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Abstract

In this paper a stochastic model for a standby system is developed. The system
works with the proviso of preventive maintenance and random switch. The
system is restored by a server available in the system. The model is evaluated
using semi-Markov process and regenerative point technique of stochastic
theory. The numerical results are obtained using laws of Weibull distribution.
The numerical results highlights the importance of the switch restoration and
the operating time threshold for the standby on system performance.

Keywords: Standby System, Semi-Markov process, Performance Measures,
Time Threshold.

1. INTRODUCTION

The preventive maintenance includes set of activities to correct the faults that can take
the form of major failures in near future and hence make the system running smoothly
for longer periods of time. It is the long term investment for maintaining the reliability
and availability of systems. This concept is studied by various authors including (Ruiz-
Castro, 2015), (Garg & Kadyan, 2016), (Levitin et al., 2020). Further, the cold standby
redundancy is a common technique which is widely used for improving system
reliability and availability. The system models with possible failures of cold-standby
are studied by (Osaki & Nakagawa, 1971), (Subramanian et al., 1976), (Bhardwaj et
al., 2017), (Chen et al., 2018). The switching devices are vital for a cold standby system.
They are responsible for keeping the system working by putting the standby units into
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operation. This issue is highlighted in some studies such as (Sharma et al., 2019) and
(Shekhar et al., 2020). The present research work investigates the possibility of cold
standby and switching failure synchronously.

The current paper extends the research work on a cold standby system model developed
by (Bhardwaj & Kaur, 2019). The stated study debated only on the cost-benefit of the
standby system. Another aspect associated is the reliability of the system, as in some
cases it is urgently required. Keeping this aspect in mind, here we evaluated the
reliability of the system in terms of mean time to system failure. The system starts along
two identical units with one unit as operating and other reserved as a cold standby. The
standby unit may or may not found fit for operation when needed. Therefore inspection
is done to check its operational fitness. Also for the operating unit, a maximum time
threshold, known as maximum operation time (MOT), is set so as to do the preventive
maintenance. If it fails before reaching MOT then directly goes under repair.
Furthermore, the switching mechanism or the switch, needed to switch the standby into
operation at the failure of operating unit, is also subject to failure. It is rectified by the
single server which is available in the system to perform all remedial activities. The
system model is developed with the help of semi-Markov process and evaluated using
regenerative point technique. The various system performance measures including
MTSF, steady state availability, busy periods of server and expected number of repairs,
preventive maintenances, inspections and the system profit are obtained using Weibull
distribution and numerical results are presented in tabular form.

2. NOTATIONS AND SYMBOLS

0] The unit is operative and in normal mode

CS The unit is in cold-standby mode

cs,., Cold-standby unit not switched on

CSys0 Continuously in cold-standby mode from previous state

plq Probability that switch is working/failed

alb Probability that repair/ replacement is feasible after inspection
F.lF, Failed unit under inspection /under inspection continuously from

previous state

F,.lFE, Failed unit waiting for inspection / waiting for inspection continuously
from previous state
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Failed unit under repair / under repair continuously from previous state

59

Failed unit waiting for repair / waiting for repair continuously from

previous state

Failed switch under repair / under repair continuously from previous
state

Failed switch waiting for repair / waiting for repair continuously from
previous state

Unit under Preventive Maintenance (PM)/ under PM continuously from
previous state

Unit waiting for PM/ waiting for PM continuously from previous state

pdf/ cdf of failure time of unit

pdf / cdf of inspection time upon cold standby failure

pdf / cdf of repair time of unit

pdf / cdf of repair time of switch

pdf/ cdf of failure time of cold standby unit (max. redundancy time)
pdf/ cdf of maximum operation time

pdf/ cdf of preventive maintenance time

pdf/ cdf of direct transition time from regenerative state S, to S, or

failed state .S, without visiting any other regenerative state in (O,t]

pdf/cdf of first passage time from regenerative state S, to.S; or failed
state S, visiting state S, , S, once in (0,]

Probability that the system is up initially in state S, € £ isup attime t
without visiting to any other regenerative state

Probability that the server is busy in the state .S, up to time t without

making any transition to any other regenerative state or returning to the
same state via one or more non-regenerative states

Symbol for Laplace-Stietjes convolution/Laplace convolution
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3. MODEL DEVELOPMENT
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Figure 1: System State Transition Diagram (Bhardwaj & Kaur, 2019)

3.1. State Transition Diagram

Considering all the possible transitions and the re-generative points, a systematic state
transition diagram is constructed as shown in figure 1.

3.2. States of System
Regenerative states

SOZ (0’ CS)’ S1: (Fur’ 0)’ SZZ (upmt’ 0)’ S3: (O’Fui)’
S4 = (er’ CSnso’Sur)’ S5 = <W CSnso’Sur)

pmt!
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Non-Regenerative states
S6 = (FWR’Fur)’ S7 = (FWR’Fwi'SUR)’ SB = (Fur'FWl)’

Sy = (ervFUI)v Sio = (met’FUI) ,

11 = UPMT7er)’ S, = (UPMT’met)’ Siz = (WPMT7Fwi’SUR )’
14 = (FUR’met)’ Sis = (FUR’er)’ S = (WPMT’ ur)’ S, = (upmt’FWI)

Y

3.3. Transition Probabilities

Simple probabilistic considerations yield the following expressions for the non-zero
elements

p,=0,(0)= [ a,(t)dt =0, (0)

o=, P20)SO)OW)dt, po,= [, Po()Z()S()dt, pos= [ s)Z()O(e)dt,

po= [, z()SW)OW)dt, pos= [ qo()Z()S()dt, pio= [ f(OZ(e)O(e)dtr,

pusi= [, COF(O)Z()dt, pyyo= [ z(VF()OW)dt, poo= ] p,()OW)Z(1)at,

pas= | 2P, (JO()dt, pyap=[ o), ()Z(t)dt, pay= [ b2())Z()O()dt,

ps= [, ag(Z(JO()dt, pao= [ 2(0G(JOWt, psso= [ oZ()G()dt, po= [ h(D)S(e)dr,
pa=[ SOHWL, po=[ hOSOdt, pos=[ sOHWdL, pe= [ fOdt, pr=[ @),
pe= | f@O)dt, po= [ be()dt, po= [ ag(®)dt, puo,= [ bet)dt, piose= [ ag(dr,
Pus= |, PaOdt, prog=[ P, Odt, pigy=[ hOdt, pu,=[ @Ot pis,=[ F@)a,
Pia= |, SOt pia=[ POt piiss= Pslelpiss Prase= Pradlpus,

Po111= pz,ll[c]plll’ D2r210= p2,12[c]p12,2’ DP3i10= p39[c]p91, P3i196= p39[C]p96[C]p61,
P3210= p3,1o[c]1910,2’ P321016™ p3,10[c]p10,16[c]p16,2’ DPaz78= p47[C]P78[C]p83'

Ps531317— p5,13[C]P13,17 [C]p17,3
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3.4. Mean Sojourn Times

The mean sojourn time in the state S, is given by
pu=E()= jo " P(T > t)dt

where T denotes the time to system failure.

u= [ Z00WS W)t p= [ FOZOOWdt, 1= [ B ()Z(O)0W)dr, us= [ GOZ()O@)at,

Ha=Hs= .[0 H(0)S(1)dt, He=Hg=Hy === _[0 F(t)dt, M=ty 5= Io H(r)dt, Ho=Hy= _[0 G(n)dt,

4. SYSTEM PERFORMANCE MEASURES
4.1. Reliability and Mean time to system failure (MTSF)

Let ¢.(¢) be the cdf of the first passage time from regenerative state S, to a failed state,

regarding the failed state as an absorbing state, we have the following recursive
relations:

¢ (1) = Ooy ()14, (1) + Qo ()51, (1) + O (1) [5165 (1) + Do (£) + Qo (1)

¢ (t) = O, ()51, (1) + Q1,14(t) + Ql,lS(t)
&,(t) = Oy (O)[516, (2) + 0,1, (2) + O, 1,(2)

@5 (1) = O3 (1) [516, (1) + O;, (D) [516, (1) + O56 () + Os10 ) (1)

Taking LST of above relations (1) and solving for ;i,(s), we get the mean time to
system failure

MTSF = lim 1-¢(s) _H +{Po1+ PosPaikth + Pootls + Posts 2)
0 s 1- pio{Pos + PoaPai} = Po2Pao = PosPao

The reliability of system model can be obtained as follows

R(?) =L{%} ©)
S
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5. SPECIAL CASE: WEIBULL DISTRIBUTION

63

As a special case Weibull density function with common shape parameter and different
scale parameters is used as follows:

2(t) =ant™ " exp(-at"), g(t)=Ant"" exp(-At"),

f(@) =B exp(=pt"), ht)=ym" exp(-n"),
s(6) = pum" exp(—pa"), o(r) =vipr"™ exp(—1"),

p,, () = ont™ exp(—at"), Where >0 anda, 4, 8,7, 1,v,0,n >0.

Failure
rate

()

0.01
0.02
0.03
0.04
0.05

Failure
rate

()

0.01
0.02
0.03
0.04
0.05

Failure
rate

(a)

0.01
0.02
0.03
0.04
0.05

Table 1: Effect of various parameters on mean time to system failure

p=0.4,g=0.6,a=0.3,b=0.7,3=0.6,
v=0.7,A=0.3,u=0.1,v=0.02,0=0.8

602.79
423.15
318.24
250.26
203.11

p=0.4,g=0.6,a=0.3,b=0.7,3=0.6,
v=0.7,A=0.3,u=0.1,v=0.02,0=0.8

47.19
35.44
28.39
23.69
20.33

p=0.4,g=0.6,a=0.3,b=0.7,3=0.6,
y=0.7,A=0.3,p=0.1,v=0.02,w=0.8

20.19
15.60
12.83
10.98
9.65

MTSF (n=0.5)

p=0.6,=0.4 p=0.7
753.98 605.67
528.22 425.28
396.47 319.91
311.16 251.62
252.04 204.24

n=1.0

p=0.6,=0.4 p=0.7
59.30 47.29
44.52 35.52
35.64 28.46
29.72 23.75
25.49 20.38

n=2.0

p=0.6,g=04 B=0.7
25.52 20.23
19.74 15.64
16.26 12.87
13.92 11.02
12.25 9.69

A=0.5

638.84
445.82
333.53
261.05
210.96

A=0.5

49.03
36.76
29.39
24.48
20.98

A=0.5

21.48
16.57
13.61
11.63
10.21

v=0.03

423.60
318.56
250.50
203.29
168.91

v=0.03

35.46
28.41
23.70
20.34
17.81

v=0.03

15.61
12.84
10.99
9.67
8.66

w=1.0

603.68
423.76
318.68
250.60
203.37

w=1.0

47.22
35.46
28.41
23.70
20.34

w=1.0

20.20
15.61
12.84
10.99
9.66



64 Mandeep Kaur, R. K. Bhardwaj

6. DISCUSSION ON RESULTS

The behavior of MTSF w.r.t failure rate and varied values of shape parameter are shown
in tables 1. The table shows a declining trend in MTSF as the failure rate of the unit (o)
increases. We can also observe that the trends reverts as we increase the repair rate g
from 0.6 to 0.7, inspection rate A from 0.3 to 0.5, rate of PM ® from 0.8 to 1.0 while a
decreasing trend can be seen when the rate v changes from 0.8 to 1.0. These table also
illustrates that as shape parameter (1) increases, MTSF and hence the system reliability
decreases.

The results obtained here advocate the model’s applicability in modern systems. When
the system is new it has the maximum MTSF but it gradually decreases with system
age. Here it is important to indicate that though the deterioration of system performance
is unavoidable but it can be slowed down with more frequent preventive maintenance
i.e. keeping the maximum operation time limit reasonably less. The numerical results
reveals the high dependence of system performance on the failures of the standby and
switch. Therefore adequate design and remedial strategies need to be implemented to
make such systems more reliable.
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