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Abstract 
 

Using quaternions, we study the geometry of the single and two qubit 
states of quantum computing. Through the Hopf fibrations, we identify 
geometric manifestations of the separability and entanglement of two qubit 
quantum systems. 

  
 
Introduction  
Ever since the invention of  “quaternions [1-6]” in 1843 by Sir William Hamilton to 
model the three dimensional motion of rigid bodies, these magic numbers have 
fascinated mathematicians and physicists worldwide with application growing by the 
day. Quaternions have provided a successful and elegant means for the representation 
of three dimensional rotations, Lorentz transformations of special relativity, robotics, 
computer vision, problems of electrical engineering and so on. Quaternionic Quantum 
Mechanics has aso shown potential of possible unification with General Relativity. In 
fact, there is belief in some schools of thought that the conventional quantum 
mechanics in complex spacetime is an asymptotic version of the Quaternionic 
Quantum Mechanics. 
     In this paper, an attempt is made to apply these “quaternions” in quantum 
information processing. 
 
 
What are “Quaternions [1-6]” 
We summarize below the salient properties of the “quaternion algebra” to facilate 
completeness and continuity in this article. 
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     The “quaternions” are generalized complex numbers of the 
form q w x y z= + + +i j k with , , ,w x y z ∈� , the set of real numbers and , ,i j k  being 

imaginary units that satisfy the quaternionic algebra 2 2 2 1= = = = −i j k ijk . 

        

     Furthermore, ( ) ( )1 1
Re , Im

2 2
q q q w q q q x y z= + = = − = + +i j k , where 

Re Imq q q= −  is the conjugate of Re Imq q q= + . 

 
     Quaternionic multiplication is associative and distributive but not commutative. In 

fact, we have, for any two quaternions   0 1 2 3x x x x x= + + +i j k , 

0 1 2 3y y y y y= + + +i j k  

     ( ) ( )0 0 1 1 2 2 3 3 0 1 1 0 2 3 3 2xy x y x y x y x y x y x y x y x y= − − − + + + − i  

     ( ) ( )0 2 2 0 3 1 1 3 0 3 3 0 1 2 3 2x y x y x y x y x y x y x y x y+ + + − + + + −j k    

  

     which can be succinctly expressed as 0 0 0 0xy x y x y= − + + +x.y y x x× y . For pure 

quaternions i.e. quaternions with Re 0q = , this simplifies to xy = − +x.y x × y . 

Furthermore, since = −x × y y × x , we also have ( ) 0 0 0 0

1

2
xy yx x y x y+ = − + +x.y y x , 

( )1

2
xy yx− = x × y with the corresponding values for pure quaternions being 

( )1

2
xy yx+ = −x.y , ( )1

2
xy yx− = x × y .The product of two quaternions is again a 

quaternion being the sum of a real number ( )x.y  and a pure quaternion ( )x × y . The 

cross product x × y also satisfies the Jacobi identity that makes the vector space 
3ℜ with the bilinear map ( )3 3 3 : ,ℜ ×ℜ → ℜ ×x y x y�  into a Lie algebra. 

 

     We define the norm of a quaternion as ( ) ( )1 2 2 2 2 2N q q qq w x y z= = = + + + . 

The inverse of a quaternion is naturally defined by 1
2

q
q

q
− = . 

     Writing the quaternions as Re Imq q q= + , we can split the quaternion algebra 

� into the direct sum of two orthogonal subspaces 3≡ ⊕� � � where the real part of 

the quaternion maps onto the straight line � and the imaginary part maps onto the 
orthogonal three dimensional real plane.     
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     The quaternion algebra also provides a representation of the group of symplectic 

transformations ( )1Sp (defined as the group of all linear quaternion transformations 

ϕ  that leave the origin unchanged and preserve the real valued scalar product defined 

below) [7]. 
 
     For this purpose, we define, in the quaternion algebra, a real valued symmetric 

scalar product as Rex y xy=  which coincides with the conventional dot product of 

vectors i.e. 
3

0
i i

i

x y x y
=

=∑  as is easily verified. To explicitly set out the 

representation of the symplectic group ( )1Sp , we identify the quaternion algebra �  

with the complex space 2
�  by writing an arbitrary quaternion q ∈� as 

( ) ( )0 1 2 3q q q i j q q i q jqα β= + + − = + with ( ) ( )0 1 2 3,q q q i q q q iα β= + = + ∈� . Under 

this canonical identification, the quaternion valued form x y xy=
�

, ,x y ∈�  

becomes  ( ) ( ) ( ),x y xy x y x y x y x y j x y x yα α β β β α α β= = + + − = +
�� �

 with the 

former form being hermitian and the latter skew-symmetric. It can be shown that a 

transformation that preserves the scalar product Re Rex y xy x y= =
�

 also 

preserves the scalar product x y xy=
�

 and vice versa. This follows from the fact 

that a transformation preserving  x y xy=
�

 would, obviously, preserve the real and 

imaginary components of the scalar product separately. Conversely, let a quaternionic 

transformation ( )1Spϕ ∈  preserve the real valued product so that 

Rex y x y x yϕ ϕ = =
�

. Since this expression holds for quaternionic vectors of 

the form ix as well, we have ( )Re Reix y ix yϕ=
� �

� . Now, since, for  the 

transformation ( )1Spϕ ∈ , we have ( ) ( )ix i xϕ ϕ=  so that 

( )Re Reix y i x yϕ ϕ=
� �

 which implies that the i th component of the 

quaternionic product is preserved if the real part is preserved by the transformation 

( )1Spϕ ∈ . Similarly, the ,j k th components can also be shown to be preserved. It 

follows that if a quaternionic transformation ( )1Spϕ ∈ preserves the real product, then 

it also preserves the imaginary part and hence the complete quaternionic product.  

     With the identification of �  with 2
� , the group ( )1Sp is embedded as a subgroup 

in ( )2U . This follows from the fact that every quaternion transformation ( )1Spϕ ∈  
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preserves the quaternionic product ( ),x y x y x y= +
�� �

> therefore, such 

transformation must necessarily preserve the hermitian complex form x y
�

 and also 

the skew symmetric form ( ),x y
�

. Hence, ( )1Spϕ ∈  is a unitary transformation in 2
�  

and so it belongs to ( )2U . 

     Any element ( )1Spϕ ∈  can, therefore, be written as a 2 2×  unitary matrix, say 

a b

c d
ϕ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

. Then, the unitary and symplectic nature of ( )1Spϕ ∈  translate to the 

constraints Tϕ ϕ =E E , † 1Tϕ ϕ ϕ −= =  or ( ) ( )1 1 *TTϕ ϕ ϕ ϕ
− −= = =E E E E  

where 
0 1

1 0

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

E so that b c= − , d a= ,with ,a b  being determined from the 

unitarity conditions 1aa bb+ =  and ab ba= . In the case of an infinitesimal  

( )1Spϕ ∈ , we can write it in the neighbourhood of the identity transformation as 

α β
ϕ ε

χ γ
⎛ ⎞

= + ⎜ ⎟
⎝ ⎠

I . The constraints on the transformation ( )1Spϕ ∈  translate into the 

following constraints on , , ,α β χ γ  viz. γ α= , χ β= −  and α α= − .  

     The fact that the group of quaternions is isomorphic to ( )1Sp  and also to the 

sphere 3S in 4
� , then follows from the fact that elements of the group ( )1Sp act on 

the space �  of quaternions as q qaϕ = for q ∈�  and a ∈� being determined by the 

transformation ( )1Spϕ ∈ . Since ( )1Spϕ ∈  preserves the quaternionic product, we 

have 
2

x y xy xaay a xy= = =
�

 whence 1a = . Since the identity ab a b=  

holds for all quaternions, it follows that the group ( )1Sp  is isomorphic to the group of 

unit quaternions that form a sphere 3S in 4
� for 

2 2 2 2 2
0 1 2 31 a a a a a= = + + + . 

  
 

The Geometry of a Single Qubit  
The “quantum bit” or “qubit” plays the role of a “bit” in quantum computing [8] and 
constitutes a unit of quantum information [8-9]. It is represented by a state vector of a 
two-level quantum system. The representation space is, therefore, a two dimensional 
Hilbert space of the complex numbers and the basis vectors are usually chosen as 

( )0 1 0
T≡  and   ( )1 0 1

T≡ , being the eigenvectors of the “spin” operator 3σ  in 
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the direction of the z axis.  
     The fundamental difference between the “classical bit” and the “qubit” is that the 
former can have only two possible values viz. 0,1. The “qubit”, on the other hand, can 
occur in an infinite number of states being the superposition of the “pure states” 
represented by the basis vectors. We can, therefore, express a qubit as a linear 

combination of the two basis states as 0 1ψ α β= + . ,α β ∈�  are the probability 

amplitudes whose squares provide a measure of the probability of the qubit being in 

state 0  and state 1  respectively. We must, therefore, have 
2 2

1α β+ =  

     The state space of a single qubit quantum register admits a geometrical 
representation as a Bloch sphere [10]. This is established as follows:- 
     The state space of a two level quantum system is conventionally taken as the 

Hilbert space Η ≡ ⊗� �  [11]. Now, if two physical states ,ψ φ that differ merely 

by a phase i.e. a complex number of unit magnitude i.e.  ie ωψ φ= , then they 

represent the same physical state. It follows, therefore, that the proper space for a two 
level quantum system is the above Hilbert space Η ≡ ⊗� � quotiented by the 

equivalence relation ψ φ∼  iff ie ωψ φ= . It will, thus, be the projective Hilbert 

space created by this equivalence relation and may be defined as ( )Π Η = Η ∼ . Sets 

of points in Η differing only in phase (i.e. the same quantum ray) will be mapped onto 

the same point in ( )Π Η . Thus, ( ) :
ψ ψ

ψ ψ
ψ ψ

Π =� . Now, the complex space 2
�  

has already been identified with the algebra of quaternions �  through the symplectic 

decomposition of an arbitrary quaternion q ∈�  as 

( ) ( )0 1 2 3q q q i j q q i q jqα β= + + − = +   ( )0 1q q q iα = + , ( )2 3q q q iβ = + ∈� . The set of 

normalized quaternions i.e. quaternions with unit modulus get mapped into a sphere 
3S  embedded in 4

� . It, therefore, follows that normalized state vectors in 2
�  can 

also be canonically identified with the sphere 3S  embedded in 4
� . Quotienting 2

� by 

the equivalence relation ψ φ∼  iff ie ωψ φ=  to get the projective Hilbert 

space ( )Π Η = Η ∼ , amounts to constructing the complex projective space ( )1CP  i.e. 

( )3 1S U  which yields the sphere 2S usually referred to in the literature as the Bloch 

sphere. In other words, the geometry of the two level quantum system (qubits) can be 
conveniently represented by the Bloch sphere. 
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The Hopf map 

The identification of 3S in  4
�  with the Bloch sphere ( )2S  is done through the well 

studied Hopf map. As a by product of the Hopf analysis, one also recovers the 
association between the geometry of qubits [12-15] and quaternions. To construct the 

Hopf map, we recall that the sphere 3S  is the group manifold of the special unitary 

group of matrices ( )2SU i.e. matrices with unit determinant that is isomorphic to the 

symplectic group ( )1Sp  of transformations that preserve the quaternionic form. 

Elements on 3S  can be expressed in terms of quaternions ( ),q z zα β≡  through the 

symplectic decomposition q z jzα β= + , ,z zα β ∈�  or equivalently by matrices 

m

z z
q

z z
α β

β α

⎛ ⎞
= ⎜ ⎟−⎝ ⎠

with 1z z z zα α β β+ =  for, writing 0 1z q iqα = + , 2 3z q iqβ = + , we 

obtain 2 2 2 2
0 1 2 3 1q q q q+ + + = . confirming that  ( ),q z zα β≡  lies on the sphere 3S .  

     To obtain explicit expressions for the Hopf map, we make use of the canonical 

representation of the quaternion units by the well known Pauli matrices 1

0 1

1 0
σ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

, 

2

0

0

i

i
σ

−⎛ ⎞
= ⎜ ⎟
⎝ ⎠

, 3

1 0

0 1
σ ⎛ ⎞

= ⎜ ⎟−⎝ ⎠
 as 1i iσ≡ − , 2j iσ≡ − , 3i iσ≡ − .  In terms of these 

matrices, acting as the basis, the Hopf mapping is defined by 

( ) ( ) ( )T
q z z z zα β α βπ= =x σ yielding ( )( )22

, ,z z z z i z z z z z zβ α α β β α β α α β= + − −x  

     ( ) ( )( )2 2 2 2
0 2 1 3 0 3 1 2 0 1 2 32 ,2 ,q q q q q q q q q q q q= + − + − − . 

     Let us take an element of the unitary group ( )1U , say, 3

0

0

η
ϕ λ μσ

η
⎛ ⎞

= = +⎜ ⎟
⎝ ⎠

I . 

We, then, have ( ) ( )† †q q qπ ϕ ϕ ϕ ϕ ϕ= = =σ x x  confirming, thereby that 

( ) ( )q qπ π ϕ=  for ( )1Uϕ ∈  and hence, establishing the projective nature of the Hopf 

map taking all elements of  3S  connected through a unitary transformation to a single 

image. The image set is confirmed to be 2S since 2 1=x as can be easily verified. 

Thus, the Hopf map creates a principal bundle structure for 3S  with the base manifold 

being 2S  and the fibres being circles 1S  (members of the unitary group ( )1U . 

     To obtain the local charts and the transition functions for the Hopf map, we 

parameterize the sphere 3S  by the stereographic projection coordinates. Let ( ),X Y be 
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the stereographic projection coordinates of a point in the southern hemisphere SU of 
2S  from the North Pole. Consider a complex plane that contains the equator of 2S . 

Then, Z X iY= +  lies within the circle of unit radius on the plane. Further, from the 

standard expressions for stereographic coordinates, we have 

1 2 0 1

3 2 31

x ix q iq z
Z

x q iq z
α

β

+ −= = =
− −

. The projective nature of the Hopf map again manifests 

itself here as the invariance of Z under the transformation ( ) ( ), ,z z z zα β α βλ λ→  for 

1λ = . Similarly, the stereographic coordinates of ( ),U V  of a point in the northern 

hemisphere NU with respect to the South Pole will be given by 
z

W U iV
z

β

α

= + = .  

     We can, now, define the fibre bundle structure of the Hopf map. The local 
trivializations in the northern and southern hemisphere are respectively given by:- 

      (i) ( ) ( )1 1: 1N N NU U Uφ π− − → ×  by ( ), ,
z z

z z
z z

β α
α β

α α

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

�  

      (ii) ( ) ( )1 1: 1S S SU U Uφ π− − → ×  by ( ), ,
zz

z z
z z

βα
α β

β β

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

�  

      (Both these trivializations are well defined on the respective charts for, in the 

northern hemisphere 0zα ≠  and in the southern hemisphere 0zβ ≠ ). 

      (iii)On the equator, 3 0x =  so that 1 22z zα β
−= = , whence, on the equator, the 

local trivializations become ( )1 : , , 2N

z
z z z

z
β

α β α
α

φ − ⎛ ⎞
⎜ ⎟
⎝ ⎠

�  and 

( )1 : , , 2N

z
z z z

z
α

α β β
β

φ −
⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

�  leading to the equatorial transition function NS

z
t

z
α

β

= .       

      
 

The Geometry of Two Qubit States & Quantum Entanglement 
The Hopf map described above can easily be generalized to 7 4: S Sπ → . This 

motivates us to examine the geometry of a two qubit quantum state using the 
formalism of the Hopf map. However, when addressing multiple qubit states, one 
needs to carefully consider the issue of quantum entanglement. The “quaternions” 
again come in handy in studying the two qubit state.  
     The Hilbert space for the compound system H will be the tensor product of the 
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individual Hilbert spaces H , HA B  of the two qubits and the basis vectors will be the 

direct product of the bases of the two spaces. We can, therefore, write a pure state of a 

two qubit system as 00 01 10 11α β χ δΦ = + + +  where ij i j≡ ⊗ , 

H , HA Bi j∈ ∈ , , , ,α β χ δ∈�, Re Imiα α α= + , Re Imiβ β β= + , Re Imiχ χ χ= +  and 

Re Imiδ δ δ= + ,    
2 2 2 2

1α β χ δ+ + + = . This normalization condition translates to a 

sphere 7S  embedded in 8
� .  Now, if the two qubit state is a composition is two one 

qubit states, then it should be possible to write the composite state as the tensor 

product of the two single qubit states. Writing 1 20 1
A A A

a aφ = + , 

1 20 1
B B B

b bφ = + , we have, for separable states  

1 1 1 2 2 1 2 200 01 10 11
A B

a b a b a b a bφ φΦ = ⊗ = + + +  whence, the separability 

condition can be inferred as 0αδ βχ− = .        

     To introduce the Hopf fibration 7 4: S Sπ → through the quaternions, we write the 

probability amplitudes  , , ,α β χ δ∈� in the form of two quaternions using the 

symplectic decomposition as 1 Re Im Re Imq α α β β= + + +i j k  and 

2 Re Im Re Imq χ χ δ δ= + + +i j k . Obviously, the normalization condition implies that 

2 2

1 2 1q q+ = . Parametrizing the  sphere 4S as 
5

2

1

1l
l

ξ
=

=∑ , we obtain the Hopf map  

7 4: S Sπ →  by the mapping 1 0Qξ = , 2 1Qξ = , 3 2Qξ = , 4 3Qξ =  and ( )2

5 1 Qξ = −  

where ( ) ( )
________

1 2 0 1 2 3 1 2, 2q q Q Q Q Q Q qqπ = = + + + =i j k . Explicit computation using the values of 

the quaternions 1q  and 2q  yield  

     ( )1 Re Re Re Re Im Im Im Im2ξ α χ β δ α χ β χ= + + +  

     ( )2 Re Im Im Re Re Im Im Re2ξ α χ α χ β δ β δ= − + −  

     ( )3 Re Re Im Im Re Re Im Im2ξ α δ α δ β χ β χ= − − +  

     ( )3 Re Im Im Re Re Im Im Re2ξ α δ α δ β χ β χ= + − −  

     5 1 21 2 q qξ = −  

     The Hopf map 7 4: S Sπ → is equivalent to the mapping of 7S onto a fibre bundle 

with the base space being the unit sphere 4S and the fibres being spheres 3S (this is 

evidenced by the invariance of this map under the transformation  

( ) ( )1 2 1 2, ,q q q qλ λ� , 1λ = ) 
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     A perusal of the above expressions reveals an intriguing feature of the Hopf map. 

If the two qubit states are separable i.e. 0αδ βχ− = , then 3 4 0ξ ξ= = and  the base 

space  reduces to 2S which is the Bloch sphere discussed in the earlier section of this 

manuscript. This Bloch sphere (the base space) constitutes the state space of one of 
the qubits of the two qubit separable system. The obvious question to be posed, then 
is – What about the state space of the other qubit of this separable system? A possible 
solution is to introduce a second Hopf map that fibres out the fibrings of the first Hopf 

map. As mentioned earlier the fibres of the map 7 4: S Sπ →  consist of spheres 
3S attached to the base space 4S . By means of another Hopf map  3 2' : S Sπ →  we 

can further, fibrate the fibres of the first map into a base space (the two sphere 2S ) 

and fibres (being the one dimensional sphere). This creates another Bloch sphere that 
can be considered as the state space of the second qubit in the two qubit separable 
composite system. It needs be emphasized here that such a construction is not 
permissible in an entangled system because of the non vanishing of the coordinates 

3 4,ξ ξ . 

 
 
Conclusion 
It is shown that the “quaternions” provide an attractive and efficient machinery to 
study the geometry of the one qubit and two qubit systems. One is led to the 

conclusion, through the Hopf map 3 2: S Sπ → , that the one qubit system has a 

geometrical representation as the Bloch sphere 2S  which the base space of a principal 

bundle with fibres consisting of the one dimensional sphere 1S . In the case of the two 

qubit composite system, a similar over fibration 7 4: S Sπ →  implies that the system 

has the geometry of a fibre bundle with the base space being the four dimensional 

sphere 4S  fibres consisting of 3S . As a fallout of the Hopf map analysis, we also find 

that unentangled two qubit systems admit a geometry as adirect product of two Bloch 
spheres as is intuitively to be expected. However, the Bloch sphere corresponding to 

one of the qubits in an unentangled system must be extracted from the 3S fibres of the 
7 4: S Sπ →  by invoking a second Hopf fibration of these 3S fibres as   3 2: S Sπ → . 
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