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Abstract 

In this paper a stochastic model for a standby system is developed. The system 

works with the proviso of preventive maintenance and random switch. The 

system is restored by a server available in the system. The model is evaluated 

using semi-Markov process and regenerative point technique of stochastic 

theory. The numerical results are obtained using laws of Weibull distribution. 

The numerical results highlights the importance of the switch restoration and 

the operating time threshold for the standby on system performance.  

Keywords: Standby System, Semi-Markov process, Performance Measures, 

Time Threshold.  

 

1. INTRODUCTION 

The preventive maintenance includes set of activities to correct the faults that can take 

the form of major failures in near future and hence make the system running smoothly 

for longer periods of time. It is the long term investment for maintaining the reliability 

and availability of systems. This concept is studied by various authors including (Ruiz-

Castro, 2015), (Garg & Kadyan, 2016), (Levitin et al., 2020). Further, the cold standby 

redundancy is a common technique which is widely used for improving system 

reliability and availability. The system models with possible failures of cold-standby 

are studied by (Osaki & Nakagawa, 1971), (Subramanian et al., 1976),  (Bhardwaj et 

al., 2017), (Chen et al., 2018). The switching devices are vital for a cold standby system. 

They are responsible for keeping the system working by putting the standby units into 
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operation. This issue is highlighted in some studies such as (Sharma et al., 2019) and 

(Shekhar et al., 2020).  The present research work investigates the possibility of cold 

standby and switching failure synchronously. 

The current paper extends the research work on a cold standby system model  developed 

by (Bhardwaj & Kaur, 2019).  The stated study debated only on the cost-benefit of the 

standby system. Another aspect associated is the reliability of the system, as in some 

cases it is urgently required. Keeping this aspect in mind, here we evaluated the 

reliability of the system in terms of mean time to system failure. The system starts along 

two identical units with one unit as operating and other reserved as a cold standby. The 

standby unit may or may not found fit for operation when needed. Therefore inspection 

is done to check its operational fitness. Also for the operating unit, a maximum time 

threshold, known as maximum operation time (MOT), is set so as to do the preventive 

maintenance. If it fails before reaching MOT then directly goes under repair. 

Furthermore, the switching mechanism or the switch, needed to switch the standby into 

operation at the failure of operating unit, is also subject to failure. It is rectified by the 

single server which is available in the system to perform all remedial activities. The 

system model is developed with the help of semi-Markov process and evaluated using 

regenerative point technique. The various system performance measures including 

MTSF, steady state availability, busy periods of server and expected number of repairs, 

preventive maintenances, inspections and the system profit are obtained using Weibull 

distribution and numerical results are presented in tabular form.   

 

2.  NOTATIONS AND SYMBOLS 

O                The unit is operative and in normal mode 

CS                    The unit is in cold-standby mode 

nsoCS   Cold-standby unit not switched on   

NSOCS   Continuously in cold-standby mode from previous state   

qp /                Probability that switch is working/failed  

ba /                Probability that repair/ replacement is feasible after inspection 

UIui FF /          Failed unit under inspection /under inspection continuously from 

previous  state      

WIwi FF /          Failed unit waiting for inspection / waiting for inspection continuously 

from previous state   



Mean Time to System Failure Analysis of Probabilistic System … 59 

URur FF /         Failed unit under repair / under repair continuously from previous state 

WRwr FF /         Failed unit waiting for repair / waiting for repair continuously from 

previous state 

URur SS /         Failed switch under repair / under repair continuously from previous 

state 

WRwr SS /         Failed switch waiting for repair / waiting for repair continuously from 

previous state 

PMTpmt Uu /  Unit under Preventive Maintenance (PM)/ under PM continuously from 

previous state 

PMTpmt Ww /  Unit waiting for PM/ waiting for PM continuously from previous state 

)(/)( tZtz                    pdf/ cdf of failure time of unit 

)(/)( tGtg     pdf / cdf of inspection time upon cold standby failure 

)(/)( tFtf   pdf / cdf of repair time of unit 

)(/)( tHth   pdf / cdf of repair time of switch 

)(/)( tSts   pdf/ cdf of failure time of cold standby unit (max. redundancy time) 

)(/)( tOto   pdf/ cdf of maximum operation time  

)(/)( tPtp mm   pdf/ cdf of preventive maintenance time 

)(/)( tQtq ijij   pdf/ cdf of direct transition time from regenerative state iS  to jS  or 

failed state jS  without visiting any other regenerative state in  t,0  

)(/)( .. tQtq krijkrij   pdf/cdf of first passage time from regenerative state iS  to jS  or failed 

state jS visiting state kS , rS once in  t,0  

)(ti   Probability that the system is up initially in state ES i  is up at time t 

without  visiting to any other regenerative state 

)(tWi  Probability that the server is busy in the state iS  up to time t without 

making any transition to any other regenerative state or returning to the 

same state via one or more non-regenerative states 

]/[][ cs   Symbol for Laplace-Stietjes convolution/Laplace convolution 
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3. MODEL DEVELOPMENT 

 

Figure 1: System State Transition Diagram (Bhardwaj & Kaur, 2019) 

 

3.1. State Transition Diagram 

Considering all the possible transitions and the re-generative points, a systematic state 

transition diagram is constructed as shown in figure 1.  
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Non-Regenerative states 
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3.3. Transition Probabilities  

Simple probabilistic considerations yield the following expressions for the non-zero 

elements 

     



0

0
~

ijijijij QdttqQp

             ,)(  ,)(  ,)(
0

03
0

02
0

01 


 dttOtZtspdttStZtpopdttOtStpzp    

            
 


0 0

1005
0

04 ,)(  ,)(  ,)( dttOtZtfpdttStZtqopdttOtStqzp    

               ,)(  ,)(  ,)(
0

20
0

15,1
0

14,1 


 dttZtOtppdttOtFtzpdttZtFtop m    

                 ,)(  ,)(  ,)(
0

30
0

12,2
0

11,2 


 dttOtZtbgpdttZtPtopdttOtPtzp mm

              ,)(  ,)(  ,)(  ,)(
0

41
0

10,3
0

39
0

31 


 dttSthpdttGtZtopdttOtGtzpdttOtZtagp

      ,)(   ,)(   ,)(   ,)(   ,)(
0

78
0 0

6113,5
0

52
0

47  
 

 dtthpdttfpdttHtspdttSthpdttHtsp

    
    


0 0 0 0 0

16,102,10969183   ,)(    ,)(    ,)(   ,)(    ,)( dttagpdttbgpdttagpdttbgpdttfp

  
  


0 0 0

1,152,1417,13
0

2,12
0

1,11    ,)(   ,)(   ,)(   ,)(   ,)( dttfpdttfpdtthpdttppdttpp mm





0

2,1414,114.2,11,1515,115,1,13,17
0

2,16      ,][   ,][   ,)(     ,)( pcpppcppdttppdttfp m

   ,][][  ,][  ,][  ,][ 6196396,9.1,391399.1,32,1212,212.2,21,1111,211.1,2 pcpcpppcpppcpppcpp    

    ,][][  ,][][  ,][ 8378478,7.3,42,1616,1010,316,10.2,32,1010,310.2,3 pcpcpppcpcpppcpp 

3,1717,1313,517,13.3,5 ][][ pcpcpp        

 



62 Mandeep Kaur,  R. K. Bhardwaj 

3.4. Mean Sojourn Times 

The mean sojourn time in the state iS  is given by 





0

)()( dttTPtEi  

where T denotes the time to system failure.  
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4. SYSTEM PERFORMANCE MEASURES  

4.1. Reliability and Mean time to system failure (MTSF) 

Let )(ti  be the cdf of the first passage time from regenerative state iS  to a failed state, 

regarding the failed state as an absorbing state, we have the following recursive 

relations: 

)()()(])[()(])[()(])[()( 05043032021010 tQtQtstQtstQtstQt    

)()()(])[()( 15,114,10101 tQtQtstQt         

        )()()(])[()( 12,211,20202 tQtQtstQt                                            

)()()(])[()(])[()( 10,3391310303 tQtQtstQtstQt                                       (1)                

Taking LST of above relations (1) and solving for )(
~

0 s , we get the mean time to 

system failure  
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The reliability of system model can be obtained as follows 
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5. SPECIAL CASE: WEIBULL DISTRIBUTION 

As a special case Weibull density function with common shape parameter and different 

scale parameters is used as follows:  

)exp()( 1   tttz  
, )exp()( 1   tttg  

,  

)exp()( 1   tttf  
, )exp()( 1   ttth  

,                     

)exp()( 1   ttts  
, ),exp()( 1   ttto  

 

),exp()( 1   tttpm  
 Where 0t  and 0,,,,,,,  .  

Table 1: Effect of various parameters on mean time to  system failure 

Failure 

rate 

(α) 

MTSF (η=0.5) 

p=0.4,q=0.6,a=0.3,b=0.7,β=0.6, 

γ=0.7,λ=0.3,μ=0.1,ν=0.02,ω=0.8 

p=0.6,q=0.4 β=0.7 λ=0.5 ν=0.03 ω=1.0 

0.01 

0.02 

0.03 

0.04 

0.05 

602.79 

423.15 

318.24 

250.26 

203.11 

753.98 

528.22 

396.47 

311.16 

252.04 

605.67 

425.28 

319.91 

251.62 

204.24 

638.84 

445.82 

333.53 

261.05 

210.96 

423.60 

318.56 

250.50 

203.29 

168.91 

603.68 

423.76 

318.68 

250.60 

203.37 

Failure 

rate 

(α) 

η=1.0 

p=0.4,q=0.6,a=0.3,b=0.7,β=0.6, 

γ=0.7,λ=0.3,μ=0.1,ν=0.02,ω=0.8 

p=0.6,q=0.4 β=0.7 λ=0.5 ν=0.03 ω=1.0 

0.01 

0.02 

0.03 

0.04 

0.05 

47.19 

35.44 

28.39 

23.69 

20.33 

 

59.30 

44.52 

35.64 

29.72 

25.49 

47.29 

35.52 

28.46 

23.75 

20.38 

49.03 

36.76 

29.39 

24.48 

20.98 

35.46 

28.41 

23.70 

20.34 

17.81 

47.22 

35.46 

28.41 

23.70 

20.34 

Failure 

rate 

(α) 

 

η=2.0 

p=0.4,q=0.6,a=0.3,b=0.7,β=0.6, 

γ=0.7,λ=0.3,μ=0.1,ν=0.02,ω=0.8 

p=0.6,q=0.4 β=0.7 λ=0.5 ν=0.03 ω=1.0 

0.01 

0.02 

0.03 

0.04 

0.05 

                      20.19 

15.60 

12.83 

10.98 

9.65 

25.52 

19.74 

16.26 

13.92 

12.25 

20.23 

15.64 

12.87 

11.02 

9.69 

21.48 

16.57 

13.61 

11.63 

10.21 

15.61 

12.84 

10.99 

9.67 

8.66 

20.20 

15.61 

12.84 

10.99 

9.66 
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6. DISCUSSION ON RESULTS 

The behavior of MTSF w.r.t failure rate and varied values of shape parameter are shown 

in tables 1. The table shows a declining trend in MTSF as the failure rate of the unit (α) 

increases. We can also observe that the trends reverts as we increase the repair rate β 

from 0.6 to 0.7, inspection rate λ from 0.3 to 0.5, rate of PM ω from 0.8 to 1.0 while a 

decreasing trend can be seen when the rate ν changes from 0.8 to 1.0. These table also 

illustrates that as shape parameter (η) increases, MTSF and hence the system reliability 

decreases. 

 

The results obtained here advocate the model’s applicability in modern systems. When 

the system is new it has the maximum MTSF but it gradually decreases with system 

age. Here it is important to indicate that though the deterioration of system performance 

is unavoidable but it can be slowed down with more frequent preventive maintenance 

i.e. keeping the maximum operation time limit reasonably less. The numerical results 

reveals the high dependence of system performance on the failures of the standby and 

switch. Therefore adequate design and remedial strategies need to be implemented to 

make such systems more reliable.  

 

ACKNOWLEDGEMENTS 

The authors are very thankful to the anonymous referees for their valuable suggestions 

and comments which helped in improving the earlier versions of the manuscript.    

 

REFERENCES 

Bhardwaj, R. K., Kaur, K., & Malik, S. C. (2017). Reliability indices of a redundant 

system with standby failure and arbitrary distribution for repair and replacement 

times. International Journal of Systems Assurance Engineering and Management, 
8(2), 423–431. https://doi.org/10.1007/s13198-016-0445-z 

Bhardwaj, R. K., & Kaur, M. (2019). Cost benefit analysis of stochastic model of a 

system with proviso of switch rectification and operating unit time threshold. 

Communications in Stochastic Analysis, 13(3–4), 445–452. 

Chen, Y., Wang, Z., Li, Y. Y., Kang, R., & Mosleh, A. (2018). Reliability analysis of 

a cold-standby system considering the development stages and accumulations of 

failure mechanisms. Reliability Engineering and System Safety, 180, 1–12.  

Garg, V., & Kadyan, M. S. (2016). Profit analysis of a two-unit cold standby system 

subject to preventive maintenance. International Journal of Statistics and 



Mean Time to System Failure Analysis of Probabilistic System … 65 

Reliability Engineering, 3(1), 30–40. 

http://www.ijsreg.com/index.php/ijsre/article/view/88 

Levitin, G., Finkelstein, M., & Dai, Y. (2020). Optimal preventive replacement policy 

for homogeneous cold standby systems with reusable elements. Reliability 
Engineering and System Safety, 204, 107135. 

https://doi.org/10.1016/j.ress.2020.107135 

Osaki, S., & Nakagawa, T. (1971). On a Two-Unit Standby Redundant System with 

Standby Failure. Operations Research, 19(2), 510–523. 

https://doi.org/10.1287/opre.19.2.510 

Ruiz-Castro, J. E. (2015). A preventive maintenance policy for a standby system subject 

to internal failures and external shocks with loss of units. International Journal of 
Systems Science, 46(9), 1600–1613. 

https://doi.org/10.1080/00207721.2013.827258 

Sharma, A., Kumar, P., Sharma, A., & Kumar, P. (2019). Analysis of Reliability 

Measures of Two Identical Unit System with One Switching Device and Imperfect 

Coverage. Reliability: Theory & Applications, 14(1). 

Shekhar, C., Kumar, A., & Varshney, S. (2020). Load sharing redundant repairable 

systems with switching and reboot delay. Reliability Engineering and System 
Safety, 193, 106656. https://doi.org/10.1016/j.ress.2019.106656 

Subramanian, R., Venkatakrishnan, K. S., & Kistner, K. P. (1976). Reliability of a 

Repairable System with Standby Failure. Operations Research, 24(1), 169–176. 

https://doi.org/10.1287/opre.24.1.169 

 

 

 

 

 

 

 

 

 

 

 



66 Mandeep Kaur,  R. K. Bhardwaj 

 

 

 

 

 

 


