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Abstract 

Two classes of estimators for slope parameter in simple linear regression model are 

proposed. One of the classes is based on weighted average of the quasi ranges of the 

predictor variable while the other class is based on weighted average of slopes ob-

tained from quasi ranges of predictor variable. The mean and variance of these classes 

of estimators are derived. The optimum weights are obtained. The performance of the 

proposed classes of estimators is analyzed. The feasibility of some members of the 

classes are illustrated through an example. 

Keywords: quasi range, simple linear regression, slope parameter, weighted average, 

relative efficiency, predictor variable. 

 

1. INTRODUCTION 

In the realm of linear regression analysis, the estimation of parameters holds para-

mount importance, influencing the predictive accuracy and interpretability of the 

model. Parameters in linear regression model encapsulate vital information about the 

relationship between predictor variables and the response variable, providing insights 

into the underlying trends and patterns in the data. Accurate estimation of these pa-

rameters is essential for making informed decisions, formulating effective strategies 

and drawing reliable inferences from the regression model. 

The simple linear regression (SLR) serves as a foundational framework within linear 

regression analysis, particularly when exploring relationship between a single predic-

tor variable and a response variable. In this model, the relationship between the pre-

dictor and response variable is represented by a straight line, facilitating intuitive in-

terpretation and analysis. The slope parameter plays an important role in characteriz-

ing the relationship between the predictor and response variables. It serves as a fun-

damental indicator of the rate of change in the response variable with respect to (wrt) 

changes in the predictor variable.  
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Various estimators have been developed in the literature for estimating parameters in 

SLR model, each with its own merits and limitations. Among these, the least squares 

estimator due to Legendre (1805) and Gauss (1809) stands as earliest and popular 

method. It has efficiency but is sensitive to outliers and influential observations. It 

prioritizes minimizing squared error deviations without explicit consideration for the 

robustness in estimation process. Hence, alternative methods have been developed to 

address its limitations and accommodate diverse data characteristics. 

Bose (1938) introduced three different methods to estimate the slope parameter, con-

sidering various kinds of distances viz. successive differences, differences at half 

range and range among predictor variables, assuming that they are evenly spaced. 

Theil (1950), Gore and Rao (1982) and Rao (1982) proposed procedures based on 

median of slopes obtained from half ranges. Bhat and Bijjargi (2023) extended Bose’s 

methods including estimators based on quasi ranges under unequal distances among 

predictor variables. The estimator based on quasi ranges is found to be equivalent to 

estimator based on half ranges and outperformed all other estimators based on various 

kinds of distances. Further, Bhat and Bijjargi (2024) proposed few more estimators 

applying various arbitrary weights to the quasi ranges to enhance accuracy. 

Suppose 𝑥1, 𝑥2, … 𝑥𝑛  represent 𝑛  observations of predictor variable and 𝑚 = 𝑛 2⁄ . 

Denoting 𝑥(𝑖) as the 𝑖𝑡ℎ order statistic, the quasi range 𝑞𝑖, is given by 𝑞𝑖 = 𝑥(𝑛−𝑖) −

𝑥(𝑖+1), 𝑖 = 1, 2, … , 𝑚 − 1. Here, 𝑞0 = 𝑥(𝑛) − 𝑥(1) is the range of 𝑛 observations. The 

choice of quasi ranges is justified by their inherent advantages. Quasi ranges offer a 

structured approach that distinguishes between extreme and middle observations more 

effectively. This distinction allows for a customized weighting scheme, enabling the 

prioritization of the relative positions of observations within the dataset, thus enhanc-

ing the robustness and accuracy.  

In this paper, we introduce flexible classes of estimators based on weighted averages, 

offering enhanced adaptability in estimating slope parameter. We propose two classes 

of estimators based on quasi ranges of predictor variables. One class of estimators is 

based on weighted average of quasi ranges of 𝑥𝑖 variables and the other is based on 

weighted average of slopes obtained from quasi ranges of 𝑥𝑖 variables. The weighted 

average is a measure that assigns different weights to each data point in a dataset 

based on their relative importance. This method allows for the incorporation of vary-

ing degrees of significance for different data points, providing a more nuanced repre-

sentation of central tendency.  

The mathematical formulation of the proposed classes of estimators is given in section 

2, followed by the derivation of their mean and variance in section 3. In section 4, the 

performance of the proposed classes of estimators is investigated. Section 5 illustrates 

the application of the proposed estimators through example and section 6 provides the 

conclusions drawn from the study. 
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2. Mathematical Formulation of Proposed Classes of Estimators 

The SLR model is given by 

𝑦𝑖 = 𝛼 + 𝛽𝑥𝑖 + 𝑒𝑖 ,       1 ≤ 𝑖 ≤ 𝑛 ,                                           (1) 

where, 𝑦𝑖 is response variable, 𝛼 is the intercept parameter, 𝛽 is the slope parameter 

and 𝑒𝑖 is independent and identically distributed (iid) random error from continuous 

distribution with distribution function 𝐹(∙) having zero mean and finite variance 𝜎2.  

We propose two classes of estimators based on quasi ranges of predictor variables. 

Let 𝑦𝑖
∗ be the 𝑦 value corresponding to 𝑥(𝑖). Representing the two classes by 1𝐶𝑘 and 

2𝐶𝑘,  

𝛽̂1𝐶𝑘
=

∑ 𝑖𝑘(𝑦𝑚+𝑖
∗ −𝑦𝑚−𝑖+1

∗ )𝑚
𝑖=1

∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1

                                                         (2) 

is the ratio of weighted averages of deviations of corresponding 𝑦 values wrt quasi 

ranges of 𝑥 values and 

𝛽̂2𝐶𝑘
=

∑ 𝑖𝑘𝑏𝑖
𝑚
𝑖=1

∑ 𝑖𝑘𝑚
𝑖=1

  , 𝑏𝑖 =
𝑦𝑚+𝑖

∗ −𝑦𝑚−𝑖+1
∗

𝑞𝑚−𝑖
 , 𝑖 = 1, ⋯ , 𝑚                       (3) 

is the weighted average of slopes 𝑏𝑖, which is ratio of deviation of corresponding 𝑦 

values wrt quasi ranges of 𝑥 values. 

The weights, represented by 𝑖𝑘, 𝑘 ∈ ℝ is known finite constant, are chosen strategi-

cally to assign lower (higher) weights to quasi ranges derived from middle observa-

tions and higher (lower) weights to those obtained from extreme values for 𝑘 > 0 

(𝑘 < 0). The motivation behind choosing the weighting scheme 𝑖𝑘 lies in its ability to 

adaptively adjust the influence of observations based on their distances. For 𝑘 > 0, 

heavier weights are assigned to observations farther away from the median, leading to 

increased influence of extreme values in 𝑥 observations. This scenario is particularly 

useful when extreme observations are preferred. Conversely, for 𝑘 < 0 , heavier 

weights are assigned to observations closer to the median, thereby reducing the im-

pact of outliers and enhancing robustness against extreme values in the predictor vari-

able. By incorporating the exponent 𝑘 into the weighting scheme, the proposed clas-

ses offer a comprehensive and effective approach to parameter estimation, catering to 

diverse datasets and analytical requirements. 

When 𝑘 = 0, 𝛽̂1𝐶0
 is an estimator proposed by Bhat and Bijjargi (2023) and also un-

der equidistant 𝑥𝑖𝑠, it is an estimator due to Bose (1938) based on half ranges. Fur-

thermore, for 𝑘 = 1 and −1,   𝛽̂1𝐶1
 and 𝛽̂1𝐶−1

simplifies to estimators developed by 

Bhat and Bijjargi (2024). Also, 𝛽̂2𝐶0
 is simple average of 𝑏𝑖. 

 

3. Mean and Variance of Proposed Classes of Estimators  

In this section, we obtain mean and variance of the proposed classes of estimators. 

The mean of 𝛽̂1𝐶𝑘
 is given by 
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𝐸(𝛽̂1𝐶𝑘
) = 𝐸 (

∑ 𝑖𝑘(𝑦𝑚+𝑖
∗ − 𝑦𝑚−𝑖+1

∗ )𝑚
𝑖=1

∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1

) 

=
1

(∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1 )

𝐸 (∑ 𝑖𝑘(𝑦𝑚+𝑖
∗ − 𝑦𝑚−𝑖+1

∗ )

𝑚

𝑖=1

) 

=
∑ 𝑖𝑘(𝛼 + 𝛽𝑥(𝑚+𝑖) − 𝛼 − 𝛽𝑥(𝑚−𝑖+1))𝑚

𝑖=1

(∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1 )

 

= 𝛽                                                                                           (4) 

Similarly, the mean of 𝛽̂2𝐶𝑘
  is given by 

𝐸(𝛽̂2𝐶𝑘
) = 𝐸 (

∑ 𝑖𝑘𝑏𝑖
𝑚
𝑖=1

∑ 𝑖𝑘𝑚
𝑖=1

) 

= (
∑ 𝑖𝑘𝐸(𝑏𝑖) 𝑚

𝑖=1

∑ 𝑖𝑘𝑚
𝑖=1

) 

= 𝛽                ∵ 𝐸(𝑏𝑖) = 𝛽                                                       (5) 

Both the classes of estimators admit unbiased estimators of 𝛽. 

The variance of 𝛽̂1𝐶𝑘
 is given by 

𝑉(𝛽̂1𝐶𝑘
) = 𝑉 (

∑ 𝑖𝑘(𝑦𝑚+𝑖
∗ − 𝑦𝑚−𝑖+1

∗ )𝑚
𝑖=1

∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1

) 

=
∑ 𝑖2𝑘𝑉(𝑦𝑚+𝑖

∗ − 𝑦𝑚−𝑖+1
∗ )𝑚

𝑖=1

(∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1 )2

 

=
2𝜎2 ∑ 𝑖2𝑘𝑚

𝑖=1

(∑ 𝑖𝑘𝑞𝑚−𝑖
𝑚
𝑖=1 )

2                                                                           (6) 

and variance of 𝛽̂2𝐶𝑘
 is given by 

𝑉(𝛽̂2𝐶𝑘
) = 𝑉 (

∑ 𝑖𝑘𝑏𝑖
𝑚
𝑖=1

∑ 𝑖𝑘𝑚
𝑖=1

) 

=
∑ 𝑖2𝑘𝑉(𝑏𝑖) 𝑚

𝑖=1

(∑ 𝑖𝑘𝑚
𝑖=1 )2

 

=

∑ 𝑖2𝑘 2𝜎2

(𝑞𝑚−𝑖)2
𝑚
𝑖=1

(∑ 𝑖𝑘𝑚
𝑖=1 )2

 

=
2𝜎2 ∑ (

𝑖2𝑘

(𝑞𝑚−𝑖)
2)𝑚

𝑖=1

(∑ 𝑖𝑘𝑚
𝑖=1 )

2  .                                                                     (7) 

The 𝛽̂1𝐶𝑘
 and 𝛽̂2𝐶𝑘

 are consistent estimators of 𝛽. 
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When 𝑥(𝑖)𝑠 are equidistant with distances being  𝑑, then  

𝑞𝑚−𝑖 = 𝑥(𝑚+𝑖) − 𝑥(𝑚−𝑖+1) 

= (𝑥(𝑚) + 𝑖𝑑) − (𝑥(𝑚) − (𝑖 − 1)𝑑) 

= 𝑖𝑑 + (𝑖 − 1)𝑑 

= (2𝑖 − 1)𝑑                                                                                 (8) 

and  = ∑ 𝑞𝑚−𝑖
𝑚
𝑖=1 = ∑ (𝑥(𝑚+𝑖) − 𝑥(𝑚−𝑖+1))𝑚

𝑖=1                            (9) 

Under equidistant 𝑥(𝑖)𝑠 , the variance expression given in (6) and (7) can be written as 

𝑉(𝛽̂1𝐶𝑘
) =

2𝜎2 ∑ 𝑖2𝑘𝑚
𝑖=1

(∑ 𝑖𝑘(2𝑖−1)𝑑𝑚
𝑖=1 ) 2

  =
2𝜎2 ∑ 𝑖2𝑘𝑚

𝑖=1

𝑑2(∑ 𝑖𝑘(2𝑖−1)𝑚
𝑖=1 ) 2

                          (10) 

𝑉(𝛽̂2𝐶𝑘
) =

2𝜎2 ∑
𝑖2𝑘

((2𝑖−1)𝑑) 2
𝑚
𝑖=1

(∑ 𝑖𝑘𝑚
𝑖=1 )

2   =
2𝜎2

𝑑2(∑ 𝑖𝑘𝑚
𝑖=1 )

2 ∑
𝑖2𝑘

(2𝑖−1) 2
𝑚
𝑖=1                 (11) 

The optimization of the variance of two classes of estimators wrt 𝑘, provides an opti-

mal estimator of 𝛽. To identify the value of 𝑘 that minimizes complex variance ex-

pressions in (10) and (11), we employ a numerical optimization algorithm, viz. Brent's 

method. It iteratively refines search intervals to converge to the minimum of a func-

tion. Initialization involves selecting a possible interval containing the minimum, fol-

lowed by iterative updates and interpolation to approximate the location of the mini-

mum within the interval. Convergence is achieved by refining the interval until speci-

fied criterion is met.  

After employing Brent's method, we determine the optimal 𝑘 values for both the clas-

ses of estimators for various values of  𝑛, which are summarized in the Table 1. 

Table 1: Optimum values of 𝑘 for various values of 𝑛 

𝒏 
Optimum 𝒌 

𝜷̂𝟏𝑪𝒌
 𝜷̂𝟐𝑪𝒌

 

6 1.377037 2.773202 

8 1.281407 2.588176 

10 1.225069 2.476232 

20 1.112888 2.243209 

30 1.075333 2.161740 

50 1.045197 2.095716 

70 1.032267 2.067579 

100 1.022572 2.046747 

200 1.011272 2.022963 
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These results indicate that, as 𝑛 increases the optimal values of 𝑘 tend to 1 for 𝛽̂1𝐶𝑘
 

and towards 2 for 𝛽̂2𝐶𝑘
. This suggests a tendency towards assigning relatively lower 

weights to middle observations when compared to extreme values. However, negative 

values of 𝑘 would assign higher weights to middle observations. Thus, to explore the 

weighting adjustment, we consider −2 ≤ 𝑘 ≤ 3. The variances of 𝛽̂1𝐶𝑘
 and 𝛽̂2𝐶𝑘

 are 

computed for various values of 𝑛, 𝑘 and are furnished in Table 2 and Table 3.  

Table 2: 𝑉(𝛽̂1𝐶𝑘
) for various values of 𝑛 and 𝑘 

𝑛 𝑉(𝛽̂1𝐶−2
) 𝑉(𝛽̂1𝐶−1

) 𝑉(𝛽̂1𝐶0
) 𝑉(𝛽̂1𝐶1

) 𝑉(𝛽̂1𝐶1.5
) 𝑉(𝛽̂1𝐶2

) 𝑉(𝛽̂1𝐶2.5
) 𝑉(𝛽̂1𝐶3

) 

6 0.404413 0.156800 0.074074 0.057851 0.057241 0.058264 0.060005 0.062031 

8 0.286736 0.081333 0.031250 0.024000 0.023906 0.024498 0.025404 0.026456 

10 0.224397 0.049158 0.016000 0.012188 0.012196 0.012549 0.013065 0.013662 

20 0.116597 0.010636 0.002000 0.001506 0.001522 0.001579 0.001656 0.001743 

30 0.084671 0.004440 0.000593 0.000445 0.000451 0.000470 0.000493 0.000521 

50 0.059606 0.001506 0.000128 0.000096 0.000098 0.000102 0.000107 0.000113 

70 0.048557 0.000746 0.000047 0.000035 0.000036 0.000037 0.000039 0.000041 

100 0.039817 0.000356 0.000016 0.000012 0.000012 0.000013 0.000013 0.000014 

200 0.028339 0.000086 0.000002 0.000002 0.000002 0.000002 0.000002 0.000002 

Table 3: 𝑉(𝛽̂2𝐶𝑘
) for various values of 𝑛 and 𝑘 

𝑛 𝑉(𝛽̂2𝐶−2
) 𝑉(𝛽̂2𝐶−1

) 𝑉(𝛽̂2𝐶0
) 𝑉(𝛽̂2𝐶1

) 𝑉(𝛽̂2𝐶1.5
) 𝑉(𝛽̂2𝐶2

) 𝑉(𝛽̂2𝐶2.5
) 𝑉(𝛽̂2𝐶3

) 

6 1.087580 0.614215 0.255802 0.100247 0.072907 0.061406 0.057696 0.057517 

8 0.994260 0.476236 0.146440 0.042620 0.029499 0.024983 0.023907 0.024173 

10 0.940676 0.396651 0.094709 0.021685 0.014628 0.012534 0.012158 0.012396 

20 0.839002 0.241170 0.024174 0.002558 0.001690 0.001518 0.001515 0.001567 

30 0.806752 0.187916 0.010818 0.000725 0.000487 0.000447 0.000450 0.000467 

50 0.781546 0.142094 0.003916 0.000149 0.000103 0.000096 0.000097 0.000101 

70 0.770906 0.120327 0.002003 0.000053 0.000037 0.000035 0.000036 0.000037 

100 0.762989 0.102215 0.000983 0.000018 0.000013 0.000012 0.000012 0.000013 

200 0.753823 0.076893 0.000246 0.000002 0.000002 0.000002 0.000002 0.000002 

From Table 2 and 3, it is observed that, the variance of members of proposed classes 

decreases as 𝑛 increases. For 𝑛 > 8, it is seen that, 𝛽̂1𝐶1
 and 𝛽̂2𝐶2

 have minimum vari-

ance respectively from Table 2 and Table 3 in support of the findings from Table 1. 

 

4. Performance of Proposed Classes of Estimators 

In this section, we evaluate the performance of the proposed classes of estimators us-

ing relative efficiency (RE) which is a statistical measure used to compare the per-

formance of two estimators in terms of their precision. It quantifies how well one es-

timator performs relative to another by comparing their variances and is given by 

𝑅𝐸(𝐴, 𝐵) =
𝑉𝑎𝑟(𝐵)

𝑉𝑎𝑟(𝐴)
.                                                                 (12) 

where, 𝐴 and 𝐵 are any two estimators. The RE of 𝛽̂2𝐶𝑘
 wrt 𝛽̂1𝐶𝑘

 is given by 
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𝑅𝐸(𝛽̂2𝐶𝑘
, 𝛽̂1𝐶𝑘

) =
(∑ 𝑖𝑘𝑚

𝑖=1 )
2

(∑ 𝑖2𝑘𝑚
𝑖=1 )

∑ (
𝑖2𝑘

(𝑞𝑚−𝑖)
2) (∑ 𝑖𝑘𝑞𝑚−𝑖

𝑚
𝑖=1 )

2𝑚
𝑖=1

 .                                   (13) 

When 𝑥(𝑖)𝑠 are equidistant,  𝑅𝐸(𝛽̂2𝐶𝑘
, 𝛽̂1𝐶𝑘

) =
(∑ 𝑖𝑘𝑚

𝑖=1 )
2

(∑ 𝑖2𝑘𝑚
𝑖=1 )

∑ (
𝑖2𝑘

(2𝑖−1)2) (∑ 𝑖𝑘(2𝑖−1)𝑚
𝑖=1 )

2𝑚
𝑖=1  

    (14) 

Using (14), the computed values of 𝑅𝐸(𝛽̂2𝐶𝑘
, 𝛽̂1𝐶𝑘

) for various 𝑛 and 𝑘 are given in 

Table 4. 

Table 4: 𝑅𝐸(𝛽̂2𝐶𝑘
, 𝛽̂1𝐶𝑘

)for various values of 𝑛 and 𝑘 

𝑘 
𝑛 

-2 -1 0 1 1.5 2 2.5 3 

6 0.371846 0.255285 0.289575 0.577088 0.785122 0.948834 1.040015 1.078483 

8 0.288391 0.170783 0.213398 0.563123 0.810393 0.980605 1.062646 1.094482 

10 0.238548 0.123933 0.168938 0.562052 0.833751 1.001185 1.074596 1.102138 

20 0.138971 0.044102 0.082732 0.588839 0.900539 1.040203 1.092710 1.112530 

30 0.104953 0.023627 0.054778 0.613913 0.927803 1.050929 1.096776 1.114484 

50 0.076267 0.010596 0.032688 0.646174 0.950109 1.058192 1.099322 1.115495 

70 0.062986 0.006197 0.023294 0.665490 0.959408 1.060909 1.100229 1.115776 

100 0.052185 0.003487 0.016277 0.683342 0.966113 1.062787 1.100839 1.115926 

200 0.037594 0.001121 0.008122 0.709749 0.973466 1.064812 1.101478 1.116035 

From Table 4, it is noticed that, 𝑅𝐸(𝛽̂2𝐶𝑘
, 𝛽̂1𝐶𝑘

) > 1 for 𝑘 = 2, 𝑛 ≥ 10 and 𝑘 > 2. 

Also, 𝑅𝐸(𝛽̂2𝐶2
, 𝛽̂1𝐶1

) ≈ 1. It is known that,   

𝑉(𝛽̂𝐿𝑆) =
12 𝜎2

𝑑2𝑛(𝑛2−1)
                                                                  (15) 

where, LS is a least square estimator. It is observed that, 𝑅𝐸(𝛽̂1𝐶1
, 𝛽̂𝐿𝑆) ≈ 1  and 

𝑅𝐸(𝛽̂2𝐶2
, 𝛽̂𝐿𝑆) ≈ 1. 

 

5. Simulation Study 

In this section, a simulation study is carried out to investigate the performances of 

proposed classes in the presence and absence of outliers. The errors, 𝑒𝑖 from 𝑁(0,1) 

distribution and 𝑥𝑖 samples of size 𝑛, i.e., 𝑖 = 1, … , 𝑛 are generated. The 𝑦 values are 

computed using (1) with generated values, 𝛼 = 1 and 𝛽 = 2. After computing 𝑦 val-

ues, certain percentages of outliers are introduced into the 𝑥  observations. This is 

achieved by replacing a specified percentage of the 𝑥 values randomly to be signifi-

cantly different from the rest. Once the outliers are introduced, 𝛽 is estimated using 

both the proposed classes of estimators with 𝑘 ∈ (−2,2) and the LS estimator. These 

estimates represent the estimated relationship of 𝑦 with 𝑥 based on the observed data, 

accounting for the presence of outliers. The objective is to assess how closely these 

estimated 𝛽 matches with true value of 𝛽. The estimated values of 𝛽̂1𝐶𝑘
, 𝛽̂2𝐶𝑘

 and 𝛽̂𝐿𝑆 

for various values of 𝑛, 𝑘 and % outliers are furnished in Table 5.  
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Table 5: Values of estimators 𝛽̂1𝐶𝑘
, 𝛽̂2𝐶𝑘

 and 𝛽̂𝐿𝑆 for various values of 𝑛, 𝑘 

% Outliers 𝛽̂1𝐶−2
 𝛽̂1𝐶−1

 𝛽̂1𝐶0
 𝛽̂1𝐶1

 𝛽̂1𝐶2
 𝛽̂2𝐶−2

 𝛽̂2𝐶−1
 𝛽̂2𝐶0

 𝛽̂2𝐶1
 𝛽̂2𝐶2

 𝛽̂𝐿𝑆 

𝑛 = 10            

0 2.4988 2.2647 2.1515 2.1096 2.0931 2.9281 2.6364 2.3495 2.1845 2.1198 2.1032 

2 1.3859 1.7139 1.9147 2.0211 2.0810 0.8804 1.2239 1.6020 1.8626 1.9994 2.0372 

5 2.0868 2.0317 2.0554 2.0985 2.1325 2.3192 2.1613 2.0612 2.0564 2.0927 2.1050 

ss8 1.9258 1.6599 1.4172 1.2274 1.0858 2.2264 2.0816 1.8501 1.6049 1.4003 0.8954 

10 1.9783 1.8016 1.6053 1.4459 1.3285 2.0838 2.0227 1.8854 1.7124 1.5557 1.1784 

20 1.7168 1.4327 1.2261 1.1043 1.0393 2.0929 1.9379 1.6739 1.4105 1.2250 0.8785 

30 1.5731 1.0437 0.7563 0.6457 0.6136 2.3452 1.8574 1.2880 0.8946 0.7107 0.5425 

𝑛 = 30            

0 3.2294 2.2944 2.0406 1.9911 1.9779 5.2471 3.7099 2.4510 2.0663 1.9947 1.9886 

2 1.9609 1.8539 1.7014 1.5723 1.4662 1.8953 1.9572 1.9007 1.7704 1.6546 1.3740 

5 2.1859 1.7647 1.5310 1.3734 1.2493 2.9381 2.3932 1.8897 1.6521 1.5097 1.0679 

8 2.1316 1.7187 1.4982 1.3369 1.2031 3.0693 2.4085 1.8622 1.6162 1.4634 1.0574 

10 2.1715 1.7498 1.4193 1.2284 1.1072 2.3514 2.2010 1.8565 1.5746 1.3876 0.8903 

20 1.7935 1.1967 0.9015 0.7793 0.7347 2.5811 2.1044 1.4496 1.0397 0.8454 0.6189 

30 1.4953 0.9660 0.7810 0.7446 0.7593 3.0453 2.0924 1.2095 0.8597 0.7751 0.6047 

𝑛 = 50            

0 2.2213 2.1305 2.0104 1.9860 1.9823 0.8365 1.9299 2.1152 2.0144 1.9869 1.9853 

2 2.0509 1.9220 1.8202 1.7158 1.6224 2.5252 2.1556 1.9569 1.8558 1.7608 1.6184 

5 2.5772 1.8863 1.6707 1.5689 1.4868 3.6448 2.8290 2.0170 1.7712 1.6860 1.2677 

8 2.0274 1.6973 1.4258 1.2338 1.0911 2.3867 2.1076 1.7786 1.5229 1.3386 0.9898 

10 1.9327 1.6027 1.2938 1.0717 0.9157 2.0263 1.9727 1.7097 1.4222 1.1963 0.8263 

20 1.9089 1.2377 0.9631 0.8431 0.7841 2.5662 1.9127 1.3204 1.0478 0.9031 0.6411 

30 1.7763 0.9683 0.6584 0.5968 0.6105 2.5840 1.9740 1.0825 0.6917 0.6034 0.4957 

𝑛 = 100            

0 3.3993 2.1985 2.0041 2.0085 2.0194 4.0537 3.5175 2.2578 2.0091 2.0085 2.0086 

2 2.4114 1.9853 1.8734 1.7929 1.7209 4.0719 2.7219 2.0426 1.9186 1.8528 1.6385 

5 2.2637 1.7104 1.5293 1.4120 1.3061 2.4285 2.3435 1.8053 1.6287 1.5322 1.1272 

8 1.8024 1.5538 1.4343 1.3009 1.1920 4.8154 2.3776 1.6802 1.5786 1.4585 0.9793 

10 2.6292 1.7532 1.3698 1.1761 1.0485 1.9663 2.6042 1.9263 1.5218 1.3188 0.8747 

20 1.8025 1.2311 0.9557 0.8338 0.7876 2.9097 1.9048 1.3591 1.0615 0.8983 0.6431 

30 2.0852 0.8412 0.5950 0.6052 0.6611 3.2496 2.4356 1.0418 0.6375 0.6012 0.5188 

The simulation results given in Table 5, shows that, the proposed class of estimators 

yield accuracy in 𝛽 values when compared with LS estimator. As error percentages in 

the 𝑥 exceed 2%, the LS estimator struggles, while proposed classes consistently pro-

vide more accurate estimates of the slope parameter. We also notice that, adjusting the 

weights, particularly with decreasing values of 𝑘, enhances the robustness of the esti-

mator ensuring more reliable estimates of the slope parameter. However, it is im-

portant to be cautious that assigning excess low value to 𝑘 might discount the im-

portance of extreme observations. Once we find a 𝑘 value that provides the desired 

level of robustness or fits the regression line well, there is no need to consider lower 

values. Therefore, striking a balance between robustness and the risk of introducing 

inaccuracies is crucial when determining the finest value of 𝑘. 
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6. Illustration 

In this section, we provide an example due to Montgomery et al. (2003) to illustrate 

the application of the proposed classes of estimators. It is a data consisting of 19 ob-

servations on first-unit satellite cost (𝑦) and the weight of the electronics suite (𝑥) 

from the US Air Force. The dataset is given by  

Observation Cost ($K) Weight (lb) 

1 2449 90.6* 

2 2248 87.8* 

3 3545 38.6 

4 794 28.6 

5 1619 28.9 

6 2079 23.3 

7 918 21.1 

8 1231 17.5 

9 3641 27.6 

10 4314 39.2 

11 2628 34.9 

12 3989 46.6 

13 2308 80.9* 

14 376 14.6 

15 5428 48.1 

16 2786 38.1 

17 2497 73.2* 

18 5551 40.8 

19 5208 44.6 

                                 * indicates outliers 

To estimate 𝛼 for the SLR model specified in (1), we utilize various members from 

the proposed classes of estimators and obtain 𝛼̂ = 𝑦̅ − 𝛽̂𝑥̅. The LS estimate is given 

by 𝛽̂𝐿𝑆 = 13.88 and 𝑉(𝛽̂𝐿𝑆) = 0.000103 𝜎2 . The values of 𝛽̂  of some members of 

1𝐶𝑘, 2𝐶𝑘 and their variance are given in Table 6. 

 

Table 6: Computed values of 𝛽̂1𝐶𝑘
, 𝛽̂2𝐶𝑘

 and their variances 

𝑘 𝛽̂1𝐶𝑘
 𝑉(𝛽̂1𝐶𝑘

) 𝛽̂2𝐶𝑘
 𝑉(𝛽̂2𝐶𝑘

) 

-2 275.966930 0.018187 𝜎2 1009.371100 0.698733 𝜎2 

-1.5 176.756840 0.004589 𝜎2 836.019200 0.430613 𝜎2 

-1 114.818710 0.001140 𝜎2 630.748400 0.208517 𝜎2 

-0.5 78.065820 0.000358 𝜎2 430.528100 0.076220 𝜎2 

0 56.494330 0.000179 𝜎2 272.349800 0.021377 𝜎2 

0.5 43.669960 0.000132 𝜎2 167.841790 0.004979 𝜎2 

1 35.875670 0.000118 𝜎2 106.350600 0.001128 𝜎2 

1.5 31.035650 0.000114 𝜎2 71.951630 0.000336 𝜎2 

2 27.983030 0.000115 𝜎2 52.713020 0.000174 𝜎2 
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Figure 1: Fitted regression lines 

 

From Table 6 and Figure 1, it is observed that, as 𝑘 decreases, the impact of outliers 

diminishes on the proposed classes of estimators and exhibits a better fit to the data, 

indicating increased resilience against outliers. 

 

CONCLUSIONS 

In this study, we propose two classes of estimators for the slope parameter 𝛽 in SLR. 

The classes are based on weighted averages of quasi ranges of the predictor variables, 

that is, one of the classes, 𝛽̂1𝐶𝑘
 is ratio of weighted deviations of corresponding 𝑦 ob-

servations to the weighted quasi ranges of 𝑥 observations and 𝛽̂2𝐶𝑘
 is weighted aver-

age of slopes based on quasi ranges of 𝑥 observations. The proposed classes are unbi-

ased and consistent estimators of 𝛽. The classes admit flexibility in being sensitive to 

outliers as well as resistant to outliers depending on the value of 𝑘. The variance of 

the proposed classes of estimators is minimized wrt 𝑘 using Brent's method. 𝛽̂1𝐶𝑘
 ad-

mits optimal estimator when 𝑘 = 1, whereas, 𝛽̂2𝐶𝑘
 admits when 𝑘 = 2. 𝛽̂2𝐶𝑘

 is better 

than 𝛽̂1𝐶𝑘
 for 𝑘 > 2 . Also, for optimal values of 𝑘 , 𝑅𝐸(𝛽̂2𝐶𝑘

, 𝛽̂1𝐶𝑘
) ≈ 1 , 

𝑅𝐸(𝛽̂1𝐶𝑘
, 𝛽̂𝐿𝑆) ≈ 1 and 𝑅𝐸(𝛽̂2𝐶𝑘

, 𝛽̂𝐿𝑆) ≈ 1. Based on the simulation study, for 𝑘 < 0, 

the robustness of the estimators from both the classes increases as less weight is as-

signed to extreme observations, while for 𝑘 > 0, the efficiency improves. The pro-

posed classes are useful to practitioners as they can be used under different situations 

just by choosing an appropriate value of 𝑘.  
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