Variation in Ozone Transmittance with Height in a Model Atmosphere: Sagamu in Ogun State of Nigeria

O. Sowole

Department of Physics and Mathematics,
Tai Solarin University of Education, Ijagun, Ijebu-Ode.
Nigeria
E-mail: segun sowole@yahoo.com

Abstract

Variation of ozone transmittance with height in the atmosphere for radiation in the 9.6\(\mu\)m absorption band is studied using Goody’s model atmosphere with cubic spline interpolation technique to improve the quality of the curve. The data comprising of pressure and temperature at different altitudes (0-22km) for the month of December, 2007 for Sagamu in Ogun State of Nigeria is used for the computation. Computed result shows that ozone transmittance increases with height, except for the altitudes 8km, and 10km < Z ≤16km due to absorption by O₃.

Keywords: Absorption coefficient, altitude, model atmosphere, optical thickness, Ozone transmittance

Introduction

Ozone as one of the trace gases in the atmosphere, mostly found in the stratosphere absorbs the harmful radiation from the sun (ultraviolet radiation) rather than striking the earth surface (Salby, 1996).

Ozone transmittance is the ratio of the intensity of radiation passing through it, I, to the intensity of radiation before it passes through it, I₀. It can also be expressed in other form as will be seen later.

Due to the fact that ozone layer is getting depleted Levine (1992) by the natural and human activities, transmittance by ozone in turn are being affected negatively.

In this paper, variation in ozone transmittance with height in Sagamu for the month of December 2007 will be considered.

Materials and Methods

Goody (1954) model from (see Elsasser and Culbertson, 1960) atmospheric radiation table is adopted for this work, where transmittance is expressed as:

\[
\tau = \tau (u^* \cdot L)
\]

where \(u^* \) is expressed as:

\[
u^* = u \left(\frac{P}{P_0} \right) \left(\frac{T_0}{T} \right)^{\frac{1}{2}}
\]

\(\tau \) is defined as the ozone transmittance, \(L \) is the generalized absorption coefficient, \(u^* \) is the ‘reduced’ optical thickness represented in this paper as ‘reduced’ ozone amount, which depends on pressure (\(P \)) and temperature (\(T \)) at different altitudes. \(P_0 \) and \(T_0 \) are the standard conditions of pressure and temperature on the surface of the earth.

The measured pressure (\(P \)) and temperature (\(T \)) of the ambient air at different altitudes, \(Z \), (0-22 km) for Ijebu-Ode are used for the computation. This is shown in Table 1. \(u \) represents empirical absorber amount which is ozone amount and its generalized absorption coefficient \(L \) value of ozone which are obtained from U.S National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory Ozone Sonde Vertical Profile Data Report (2007) taken at Huntsville, Alabama station with location 31°N, 54°W.

Table 1: Pressure and temperature at different altitudes for December

<table>
<thead>
<tr>
<th>Temperature (k)</th>
<th>Pressure (hPa)</th>
<th>Height (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>298.4</td>
<td>1002.1</td>
<td>0.0</td>
</tr>
<tr>
<td>290.7</td>
<td>995.2</td>
<td>2.0</td>
</tr>
<tr>
<td>279.3</td>
<td>522.2</td>
<td>4.0</td>
</tr>
<tr>
<td>259.6</td>
<td>493.2</td>
<td>6.0</td>
</tr>
<tr>
<td>248.2</td>
<td>338.1</td>
<td>8.0</td>
</tr>
<tr>
<td>241.3</td>
<td>334.9</td>
<td>10.0</td>
</tr>
<tr>
<td>229.7</td>
<td>219.5</td>
<td>12.0</td>
</tr>
<tr>
<td>208.3</td>
<td>156.7</td>
<td>14.0</td>
</tr>
<tr>
<td>204.4</td>
<td>109.2</td>
<td>16.0</td>
</tr>
<tr>
<td>199.4</td>
<td>86.3</td>
<td>18.0</td>
</tr>
<tr>
<td>193.5</td>
<td>79.1</td>
<td>20.0</td>
</tr>
<tr>
<td>189.5</td>
<td>73.9</td>
<td>22.0</td>
</tr>
</tbody>
</table>
Results and Discussion
Considering the results, fig 1 shows that the reduced ozone amount u^* increases with altitude, Z, but there is a drop at 8km, likewise at $10\text{km} < Z \leq 16\text{km}$ after which there is sharp increase till $Z = 22\text{km}$.

![Figure 1: Variation in ozone amount u^* with altitude.](image)

More so, ozone transmittance, τ, as shown in fig 2 got reduced in response to the result obtained for ozone amount at 8km, $10\text{km} < Z \leq 16\text{km}$ as shown in fig 1. The reductions in ozone transmittance at these altitudes were as a result of absorption by O$_3$ as discussed by Oluwafemi (1980), with photo-dissociation of ozone, causing reduction in ozone amount likewise ozone transmittance.

![Figure 2: Variation in ozone transmittance with altitude.](image)

Conclusion
The result shows that ozone transmittance increases with altitude or height, Z, except for 8km, $10\text{km} < Z \leq 16\text{km}$ for the month of December, 2007 due to absorption by ozone.

Acknowledgement
The author wishes to appreciate the Meteorological Department at Oshodi in Lagos for providing part of the data used for this work. Special thanks to Daryl Myers of...
Electric Systems Centre NREL MS 3411 for linking the author with U.S. National Oceanic and Atmospheric Administration Climate Monitoring and Diagnostic Laboratory for useful information on empirical ozone amounts and generalized absorption coefficient.

References

