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Abstract 

 

The initial and second order rotatory theory of fluid mechanics lubrication was 

based on the expressions obtained by holding the terms up to first and second 

powers of rotation number M within the extended generalized Reynolds 

equation of the classical Reynolds theory. Within this analysis, there are the 

derivations of the new equations for pressure under the consequences of 

second order rotation and their reductions into first order rotation of 

hydrodynamic lubrication. The expression for the exponential and logarithmic 

variation of the pressure with respect M is obtained. The comparative studies 

give some new excellent fundamental solutions with the help of geometrical 

figures, expressions, calculated table and graph for the short journal bearings 

for second order rotation. The analysis of equations for pressure, table, and 

graph analyzes that pressure increases with increasing values of the rotation 

number. The pressure is not independent of viscosity and varies with the 

viscosity of the fluid. 
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1. INTRODUCTION 

1.1 Short Journal Bearing 

In general the bearings [1], [2] is divided in to four categories: 

(1) Dry bearings for example; plastic bushings, coated metal bushings etc.  

(2) Fluid film bearings for example; shaft bearings etc. 
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(3) Semi-lubricated bearings for example; oil-impregnated bronze bushings etc. 

(4) Rolling component bearings for example; ball, cylindrical, spherical or tapered 

roller and needle etc. 

Except from some radial-configuration craft engines, the majority piston engines use 

fluid film bearings [3]. This can be true for the shaft and typically within the rotating 

shaft, though usually the later runs directly within the engine structure. Here we've got 

to debate the operating of the fluid film operating and to demonstrate however engine 

designers are reducing friction losses through bearing technology [4]. The fluid film 

bearings operate by generating, as a by-product of the relative motion between the 

shaft and also the bearing, a very thin film of lubricant at a sufficiently large pressure 

to match the applied load, as long as that load is among the bearing capability [5]. 

Fluid film bearings represent a type of scientific method, by virtue of providing 

terribly massive load carrying capabilities during a compact, light-weight 

implementation, and in contrast to the opposite categories, in most cases is designed 

for infinite life. The fluid film bearings operate in any of the three modes: 

(a) Boundary  

(b) Fully-hydrodynamic 

(c) Mixed. 

 

 

 

 

 
 

Figure-1 (Geometry of Journal Bearing) 

 

 

 

 

 

 

 

 

Figure-2 (Geometry of Short Journal Bearing) 
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In totally hydrodynamic or "full-film" lubrication, the moving surface of the journal is 

totally separated from the bearing surface by a really thin film of lubricants. The 

applied load causes the center line of the journal to be displaced from the center line 

of the bearing. This eccentricity creates a circular "wedge" within the clearance house. 

The stuff, by virtue of its body, clings to the surface of the rotating journal, and is 

drawn into the wedge, making a really pressure, that acts to separate the journal from 

the bearing to support the applied load. The bearing eccentricity is expressed because 

the center line displacement divided by the radial clearance. The bearing eccentricity 

will increase with applied load and reduces with larger journal speed and body. The 

hydrodynamic pressure has no relationship in the least to the engine pressure, except 

that if there's short engine pressure to deliver the specified copious volume of oil into 

the bearing, the hydraulics pressure mechanism can fail and therefore the bearing and 

journal are destroyed. The pressure distribution within the hydraulics region of a fluid 

film bearing will increase from quite low within the massive clearance zone to its 

most at the purpose of minimum film thickness for the incompressible fluid like oil is 

force into the convergence "wedge" zone of the bearing. However, this radial profile 

doesn't exist homogeneously across the axial length of the bearing. If the bearing has 

spare breadth, the profile can have a virtually flat from across the hard-hitting region. 

The second mode of bearing operation is boundary lubrication. In boundary 

lubrication, the "peaks" of the slippery surfaces i.e., journal and bearing, are touching 

one another, however there's conjointly an especially thin film of the lubricants solely 

some molecules thick that is found within the surface " wedge ". That thin film tends 

to cut back the friction from what it'd be if the surfaces were fully dry. The mixed 

mode could be a region of transition between boundary and full-film lubrication. The 

surface peaks on the journal and bearing surfaces part penetrate the fluid film and a 

few surface contact happens, however the hydraulics pressure is getting down to 

increase [4], [5]. 

 

1.2 Differential Equation for Hydrodynamic Lubrication Theory   

The two dimensional classical theory [6] of fluid mechanics lubrication was 1st given 

by O. Reynolds. In 1886, within the wake of a classical experiment by Beauchamp 

Tower [7], he developed an equation celebrated as: Reynolds Equation. The formation 

and basic mechanism of fluid film was analyzed by that experiment by taking some 

assumptions that the film thickness is extremely tiny as compared to the axial and 

longitudinal dimensions of fluid film and if the lubricator layer is to transmit pressure 

between the shaft and therefore the bearing, the layer should have variable thickness. 

Osborne Reynolds himself derived “Generalized Reynolds Equation” [6], which 

depends on density, film thickness, surface and transverse velocities. The equation 

originally derived by Reynolds was restricted to incompressible fluids, thus it had 
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been developed generally enough to incorporate the results of compressibility and 

dynamic loading and was aforementioned to be Generalized Reynolds Equation. So 

the ultimate form of Generalized Reynolds Equation [5], [6] was as given:   
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Where ρ is that the density, μ is that the viciousness, h is that the film thickness of 

fluid film, U1 and U2 are the surface velocities and V is that the general velocity. 

Within the equation (1), the term was because of the bearing velocities on the 

lubricator film and depends on whether or not the bearing surfaces have angular or 

translational velocities, whereas the term was because of relative speed of bearing 

surfaces within the direction traditional to the fluid film. In most cases, the bearing is 

stationary and solely the runner in thrust bearings and also the shaft within the journal 

bearings are moving, therefore U1=U and U2=0. Currently the ultimate equation for 

incompressible lubricants was based by Reynolds is as given: 
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Where U is that the sliding velocity, V0 is the motion of journal center.  

The rotation [8] of fluid film regarding an axis that lies across the film provides some 

new ends up in lubrication issues. The origin of rotation is copied by bound general 

theorems associated with vorticity within the rotating fluid dynamics. The rotation 

induces a part of vorticity within the direction of rotation and also the effects arising 

from it area unit predominant, for giant Taylor’s no., it ends up in the streamlines 

changing into confined to plane transversal to the direction of rotation. The extended 

version of “Generalized Reynolds Equation” is claimed to be “Extended Generalized 

Reynolds Equation” given by Banerjee et. al., [9] that takes under consideration of the 

consequences of the uniform rotation regarding an axis that lies across the fluid film 

and depends on the rotation no., M i.e., the root of the standard Taylor’s no. This 

generalization of the classical theory is understood because the “Rotatory Theory of 

hydrodynamic Lubrication”.  

The “First order rotatory theory” and “Second order rotatory theory” of hydrodynamic 

Lubrication was given by Banerjee et.al. [10] on retentive the terms containing up to 

1st and second powers of M severally, and neglecting higher powers of M. This paper 

analyzes regarding the pressure within the short journal bearings [11] with respect to 

the impact of second order rotation and comparative analysis with regard to rotation 

no. and viscosity for second order rotatory theory with classical Reynolds theory and 

1st order rotatory theory of hydrodynamic lubrication. The geometries of journal 

bearings and infinitely short journal bearings are given by the figures-1 and figure-2 

severally. 
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2. GOVERNING EQUATIONS WITH BOUNDARY CONDITIONS 

The Extended Generalized Reynolds Equation derived by Banerjee et al., [11], [12] in 

ascending powers of rotation no. M and by retentive the terms containing up to second 

powers of M and neglecting higher powers of M, is written as equation (3). For the 

case of pure W*=0, and if the bearing is infinitely short then the pressure gradient in 

x-direction is far smaller than the pressure gradient in y-direction. In y-direction the 

gradient ∂y P is of the order of (P/L) and within the x-direction, and is of order of 

(P/B). If L << B then  𝑃/𝐿 >> 𝑃/𝐵 ,  so 𝜕𝑥<<  𝜕𝑦. Then the terms containing 𝜕𝑥  can 

be neglected as compared to the terms 𝜕𝑦 containing in the expanded form of 

Generalized Reynolds Equation. Thus we've the equation as given: 

 𝜕𝑦[𝐹(ℎ)𝜌𝜕𝑦] + 𝜕𝑥[𝐺(ℎ)𝜕𝑦] = −𝜕𝑥 [
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Where x, y and z area unit coordinates, U is that the sliding velocity, P is that the 

pressure, ρ is that the fluid density, µ is that the body.  

Taking h=h(x), U=-U, P=P(y), h=C (1+ecos θ), x=R θ, where θ being measured 

from x-direction. For the determination of pressure the boundary conditions are as 

follows:                                                                                                                                                                                                                                                                             

P=0, y = ± 𝐿

2
                                                (5) 

The solution of the differential equation (1) under the boundary condition (2) gives 

the pressure for infinite short journal bearing under the effects of second order 

rotatory theory of hydrodynamic lubrication as follows: 

𝑃 =   𝛼 + 𝛽𝑀 + 𝛾 𝑀2                                                                                           (6) 
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On neglecting the term containing M2 in equation (3), we get the pressure equation for 

first order rotatory theory of hydrodynamic lubrication i.e., as given 

𝑃 =   
(3µ𝑈𝑒𝑠𝑖𝑛 𝜃)(𝐿2−4𝑦2)

4𝐶2(1+𝑒𝑐𝑜𝑠𝜃)3𝑅
+

𝜌𝑈𝑒𝑠𝑖𝑛𝜃(𝐿2𝑦−4𝑦3)

8𝐶𝑅(1+𝑒𝑐𝑜𝑠𝜃)2 𝑀                                                          (7)  

 



122  Dr. Mohammad Miyan 

On neglecting the term containing M2 and M in equation (3), we get the pressure 

equation for classical Reynolds theory of hydrodynamic lubrication i.e., as given 

𝑃 =   
(3µ𝑈𝑒𝑠𝑖𝑛 𝜃)

𝐶2(1+𝑒𝑐𝑜𝑠𝜃)3𝑅
(

𝐿2

4
− 𝑦2)                                                                                (8)  

 

3. NUMERICAL SIMULATIONS  

By taking the values of different mathematical terms in C.G.S. system as follows: 

 e=0.2, C/R=0.002, θ=30o, µ=0.0002, C=0.0067, ρ=0.9, U=102, h=0.02, y=50, L=200; 

the calculated values of pressure with respect M are given by table-1. 

 Table-1 

S.NO. M P(First Order Rotation) P(Second Order Rotation) 

1. 0.1 5647618.375 5647618.061 

2. 0.2 11109927.84 11109926.59 

3. 0.3 16572237.31 16572234.49 

4. 0.4 22034546.78 22034541.77 

5. 0.5 27496856.24 27496848.42 

6. 0.6 32959165.71 32959154.44 

7. 0.7 38421475.18 38421459.84 

8. 0.8 43883784.64 43883764.61 

9. 0.9 49346094.11 49346068.76 
 

 

4. CONCLUSIONS 

The variation of pressure with respect to rotation number M by taking viscosity as 

constant; are shown by equations, tables and graphs. These show that in the first and 

second order rotatory theory of hydrodynamic lubrication, the pressure increases with 

increasing values of M, when viscosity is taken as arbitrary constant. The equations, 

tables and graphs for first and second order rotatory theory of hydrodynamic 

lubrication show that the pressure is not independent of viscosity. The comparative 

exponential, logarithmic and parabolic variations of pressure with respect to first and 

second order rotation have very small variations and have the same expressions. 

P=7E+06 e2.479M, P=2E+07 loge M+4E+07, P=-31.30 M2+5E+07M+18530 
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Figure-3. Variation of pressure with respect to M  
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