with the DOCCCII. Different switching combinations can enable the realizations of a variety of applications.

The switches are no more ideal, but are a jargon of large number of non-idealities like offset voltages and currents along with parasitic resistances, inductance and capacitances. Some of them are important in consideration with FPAA scheme as their effects are dominant. Therefore a natural consideration is that their effects do not alter the circuit performance, and hence design efforts are required in this regard so that the switch dominance effects are swamped. For this purpose, an estimate is made for the total effect of various capacitances connected to a node and is assumed as a lumped model of the total capacitance at the node, e.g. \(C_{G\text{TOTAL}} \). These estimates are usually prepared by HSPICE.
SIMULATION RESULTS
The performance of the DOCCCII and the CAB based on it are verified by performing HSPICE simulations. The sizes of the MOSFETs used in realizing the DOCCCII of Fig.2 are presented in Table 1.

TABLE 1: ASPECT RATIO OF DOCCCII

<table>
<thead>
<tr>
<th>Transistors</th>
<th>W(nm)</th>
<th>L(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1, M2, M7, M8, M9, M10</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>M16, M17, M18</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>M19</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>M3, M4, M5, M6, M11</td>
<td>64</td>
<td>32</td>
</tr>
<tr>
<td>M12, M13, M14, M15</td>
<td>64</td>
<td>32</td>
</tr>
</tbody>
</table>

The characteristics of the above DOCCCII are studied and the simulation results obtained are presented in Table 2.

TABLE 2: CHARACTERISTICS OF DOCCCII

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current gain</td>
<td>1.0996</td>
</tr>
<tr>
<td>3db bandwidth</td>
<td>12.2825GHz</td>
</tr>
<tr>
<td>Input resistance</td>
<td>31KΩ</td>
</tr>
<tr>
<td>Output resistance</td>
<td>502.05 KΩ</td>
</tr>
<tr>
<td>Total power dissipation</td>
<td>53.25µwatt</td>
</tr>
</tbody>
</table>
The output current follow-up characteristic of the DOCCCII is shown in Fig.4 along with the quality of the output for a Giga hertz sine signal input is also shown in Fig.5.

![Figure 4: Output current follow up characteristics](image1)

![Figure 5: Output signal quality for a sinusoidal input](image2)

Furthermore, frequency response of the DOCCCII is presented in Fig.6. This performance is evaluated for current input at node X.

![Figure6: AC Analysis of DOCCCII](image3)

The working of the proposed model is demonstrated by running an application with the original circuit and then the same application is realized by using the CAB. The applications realized include integrator, differentiator from the already published work. The output wave forms are given in Fig. 7-10 and the results are summarized in Table 3.
In Fig. 7(a) an integrator structure given in [12] is realized using the proposed CAB. To include the required components on to various nodes their respective switches are closed namely (S5).

TABLE 3

<table>
<thead>
<tr>
<th>Name</th>
<th>Without cab</th>
<th>With cab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bandwidth</td>
<td>Amplitude</td>
</tr>
<tr>
<td>Figure8</td>
<td>1.06907MHz</td>
<td>14.858dB</td>
</tr>
<tr>
<td>Figure10</td>
<td>19.946MHz</td>
<td>-31.854dB</td>
</tr>
</tbody>
</table>

Power dissipation is same in both cases.

In Fig. 9(a) a current mode differentiator structure given [12] is realized using the CAB and the required components are included by closing switches (S1, S4). The proposed CAB can be repeated a number of times to construct an FPAA capable of realizing complex applications. The CABs will be connected by interconnect matrix on the FPAA not shown here.
DOCCCII based Configurable Analog Block Design

Figure 9: DOCCCII based Differentiator realization using DOCCCII. (a)- Normal circuit, (b)- Differentiator realization through CAB

Figure 10: Performance of the Differentiator realizations of Fig.9 (a) and (b).

Conclusion
A new design for configurable analog block based on DOCCCII for high frequency applications is proposed. Using the CAB together with programmable interconnects FPAA can be constructed which will efficiently realise a number of integrators, differentiators, oscillators, filters and amplifiers.

REFERENCES

