A New Derived Power Series Distribution

Ranjitha Chul*, Bhatracharyulu, N.Ch. and Jayasree, G.

Department of Statistics, University College of Science, Osmania University, Hyderabad-7, India.

ABSTRACT

Power Series Distributions are a family of probability distributions possessing the property that $P(x) = \frac{a_x \theta^x}{f(\theta)}$. Several authors contributed to deriving new power series distributions and their properties.

In this paper, an attempt is made to propose a new derived power series distribution using the ratio of two Poisson distributions with parameters μ_1 and μ_2 (< μ_1). Its properties like moment generating function, probability generating function, characteristic function, recurrent relation, moments, skewness, kurtosis are derived and illustrated with suitable example.

Keywords and Phrases: Poisson distribution, Ratio of two Poisson's and Properties

1. INTRODUCTION

Noack (1950) identified the family of Power series distribution, which encompasses many discrete distributions. It has a broader application, such as determining decreasing failure rate, derived asymptotic variance and covariance, data that have a frequency of observed zeros significantly higher than predicted by models based on the standard parametric family of discrete distributions and the ratio of the power series is flexible when compared to the existing methods.

^{*} Corresponding Author.

Definition 1.1: A random variable X is said to follow a Poisson distribution if it possesses the probability that

$$P(X=x) = \frac{e^{-\mu}\mu^x}{x!}$$
; $x = 0,1, 2, ...$ and $\mu > 0$; $P(X=x) = 0$; otherwise ... (1)

Definition 1.2: A discrete random variable X is said to belong to the family of Power Series distribution (PSD), if its probability mass function is given by

$$P(X=x) = \frac{a_x \theta^x}{f(\theta)}, \ a_x \ge 0; x = 0, 1, 2, ...; \theta > 0 \text{ and } f(\theta) = \sum_{x=0}^{\infty} a_x \theta^x.$$
 ... (2)

Definition 1.3: A discrete random variable X is said to be a Power Series distribution, if it is expressed as the ratio of two power series distributions in the form

$$\frac{1 + \sum_{i=1}^{\infty} a_i s^i}{1 + \sum_{i=1}^{\infty} b_i s^i} = \sum_{i=1}^{\infty} d_i s^i ; \qquad \dots (3)$$

where,
$$d_i = a_i - \sum_{j=1}^i b_j d_{i-j}$$
; $i = 1, 2, 3, ...$ with $d_0 = 1$ and $a_i = \left(\frac{a_i^*}{a_0}\right) (\theta_1)^i$ and $b_j = \left(\frac{b_j^*}{b_0}\right) (\theta_2)^j$

In this paper, a new power series distribution is derived using two Poisson distributions with parameters μ_1 and μ_2 by considering their ratio and is presented below.

2. DERIVED POWER SERIES DISTRIBUTION

Let us consider the two random variables X and Y follows Poisson distribution with parameter μ_1 , and μ_2 , where ($\mu_1 > \mu_2$), with probability generating functions

$$P(X=s) = \sum_{x=0}^{\infty} \frac{e^{-\mu_1} \mu_1^x}{x!} s^x, |s| \le 1, \qquad \dots (4)$$

$$P(Y=s) = \sum_{y=0}^{\infty} \frac{e^{-\mu_2} \mu_2^y}{y!} s^y$$
, $|s| \le 1$ (5)

Then, the ratio of Probability generating functions of (4) and (5) is given by

$$\frac{P(X=s)}{P(Y=s)} = e^{-\mu_1 + \mu_2} \sum_{i=0}^{\infty} d_i s^i = \sum_{i=0}^{\infty} p_i s^i.$$
 (6)

where,

$$p_i = e^{-\mu_1 + \mu_2} d_i$$
 and $d_i = a_i - \sum_{j=1}^i b_j d_{i-j}$; i=1,2, ..., $d_0 = 1$; $a_i = \frac{\mu_1^i}{i!}$ and $b_j = \frac{\mu_2^j}{i!}$... (7)

In general, for i = n,

$$d_{n} = a_{n} - b_{1}d_{n-1} - b_{2}d_{n-2} - b_{3}d_{n-3} \dots \dots - b_{n}d_{0}$$

$$= \left(\frac{\mu_{1}^{n}}{n!}\right) - \sum_{j=1}^{n} \frac{\mu_{2}^{j}}{j!} d_{j} = \frac{(\mu_{1} - \mu_{2})^{n}}{n!} \dots (8)$$

Theorem: Let p_0 , p_1 , p_2 , ... be the set of probabilities generated by a power series distribution (6) with $p_i = e^{-\mu_1 + \mu_2} d_i$, where $d_i = \frac{(\mu_1 - \mu_2)^n}{n!}$; $(\mu_1 > \mu_2)$ defines a proper probability distribution.

Proof: We have $\mu_1 > \mu_2$ therefore, $d_i = \frac{(\mu_1 - \mu_2)^n}{n!} > 0$ for i = 1, 2, ... and $d_0 = 1$

We have $P[X = n] = p_n$ then from the axiom of certainty,

$$\begin{split} & \sum_{n=0}^{\infty} p_n = e^{-\mu_1 + \mu_2} \sum_{n=0}^{\infty} d_n; \\ & = e^{-(\mu_1 - \mu_2)} \sum_{n=0}^{\infty} \frac{(\mu_1 - \mu_2)^n}{n!}; \, \mu_1 > \mu_2 \\ & = e^{-(\mu_1 - \mu_2)}. \, e^{(\mu_1 - \mu_2)}; \, (\sum_{n=0}^{\infty} \frac{(\mu_1 - \mu_2)^n}{n!} = e^{(\mu_1 - \mu_2)}) \end{split}$$

$$\therefore \sum_{n=0}^{\infty} p_n = 1$$

Hence, the p_i's are proper probabilities of a distribution.

3. PROPERTIES OF POISSONO-POISSON POWER SERIES DISTRIBUTION

In this section a set of properties of Poissono-poisson derived power series distribution are presented.

a) Characteristic Function of the distribution is
$$\phi_X(t) = e^{-(\mu_1 - \mu_2)(e^{it} - 1)}$$
 ... (9)

- b) Probability Generating Function of the distribution is $P_X[s] = e^{(\mu_1 \mu_2)(s-1)}; |s| \le 1$... (10)
- c) Moment Generating Function of distribution is $M_x(t) = e^{-(\mu_1 \mu_2)(e^t 1)}$... (11)
- d) The moments of the distribution can be obtained from the Probability Generating Function as

$$\mu_1^1 = E(x) = \left| \frac{d}{ds} P[X = s] \right|_{s=1} = (\mu_1 - \mu_2)$$
 ... (12)

$$\mu_2 = V(X) = \left| \frac{d^2}{ds^2} P[X = s] \right|_{s=1} + \frac{d}{ds} P[X = s] \left|_{s=1} - [E(X)]^2 = (\mu_1 - \mu_2) \right| \dots (13)$$

$$\mu_3^1 = (\mu_1 - \mu_2)^3 + 3(\mu_1 - \mu_2)^2 + (\mu_1 - \mu_2)$$
... (14)

$$\mu_3 = (\mu_1 - \mu_2)$$
 ... (15)

$$\mu_4^1 = (\mu_1 - \mu_2)^4 + 6(\mu_1 - \mu_2)^3 + 7(\mu_1 - \mu_2)^2 + (\mu_1 - \mu_2)$$
 ... (16)

$$\mu_4 = 3(\mu_1 - \mu_2)^2 + (\mu_1 - \mu_2)$$
 ... (17)

e) Skewness of distribution is
$$\beta_1 = (\mu_1 - \mu_2)^{-1}$$
 ... (18)

f) Kurtosis of the distribution is
$$\beta_2 = 3 + (\mu_1 - \mu_2)^{-1}$$
 ... (19)

g) Sum of two independent Poissono-poisson derived power series variates also follows a Poissono-poisson distribution. From (11)

$$M_{X1^+...^+Xn} (t) = M_{X1}(t). ... M_{Xn}(t) = e^{(\theta_1 + \theta_2 + \cdots \theta_n)(e^t - 1)} ... (20)$$

where,
$$\theta_1 = (\mu_1 - \mu_2)$$
, $\theta_2 = (\mu_3 - \mu_4)$, , $\theta_n = (\mu_{n+1} - \mu_{n+2})$;

h) The recurrence relation between the probabilities can be obtained as

$$P(X=x+1) = \left[\frac{\mu_1 - \mu_2}{x+1}\right]. [P(X=x)] \qquad \dots (21)$$

Remarks:

i. The mean and variance of the distribution are same and is the difference between the parameters of the numerator and denominator Poisson distributions considered, i.e.,

Mean = Variance =
$$(\mu_1 - \mu_2)$$
.

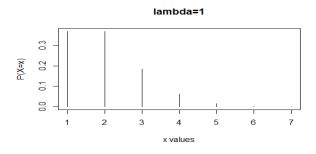
- ii. The shape of the distribution is Poisson if $1 \le \mu_1 \mu_2 \le 2$.
- iii. The distribution is a positively skewed $\gamma_1 = (\mu_1 \mu_2)^{-1/2}$ because $\mu_1 > \mu_2$.
- iv. The distribution is platy-kurtic because $\gamma_2 = (\mu_1 \mu_2)^{-1}$ where $1 \le \mu_1 \mu_2 \le 2$.

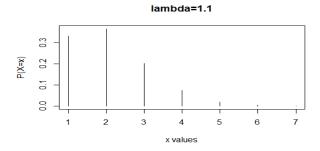
4. GRAPHICAL REPRESENTATION OF THE DISTRIBUTION

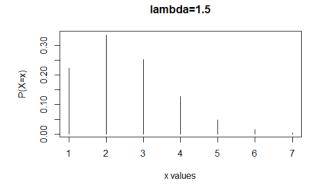
The graphical representation of Poissono-poisson derived power series distribution,

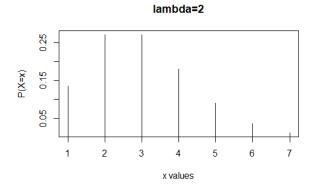
43

for values of parameters $1 \leq \mu = \mu_1 - \, \mu_2 \! \leq 2$ are presented below.









REFERENCES:

- [1] Consul P.C. and Jain, G.C. (1973): "A Generalization of the Poisson Distribution", Communications in Statistics Theory and Methods, Taylor & Francis. vol 15(4), pp791-799.
- [2] Elbatal,I.,Mohammed Zayed, Mahdi Rasekhi and Nadeem Shafique Butt, (2017): "The Exponential Pareto Power Series Distribution: Theory and Applications", Pakistan Journal of Statistics and Operation Research, vol 13(3), pp 603-615
- [3] Jayasree, G. and Bhatracharyulu, N. Ch. (2017): "New Derived Power Series Distribution and Its Properties" International Journal Mathematical Archive, vol. 8(11), pp 105-108.
- [4] Jayasree, G. and Swamy, R. J. R. (2006): "Some New Discrete Probability Distributions Derived from Power Series Distribution", Communications in Statistics Theory and Methods, Taylor and Francis Series, vol. 35(9), pp 1555-1567.
- [5] Jayasree, G. and Swamy, R. J. R. (2013): "Statistical Inference about Parameters of Derived Power Series Distributions", International Journal of Advances in Management, Technology & Engineering Sciences, vol 2(6), pp 100-106.
- [6] Khatri, C.G. (1959): "On certain properties of power series distributions", Biometrika, JSTOR Vol. 46(3/4), pp 486-490.
- [7] Noack, A. (1950): "A class of random variable with discrete distribution" Annals of Institute of Statistics &Mathematics, vol 21(1), pp 127-132.
- [8] Patil, G. P. (1962): "Certain properties of the generalized power series distribution" Annals of Institute of Statistics & Mathematics, vol 4, pp 179–182.