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Abstract

Two classes of estimators for slope parameter in simple linear regression model are
proposed. One of the classes is based on weighted average of the quasi ranges of the
predictor variable while the other class is based on weighted average of slopes ob-
tained from quasi ranges of predictor variable. The mean and variance of these classes
of estimators are derived. The optimum weights are obtained. The performance of the
proposed classes of estimators is analyzed. The feasibility of some members of the
classes are illustrated through an example.

Keywords: quasi range, simple linear regression, slope parameter, weighted average,
relative efficiency, predictor variable.

1. INTRODUCTION

In the realm of linear regression analysis, the estimation of parameters holds para-
mount importance, influencing the predictive accuracy and interpretability of the
model. Parameters in linear regression model encapsulate vital information about the
relationship between predictor variables and the response variable, providing insights
into the underlying trends and patterns in the data. Accurate estimation of these pa-
rameters is essential for making informed decisions, formulating effective strategies
and drawing reliable inferences from the regression model.

The simple linear regression (SLR) serves as a foundational framework within linear
regression analysis, particularly when exploring relationship between a single predic-
tor variable and a response variable. In this model, the relationship between the pre-
dictor and response variable is represented by a straight line, facilitating intuitive in-
terpretation and analysis. The slope parameter plays an important role in characteriz-
ing the relationship between the predictor and response variables. It serves as a fun-
damental indicator of the rate of change in the response variable with respect to (wrt)
changes in the predictor variable.
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Various estimators have been developed in the literature for estimating parameters in
SLR model, each with its own merits and limitations. Among these, the least squares
estimator due to Legendre (1805) and Gauss (1809) stands as earliest and popular
method. It has efficiency but is sensitive to outliers and influential observations. It
prioritizes minimizing squared error deviations without explicit consideration for the
robustness in estimation process. Hence, alternative methods have been developed to
address its limitations and accommodate diverse data characteristics.

Bose (1938) introduced three different methods to estimate the slope parameter, con-
sidering various kinds of distances viz. successive differences, differences at half
range and range among predictor variables, assuming that they are evenly spaced.
Theil (1950), Gore and Rao (1982) and Rao (1982) proposed procedures based on
median of slopes obtained from half ranges. Bhat and Bijjargi (2023) extended Bose’s
methods including estimators based on quasi ranges under unequal distances among
predictor variables. The estimator based on quasi ranges is found to be equivalent to
estimator based on half ranges and outperformed all other estimators based on various
kinds of distances. Further, Bhat and Bijjargi (2024) proposed few more estimators
applying various arbitrary weights to the quasi ranges to enhance accuracy.

Suppose x1, X5, ... X, represent n observations of predictor variable and m =n/2.
Denoting x;) as the it" order statistic, the quasi range g;, is given by q; = X(n—i) —
Xi+1), L =1,2,...,m —1. Here, qy = x(») — (1) IS the range of n observations. The
choice of quasi ranges is justified by their inherent advantages. Quasi ranges offer a
structured approach that distinguishes between extreme and middle observations more
effectively. This distinction allows for a customized weighting scheme, enabling the
prioritization of the relative positions of observations within the dataset, thus enhanc-
ing the robustness and accuracy.

In this paper, we introduce flexible classes of estimators based on weighted averages,
offering enhanced adaptability in estimating slope parameter. We propose two classes
of estimators based on quasi ranges of predictor variables. One class of estimators is
based on weighted average of quasi ranges of x; variables and the other is based on
weighted average of slopes obtained from quasi ranges of x; variables. The weighted
average is a measure that assigns different weights to each data point in a dataset
based on their relative importance. This method allows for the incorporation of vary-
ing degrees of significance for different data points, providing a more nuanced repre-
sentation of central tendency.

The mathematical formulation of the proposed classes of estimators is given in section
2, followed by the derivation of their mean and variance in section 3. In section 4, the
performance of the proposed classes of estimators is investigated. Section 5 illustrates
the application of the proposed estimators through example and section 6 provides the
conclusions drawn from the study.
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2. Mathematical Formulation of Proposed Classes of Estimators
The SLR model is given by
vi=a+fx;+e, 1<i<n, 1)

where, y; is response variable, « is the intercept parameter, S is the slope parameter
and e; is independent and identically distributed (iid) random error from continuous
distribution with distribution function F(-) having zero mean and finite variance o2.

We propose two classes of estimators based on quasi ranges of predictor variables.
Let y; be the y value corresponding to x;). Representing the two classes by 1C; and

2C,,

-k * *
ﬁ — Yita P Omai=Ym—is1) (2)
1Ck Z:rzll ika—i

is the ratio of weighted averages of deviations of corresponding y values wrt quasi
ranges of x values and

5 T, b Yimti=Vm—it1
Pac, = z?’iltk b= T =L m ©)
is the weighted average of slopes b;, which is ratio of deviation of corresponding y
values wrt quasi ranges of x values.

The weights, represented by i*, k € R is known finite constant, are chosen strategi-
cally to assign lower (higher) weights to quasi ranges derived from middle observa-
tions and higher (lower) weights to those obtained from extreme values for k > 0
(k < 0). The motivation behind choosing the weighting scheme i* lies in its ability to
adaptively adjust the influence of observations based on their distances. For k > 0,
heavier weights are assigned to observations farther away from the median, leading to
increased influence of extreme values in x observations. This scenario is particularly
useful when extreme observations are preferred. Conversely, for k < 0, heavier
weights are assigned to observations closer to the median, thereby reducing the im-
pact of outliers and enhancing robustness against extreme values in the predictor vari-
able. By incorporating the exponent k into the weighting scheme, the proposed clas-
ses offer a comprehensive and effective approach to parameter estimation, catering to
diverse datasets and analytical requirements.

When k =0, ﬁlco is an estimator proposed by Bhat and Bijjargi (2023) and also un-
der equidistant x;s, it is an estimator due to Bose (1938) based on half ranges. Fur-
thermore, for k = 1and —1, ¢, and B;._, simplifies to estimators developed by
Bhat and Bijjargi (2024). Also, BZCO is simple average of b;.

3. Mean and Variance of Proposed Classes of Estimators
In this section, we obtain mean and variance of the proposed classes of estimators.

The mean of B, is given by
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m ik .
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Similarly, the mean of Bzck IS given by

m1 kb
E('BZCR) E( = Lik>

l 1
( mllkE(b)>
- mllk
=p wE(b) =P (5)

Both the classes of estimators admit unbiased estimators of 3.

The variance of ﬁlck is given by

m ik *
5 i=1! (ym+l Ym— i+1)
V(:Ble) = V< m1lkqm i >

ml leV(ymH ym—i+1)
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2023 %K
B (B, i qm—t)
and variance of f,¢, is given by

m1 kb
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The By, and B¢, are consistent estimators of 5.
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When x;ys are equidistant with distances being d, then

Am-i = X(m+i) — X(m—-i+1)

= (X(m) + id) - (X(m) —(i— l)d)

=id+ (i—1)d
=(2i—1)d (8)
and = X7 Gm-i = 1% (Xmet) = Xm-i+1)) ©)
Under equidistant x;)s , the variance expression given in (6) and (7) can be written as
V(ic,) = (Z?Z;Z({z%l—f)iz) 2 = aZ(;’ZZi'%;i)) 2 (10)
5 20° Zﬁlﬁ 202 m %K
V(,Bzck) = o, ik Z = dz(Z{Zlik)z Zi=1m (11)

The optimization of the variance of two classes of estimators wrt k, provides an opti-
mal estimator of . To identify the value of k that minimizes complex variance ex-
pressions in (10) and (11), we employ a numerical optimization algorithm, viz. Brent's
method. It iteratively refines search intervals to converge to the minimum of a func-
tion. Initialization involves selecting a possible interval containing the minimum, fol-
lowed by iterative updates and interpolation to approximate the location of the mini-
mum within the interval. Convergence is achieved by refining the interval until speci-
fied criterion is met.

After employing Brent's method, we determine the optimal k values for both the clas-
ses of estimators for various values of n, which are summarized in the Table 1.

Table 1: Optimum values of k for various values of n

Optimum k

" Bic, Bac,

6 1.377037 2.773202

8 1.281407 2.588176
10 1.225069 2.476232
20 1.112888 2.243209
30 1.075333 2.161740
50 1.045197 2.095716
70 1.032267 2.067579
100 1.022572 2.046747
200 1.011272 2.022963
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These results indicate that, as n increases the optimal values of k tend to 1 for ,l?lck

and towards 2 for Bzck. This suggests a tendency towards assigning relatively lower
weights to middle observations when compared to extreme values. However, negative
values of k would assign higher weights to middle observations. Thus, to explore the
weighting adjustment, we consider —2 < k < 3. The variances of B;¢, and f,¢, are
computed for various values of n, k and are furnished in Table 2 and Table 3.

Table 2: V(fy, ) for various values of n and k

n | V(Bic,) | V(Bic) | V(Bic) | V(Bic) | V(Bicie) | V(Bic,) | V(Bicye) | V(Bic,)
6 0.404413 | 0.156800 | 0.074074 | 0.057851 | 0.057241 | 0.058264 | 0.060005 | 0.062031
8 0.286736 | 0.081333 | 0.031250 | 0.024000 | 0.023906 | 0.024498 | 0.025404 | 0.026456
10 | 0.224397 | 0.049158 | 0.016000 | 0.012188 | 0.012196 | 0.012549 | 0.013065 | 0.013662
20 | 0.116597 | 0.010636 | 0.002000 | 0.001506 | 0.001522 | 0.001579 | 0.001656 | 0.001743
30 | 0.084671 | 0.004440 | 0.000593 | 0.000445 | 0.000451 | 0.000470 | 0.000493 | 0.000521
50 | 0.059606 | 0.001506 | 0.000128 | 0.000096 | 0.000098 | 0.000102 | 0.000107 | 0.000113
70 | 0.048557 | 0.000746 | 0.000047 | 0.000035 | 0.000036 | 0.000037 | 0.000039 | 0.000041
100 | 0.039817 | 0.000356 | 0.000016 | 0.000012 | 0.000012 | 0.000013 | 0.000013 | 0.000014
200 | 0.028339 | 0.000086 | 0.000002 | 0.000002 | 0.000002 | 0.000002 | 0.000002 | 0.000002

Table 3: V(B,, ) for various values of n and k

n | V(Bac,) | V(Bacoy) | V(Bzco) | V(Bac,) | V(Bac,s) | V(Bac,) | V(Bac,s) | V(Bac,)

6 1.087580 | 0.614215 | 0.255802 | 0.100247 | 0.072907 | 0.061406 | 0.057696 | 0.057517

8 0.994260 | 0.476236 | 0.146440 | 0.042620 | 0.029499 | 0.024983 | 0.023907 | 0.024173
10 | 0.940676 | 0.396651 | 0.094709 | 0.021685 | 0.014628 | 0.012534 | 0.012158 | 0.012396
20 | 0.839002 | 0.241170 | 0.024174 | 0.002558 | 0.001690 | 0.001518 | 0.001515 | 0.001567
30 | 0.806752 | 0.187916 | 0.010818 | 0.000725 | 0.000487 | 0.000447 | 0.000450 | 0.000467
50 | 0.781546 | 0.142094 | 0.003916 | 0.000149 | 0.000103 | 0.000096 | 0.000097 | 0.000101
70 | 0.770906 | 0.120327 | 0.002003 | 0.000053 | 0.000037 | 0.000035 | 0.000036 | 0.000037
100 | 0.762989 | 0.102215 | 0.000983 | 0.000018 | 0.000013 | 0.000012 | 0.000012 | 0.000013
200 | 0.753823 | 0.076893 | 0.000246 | 0.000002 | 0.000002 | 0.000002 | 0.000002 | 0.000002

From Table 2 and 3, it is observed that, the variance of members of proposed classes
decreases as n increases. For n > 8, it is seen that, 3151 and EZCZ have minimum vari-
ance respectively from Table 2 and Table 3 in support of the findings from Table 1.

4. Performance of Proposed Classes of Estimators

In this section, we evaluate the performance of the proposed classes of estimators us-
ing relative efficiency (RE) which is a statistical measure used to compare the per-
formance of two estimators in terms of their precision. It quantifies how well one es-
timator performs relative to another by comparing their variances and is given by

Var(B)
Var(4)' (12)

RE(A,B) =

where, A and B are any two estimators. The RE of ,L?zck wrt ,L?lck is given by
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A ~ E:Tzl k)2 Z7l’r=l 2k
RE(,Bzck;,Bmk) = ( izil LZE ) . (13)
Z:zrr=l1<—2> (2, i*am-1)
(qm—i)
~ ~ k [
When x;)s are equidistant, RE(Bac,, Bic,) = (Zl‘zkll MO (14)
S (Gimz) (B k@i-1)”

Using (14), the computed values of RE(Bzck,ﬁmk) for various n and k are given in
Table 4.

Table 4: RE(Byc,, Pac, )for various values of n and k

-2 -1 0 1 15 2 2.5 3
n
6 | 0.371846 | 0.255285 | 0.289575 | 0.577088 | 0.785122 | 0.948834 | 1.040015 | 1.078483
8 [0.288391 | 0.170783 | 0.213398 | 0.563123 | 0.810393 | 0.980605 | 1.062646 | 1.094482

10 | 0.238548 | 0.123933 | 0.168938 | 0.562052 | 0.833751 | 1.001185 | 1.074596 | 1.102138
20 | 0.138971 | 0.044102 | 0.082732 | 0.588839 | 0.900539 | 1.040203 | 1.092710 | 1.112530
30 | 0.104953 | 0.023627 | 0.054778 | 0.613913 | 0.927803 | 1.050929 | 1.096776 | 1.114484
50 | 0.076267 | 0.010596 | 0.032688 | 0.646174 | 0.950109 | 1.058192 | 1.099322 | 1.115495
70 | 0.062986 | 0.006197 | 0.023294 | 0.665490 | 0.959408 | 1.060909 | 1.100229 | 1.115776

100 | 0.052185 | 0.003487 | 0.016277 | 0.683342 | 0.966113 | 1.062787 | 1.100839 | 1.115926

200 | 0.037594 | 0.001121 | 0.008122 | 0.709749 | 0.973466 | 1.064812 | 1.101478 | 1.116035

From Table 4, it is noticed that, RE(Bac,, Pic,) > 1 for k =2, n > 10 and k > 2.
Also, RE (B¢, Pic,) ~ 1. Itis known that,

12 o2

V(:BLS) = dzn(nz 1) (15)

where, LS is a least square estimator. It is observed that, RE (B¢, fLs) ~ 1 and

RE(EZCZJ BLS) ~ 1.

5. Simulation Study

In this section, a simulation study is carried out to investigate the performances of
proposed classes in the presence and absence of outliers. The errors, e; from N(0,1)
distribution and x; samples of size n, i.e.,i = 1, ..., n are generated. The y values are
computed using (1) with generated values, « = 1 and § = 2. After computing y val-
ues, certain percentages of outliers are introduced into the x observations. This is
achieved by replacing a specified percentage of the x values randomly to be signifi-
cantly different from the rest. Once the outliers are introduced, g is estimated using
both the proposed classes of estimators with k € (—2,2) and the LS estimator. These
estimates represent the estimated relationship of y with x based on the observed data,
accounting for the presence of outliers. The objective is to assess how closely these
estimated B matches with true value of . The estimated values of By, Bac, and fs
for various values of n, k and % outliers are furnished in Table 5.
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Table 5: Values of estimators f;¢, , B¢, and B, for various values of n, k
% Outliers [?1(7_2 /?10_1 3160 3101 3102 ﬁzc-z Bzc_1 BZCO Bzc1 Bzcz BLS
n=10
0 2.4988[2.2647 [2.1515[2.1096 [ 2.0931]2.9281 | 2.6364 | 2.3495 | 2.1845 | 2.11982.1032
2 1.3859[1.7139]1.9147[2.0211[2.0810]0.8804 [ 1.2239[1.6020 | 1.8626 | 1.9994 | 2.0372
5 2.0868[2.0317 [ 2.0554 [ 2.0985 [ 2.1325]2.3192 | 2.1613 | 2.0612 | 2.0564 | 2.0927 | 2.1050
ss8  [1.9258[1.6599 |1.4172[1.2274]1.0858|2.2264 [ 2.0816 | 1.8501 [ 1.6049 | 1.4003 | 0.8954
10 1.9783[1.8016 | 1.6053 | 1.4459 | 1.3285]2.0838 [ 2.0227 [ 1.8854 [ 1.7124 [ 1.5557|1.1784
20 1.7168[1.4327|1.2261[1.1043[1.0393]2.0929 | 1.9379[1.6739|1.4105| 1.2250]0.8785
30 1.5731[1.0437]0.7563 [ 0.6457 [ 0.6136 | 2.3452 [ 1.8574 [ 1.2880 | 0.8946 | 0.7107 | 0.5425
n =30
0 3.2294[2.2944 [2.0406 [ 1.9911[1.9779]5.2471[3.7099 | 2.4510 | 2.0663 | 1.9947 | 1.9886
2 1.9609 | 1.8539 | 1.7014 [ 1.5723 | 1.4662]1.8953 [ 1.9572[1.9007 [ 1.7704 | 1.6546 | 1.3740
5 2.1859[1.7647[1.5310 [ 1.3734 [ 1.2493|2.9381 | 2.3932 [ 1.8897 | 1.6521 | 1.5097 | 1.0679
8 2.1316[1.7187[1.4982[1.3369 | 1.2031]3.0693 | 2.4085| 1.8622 | 1.6162 | 1.4634 | 1.0574
10 2.1715[1.7498[1.4193[1.2284[1.1072|2.3514 | 2.2010| 1.8565 | 1.5746 | 1.38760.8903
20 1.7935]1.1967]0.9015 [ 0.7793[0.7347 | 2.5811 [ 2.1044 [ 1.4496 | 1.0397 | 0.84540.6189
30 1.4953]0.9660 | 0.7810 [ 0.7446 [ 0.7593 | 3.0453 [ 2.0924 [ 1.2095 | 0.8597 | 0.7751]0.6047
n =50
0 2.2213[2.1305[2.0104 [ 1.9860 [ 1.9823]0.8365 | 1.9299[2.1152 | 2.0144 | 1.9869 | 1.9853
2 2.0509[1.9220[1.8202[1.7158 [ 1.6224 | 2.5252 | 2.1556 | 1.9569 | 1.8558 | 1.7608 | 1.6184
5 2.5772[1.8863 [ 1.6707 [ 1.5689 | 1.4868 | 3.64482.8290(2.0170|1.7712|1.6860 | 1.2677
8 2.0274[1.6973[1.4258[1.2338[1.0911]2.3867 [ 2.1076 | 1.7786 | 1.5229 | 1.3386 | 0.9898
10 1.9327[1.60271.2938 [ 1.0717[0.9157 | 2.0263 [ 1.9727 [ 1.7097 | 14222 1.1963]0.8263
20 1.9089 | 1.2377]0.9631 [ 0.8431[0.7841]2.5662 | 1.9127 [ 1.3204 | 1.04780.90310.6411
30 1.7763]0.9683 | 0.6584 [ 0.5968 | 0.6105 | 2.5840 [ 1.9740[ 1.0825 | 0.6917 | 0.6034 | 0.4957
n =100
0 3.3993[2.1985 [ 2.0041 [ 2.0085 [ 2.0194 | 4.0537 | 3.5175[ 2.2578 | 2.0091 | 2.0085 | 2.0086
2 2.4114[1.9853[1.8734[1.7929(1.7209]4.0719[2.7219[2.0426 | 1.9186 | 1.8528 | 1.6385
5 2.2637[1.7104[1.5293[1.4120(1.3061 | 2.4285 | 2.3435[ 1.8053 | 1.6287 | 1.5322]1.1272
8 1.8024 | 1.5538 | 1.4343[1.3009 | 1.1920|4.8154 [ 2.3776[ 1.6802 | 1.5786 | 1.4585]0.9793
10 2.6292[1.7532[1.3698 [ 1.1761 [ 1.0485]1.9663 | 2.6042 | 1.9263 | 1.5218 | 1.31880.8747
20 1.8025[1.2311]0.9557 [ 0.8338 [ 0.7876 | 2.9097 [ 1.9048 [ 1.3591 | 1.0615 | 0.8983 | 0.6431
30 2.0852[0.8412[0.5950[0.6052 [ 0.6611 | 3.2496 | 2.4356 | 1.0418 | 0.6375]0.6012]0.5188

The simulation results given in Table 5, shows that, the proposed class of estimators
yield accuracy in 8 values when compared with LS estimator. As error percentages in
the x exceed 2%, the LS estimator struggles, while proposed classes consistently pro-
vide more accurate estimates of the slope parameter. We also notice that, adjusting the
weights, particularly with decreasing values of k, enhances the robustness of the esti-
mator ensuring more reliable estimates of the slope parameter. However, it is im-
portant to be cautious that assigning excess low value to k might discount the im-
portance of extreme observations. Once we find a k value that provides the desired
level of robustness or fits the regression line well, there is no need to consider lower
values. Therefore, striking a balance between robustness and the risk of introducing
inaccuracies is crucial when determining the finest value of k.
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6. lllustration

In this section, we provide an example due to Montgomery et al. (2003) to illustrate
the application of the proposed classes of estimators. It is a data consisting of 19 ob-
servations on first-unit satellite cost (y) and the weight of the electronics suite (x)
from the US Air Force. The dataset is given by

Observation Cost (3K) Weight (lb)
1 2449 90.6*
2 2248 87.8*
3 3545 38.6
4 794 28.6
5 1619 28.9
6 2079 23.3
7 918 21.1
8 1231 17.5
9 3641 27.6
10 4314 39.2
11 2628 34.9
12 3989 46.6
13 2308 80.9*
14 376 14.6
15 5428 48.1
16 2786 38.1
17 2497 73.2*
18 5551 40.8
19 5208 44.6

* indicates outliers

To estimate a for the SLR model specified in (1), we utilize various members from
the proposed classes of estimators and obtain @ = ¥ — 8x. The LS estimate is given
by BLs = 13.88 and V(f,s) = 0.000103 2. The values of § of some members of
1Cy, 2C), and their variance are given in Table 6.

Table 6: Computed values of B¢, , B¢, and their variances

k B1ck V(Bmk) Bzck V(.ézck)
-2 | 275.966930 | 0.018187 ¢ | 1009.371100 | 0.698733 o2
-1.5 | 176.756840 | 0.004589 o2 | 836.019200 | 0.430613 o2
-1 | 114.818710 | 0.001140 o2 | 630.748400 | 0.208517 o2
-0.5 | 78.065820 | 0.000358 ¢ | 430.528100 | 0.076220 o2
0 56.494330 | 0.000179 ¢ | 272.349800 | 0.021377 o2
0.5 | 43.669960 | 0.000132 ¢% | 167.841790 | 0.004979 o2
1 35.875670 | 0.000118 ¢% | 106.350600 | 0.001128 o2
1.5 | 31.035650 | 0.000114 ¢? | 71.951630 | 0.000336 o2
2 27.983030 | 0.000115¢2 | 52.713020 | 0.000174 o2
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Figure 1: Fitted regression lines

From Table 6 and Figure 1, it is observed that, as k decreases, the impact of outliers
diminishes on the proposed classes of estimators and exhibits a better fit to the data,
indicating increased resilience against outliers.

CONCLUSIONS

In this study, we propose two classes of estimators for the slope parameter 8 in SLR.
The classes are based on weighted averages of quasi ranges of the predictor variables,

that is, one of the classes, Blck is ratio of weighted deviations of corresponding y ob-
servations to the weighted quasi ranges of x observations and ﬁzck is weighted aver-
age of slopes based on quasi ranges of x observations. The proposed classes are unbi-
ased and consistent estimators of . The classes admit flexibility in being sensitive to
outliers as well as resistant to outliers depending on the value of k. The variance of
the proposed classes of estimators is minimized wrt k using Brent's method. ﬁ’mk ad-
mits optimal estimator when k = 1, whereas, 3zck admits when k = 2. ﬁzck is better
than Byc, for k>2 . Also, for optimal values of k , RE(Byc, Pic,) =1,
RE(Bic, Bus) ~ 1 and RE(B,c,, BLs) ~ 1. Based on the simulation study, for k < 0,
the robustness of the estimators from both the classes increases as less weight is as-
signed to extreme observations, while for k > 0, the efficiency improves. The pro-
posed classes are useful to practitioners as they can be used under different situations
just by choosing an appropriate value of k.
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