Fuzzy semi-regular subset of Fuzzy topological space

Md. Arshaduzzaman
Department of Mathematics,
G.B. College, Naugachia, Bhagalpur, Bihar (India).

Abstract
The intent of this paper is to study about some subspaces of a fuzzy topological space i.e. fuzzy semi-closed and fuzzy semi-regular sub-space, externally disconnected sub-space. We also obtain some properties of such spaces relative to the fuzzy topological space.

INTRODUCTION:
L.A. Zadeh\(^1\) was the first Mathematician who invented fuzzy set and placed before us very interesting characteristics\(^1\).

A fuzzy set \(\mathcal{A}\) is an universal set \(X\) is a mapping \(\mathcal{A}: X \rightarrow [0,1]\). The null fuzzy set \(O\) is a mapping from \(X\) to \([0,1]\) which admits of the value \(O\) and the fuzzy set \(1\) is mapping from \(X\) to \([0,1]\) which admits of value \(1\) only.

A fuzzy set \(\lambda\) on \(X\) is called a fuzzy singleton if it takes the value \(O\) for a except one.

The point at which a fuzzy singleton takes the non zero value is called the support of the singleton \(2\).

A family \(\mathcal{I}\), where \(I = [0, 1]\) is called a fuzzy topology for \(X\) if

\[
\mathcal{I}_1: \forall \mathcal{A} \in \mathcal{I}, \mathcal{B} \in \mathcal{I}
\]

\[
\mathcal{I}_2: \forall \lambda, \mu \in \mathcal{I}, \lambda \wedge \mu \in \mathcal{I}
\]

\[
\mathcal{I}_3: \forall \lambda \in \mathcal{I}, \lambda \wedge j \in \mathcal{I}, \lambda \wedge j \in \mathcal{I} (j=1, 2, 3, \ldots)
\]
The pair is called a fuzzy topological space\(^3\).

The members of are called -fuzzy open sets. A fuzzy set \(U \) is called \(\mathcal{I} \)-fuzzy closed if its complement \(U \in \mathcal{I} \).

The closure \(\text{Int}(\lambda) \) and the interior

\[
\text{Int}(\lambda) = \{ U : U \text{ is a fuzzy open subset of } \lambda \}
\]

A fuzzy subset \(\lambda \) of \(X \) is called fuzzy semi open if a fuzzy open set \(\tilde{U} \) of \(X \) such that

\[
\tilde{U} \subseteq \lambda \subseteq \text{cl}(\tilde{U})
\]

Their \(\lambda \) is called fuzzy semi closed \(^4,5\).

The semi closure \(\text{Int}(\lambda) \) and the semi interior \(\text{Int}(\lambda) \) of a fuzzy set \(\lambda \) are defined\(^6\) by

\[
\text{cl}(\lambda) = \{ K : K \text{ is a semiclosed superset of } \lambda \}
\]

\[
\text{Int}(\lambda) = \{ K : K \text{ is a semiopen subset of } \lambda \}
\]

A sub set of \(X \) is called fuzzy semi regular, if it is both fuzzy semi-open and fuzzy semi closed\(^7\).

2. FUZZY SEMI CLOSED AND SEMI REGULAR SUB SPACE :

Definition (2.1):
A topological space \((X, \mathcal{I})\) is said to be fuzzy semi closed if corresponding to every
cover \(C = \{ \lambda \alpha : \alpha \in \Delta \} \) by fuzzy semi open subsets of \(X \), \(\exists \) finite fuzzy subset \(\lambda \alpha_0 \) such that
\[
X = \bigvee \left\{ \text{cl} \left(\lambda \alpha_0 \right)_S \right\} : \alpha_0 \in \Delta
\]

A fuzzy subset \(\lambda \) of \(X \) is called fuzzy semi closed relative to \((X, \mathcal{I}) \) if for every cover \(C = \{ \lambda \alpha : \alpha \in \Delta \} \) by fuzzy semi open subsets of \(X \), \(\exists \) finite fuzzy subset \(\lambda \alpha_0 \) such that
\[
X = \bigvee \left\{ \text{cl} \left(\lambda \alpha_0 \right)_S \right\} : \alpha_0 \in \Delta
\]

A fuzzy subset \(\lambda \) of \(X \) is called fuzzy semi closed relative to \((X, \mathcal{I}) \) if for every cover \(C = \{ \lambda \alpha : \alpha \in \Delta \} \) of by fuzzy semi open sets of \(X \), \(\exists \) a finite subset \(\lambda \alpha_0 \) such that
\[
\lambda \leq \bigvee \left\{ \text{cl} \left(\lambda \alpha_0 \right)_S \right\} : \alpha_0 \in \Delta
\]

Definition (2.2):

A fuzzy topological space \((X, \mathcal{I}) \) is said to be fuzzy semi-regular if for each fuzzy closed set \(U \) and a fuzzy point \(a \), a pair of disjoint fuzzy semi open sets in such that a pair of disjoint fuzzy semi open sets in \(X \) such that.

Theorem (2.3):

A topological space \((X, \mathcal{I}) \) is fuzzy semi-closed if every proper fuzzy semi-regular subset of \(X \) is fuzzy semi-closed relative to \((X, \mathcal{I}) \).

Proof:

Let \(p \) be a proper fuzzy semi-regular subset of \(X \). Let \(\{ \lambda \alpha : \alpha \in \Delta \} = C \) be a fuzzy cover \(p \) such that \(\lambda \alpha \) is a member of fuzzy semi open subsets of \(X \) for each. Then \(X-p \) is also fuzzy semi regular \(\Rightarrow C \cup \left\{ 1-p \right\} \) forms a cover of.

Since \(X \) is fuzzy semi closed, \(\exists \) a finite sub family such that,
\[X = \vee \left\{ \text{cl}\left(\lambda \alpha_0 \right) \right\} \]
\[\Rightarrow p \leq \vee \left\{ \text{cl}\left(\lambda \alpha_0 \right), \alpha_0 \in \Delta \right\} \]

Conversely let \(\mathcal{C} = \left\{ \lambda \alpha : \alpha \in \Delta \right\} \) be a cover of \(X \), where \(\alpha \) is a member of fuzzy semi open set \(\forall \alpha \in \Delta \)

\[p = \vee \left\{ \text{cl}\left(\lambda \alpha_0 \right) \right\} \text{ forsome } \alpha_0 \in \Delta \]

Since \(p \) is a member of fuzzy semi-regular subset of \(X \), so is 1-\(p \) and 1-\(p \leq \vee \{ \lambda \alpha : \alpha \in \Delta \} \).

Since 1-\(p \) is fuzzy semi closed relative to \(X \), \(\exists \) a finite subset such that

\[X - p \leq \vee \left\{ \text{cl}\left(\lambda \alpha_0 \right), \alpha_0 \in \Delta \right\} \]

\[\Rightarrow X = \vee \left\{ \left[\text{cl}(\lambda \alpha) \right]_{S}, \alpha \in \Delta \cup \lambda \alpha_0 \right\} \]

\[\Rightarrow X \text{ is fuzzy semi closed.} \]

Remarks (2.4):

For a fuzzy subset \(\lambda \) of a space \(X \), the following conditions are equivalent.

(i) \(\lambda \) is semi closed relative to \(X \).

(ii) Every cover of \(\lambda \) by fuzzy semi open subsets of \(X \) has a finite sub cover.

(iii) Every cover of \(\lambda \) by fuzzy semi regular subsets of \(X \) has a finite sub cover.

Theorem (2.5):

Let \(\tilde{\lambda} \) and \(\tilde{\mu} \) be two fuzzy subsets of a space \(X \) such that \(\tilde{\lambda} \leq \tilde{\mu} \leq X \), where \(\tilde{\mu} \) is a fuzzy semi open subset, then if \(\tilde{\lambda} \) be fuzzy semi closed relative to \(X \), it is fuzzy semi closed relative to \(\tilde{\mu} \) also.
Proof:

Let \(X = \left\{ \lambda \alpha: \alpha \in \Delta \right\} \) be a cover of \(\lambda \) and \(\lambda \alpha \) be a fuzzy semi open subset of \(\mu \) for all \(\alpha \in \Delta \). Since \(X \) is a fuzzy open subset of \(X \), so is \(\lambda \alpha \). Since \(\lambda \) is fuzzy semi closed relative to \(X \), a finite sub family \(\{\alpha_0\} \) such that

\[
\lambda \leq \bigvee \{ \text{cl}(\lambda \alpha_0) \}_X, \alpha_0 \in \Delta \}
\]

\[
\Rightarrow \lambda \leq \bigvee \{ \text{cl}(\lambda \alpha_0) \}_X \cap \mu
\]

Hence

\[
\lambda \leq \bigvee \{ \text{cl}(\lambda \alpha_0) \}_\mu, \alpha_0 \in \Delta \}
\]

\[
\Rightarrow \lambda \text{ is fuzzy semi closed relative to sub space } \mu.
\]

3. DISCONNECTED AND SEMI HAUSDORFF SPACE:

Definition (3.1):

A fuzzy topological space is said to be extremely disconnected if \(\text{cl}(\hat{U}) \) is fuzzy open in \(X \) for every fuzzy\(^5\) open set \(\hat{U} \) of \(X \).

Remarks (3.2):

If \(X \) is an extremely disconnected fuzzy topological space and \(\lambda \) is fuzzy semi regular subset of \(X \), then \(\lambda \) is fuzzy closed and fuzzy open in \(X \).

Remarks (3.3):

A fuzzy open set of a space \(X \) is fuzzy semi-closed as sub space of \(X \), iff it is fuzzy semi closed relative to \(X \).

Theorem (3.4):

An extremely disconnected fuzzy topological space \(X \) is fuzzy semi closed if every fuzzy semi-regular subset of \(X \) is a fuzzy semi closed sub-space of \(X \).
Proof:

Let \(\mathcal{C} = \{ \lambda \alpha : \alpha \Delta \} \) be a fuzzy cover of \(X \), where \(\lambda \alpha \) is a fuzzy semi open subset of \(X \) for all \(\alpha \in \Delta \).

Suppose that \(1 \neq \left[\mathrm{cl}_X \left(\lambda \beta \right) \right]_S \neq 0 \)

Since \(\lambda \beta \) is a fuzzy semi open subset of \(X \), so \(\left[\mathrm{cl}_X \left(\lambda \beta \right) \right]_S \) is a fuzzy semi regular subset of \(X \).

\[
\Rightarrow 1 - \left[\mathrm{cl}_X \left(\lambda \beta \right) \right]_S \text{ is a fuzzy semi regular subset of } X.
\]

\[
\Rightarrow 1 - \left[\mathrm{cl}_X \left(\lambda \beta \right) \right]_S \text{ is a fuzzy semi closed subset and hence both fuzzy semi open and}
\]

semi closed in \(X \), by remark (3.2), so \(1 - \left[\mathrm{cl}_X \left(\lambda \beta \right) \right]_S \) is fuzzy semi closed relative to \(X \), by remarks (3.3),

\[
\Rightarrow 1 - \left[\mathrm{cl}_X \left(\lambda \beta \right) \right]_S \leq \bigvee \left\{ \lambda \alpha : \alpha \in \Delta \right\}, \exists
\]

a finite sub family \(\lambda \alpha_0 \) such that,

\[
X = \bigvee \left\{ \left[\mathrm{cl}_X \left(\lambda \alpha \right) \right]_S \cup \lambda \beta \right\}
\]

\[
\Rightarrow X \text{ is fuzzy semi closed.}
\]

REFERENCES

