A Fixed Point Theorem For b-Metric Space

Swati Agrawal, K. Qureshi and Jyoti Nema

Oriental College of Technology Bhopal, (M. P) India
swatiagrawal_136@rediffmail.com
NRI Institute of Information Science and Technology Bhopal, (M. P) India

Abstract

The aim of this paper to obtain completeness and uniqueness of fixed point theorem on b-metric space. In this paper we show that different contractive type mapping exist in b-metric space.

Keywords: contractive mapping, fixed point, b-metric space.

Introduction

In many branches of science, economics, computer science, engineering and the development of nonlinear analysis, the fixed point theory is one of the most important tool.

We want to extend some well known fixed point theorems which are also valid in b-metric space.

Definition 1.1. Let X be a non-empty set and $s \geq 1$ be a given real number. A function $d: X \times X \to \mathbb{R}_+$ is called a b-metric provided that for all $x, y, z \in X$

1) $d(x, y) = 0$ if and only if $x = y$,
2) $d(x, y) = d(y, x)$,
3) $d(x, z) \leq s[d(x, y) + d(y, z)]$.

A pair \((X, d)\) is called a b-metric space. It is clear that definition of b-metric space is an extension of usual metric space.

Some examples of b-metric spaces are given below:

Example 1.2. By Boriceanu [4], the set \(l_p(R)\) (with \(0 < p < 1\), where \(l_p(R) := \{(x_n) \in R \mid \sum_{n=1}^{\infty} |x_n|^p < \infty\}\)), together with the function
\[
 d : l_p(R) \times l_p(R) \to R,
\]
\[
 d(x, y) = \left(\sum_{n=1}^{\infty} |x_n - y_n|^p \right)^{1/p}
\]
where \(x = (x_n), y = (y_n) \in l_p(R)\) is a b-metric space. By an elementary calculation we obtain that
\[
 d(x, z) \leq 2^{1/p} [d(x, y) + d(y, z)].
\]

Example 1.3. By Boriceanu [4], let \(X = \{0, 1, 2\}\) and
\[
 d(2, 0) = d(0, 2) = m \geq 2,
\]
\[
 d(0, 1) = d(1, 2) = d(1, 0) = d(2, 1) = 1
\]
and
\[
 d(0, 0) = d(1, 1) = d(2, 2) = 0.
\]
then
\[
 d(x, y) \leq \frac{m}{2} [d(x, z) + d(z, y)]
\]
for all \(x, y, z \in X\).

Example 1.4. By Boriceanu[4], the space \(L_p[0, 1]\) (where \(0 < p < 1\)) of all real functions \(x(t), t \in [0, 1]\) such that
\[
 \int_{0}^{1} |x(t)|^p dt < \infty
\]
is a b-metric space if we take
\[
 d(x, y) = \left(\int_{0}^{1} |x(t) - y(t)|^p dt \right)^{1/p},
\]
for each \(x, y \in L_p[0, 1]\).

Definition 1.5. By Boriceanu [4] Let \((X, d)\) be a b-metric space. Then a sequence \(\{x_n\}\) in \(X\) is called a cauchy sequence if and only if for all \(\varepsilon > 0\) there exist \(n(\varepsilon) \in N\) such that for each \(n, m \geq n(\varepsilon)\) we have
\[
 d(x_n, x_m) < \varepsilon.
\]

Definition 1.6. By Boriceanu [4] Let \((X, d)\) be a b-metric space then a sequence \(\{x_n\}\) in \(X\) is called convergent sequence if and only if there exists \(x \in X\) such that for all \(n \geq n(\varepsilon)\) we have
\[
 d(x_n, x) < \varepsilon.
\]
In this case we write
\[
 \lim_{n \to \infty} x_n = x.
\]

Definition 1.6. [4] The b-metric space is complete if every Cauchy sequence convergent.

MAIN RESULT

Theorem 2.1. Let \((X, d)\) be a complete b-metric space. Let \(T\) be a mapping \(T:X \to X\) such that
\[
 d(Tx, Ty) \leq a \max\{d(x, Tx), d(y, Ty), d(x, y)\} + b\{d(x, Ty) + d(y, Tx)\}
\]
(1)
where \(a, b > 0\) such that
\[
 a + 2bs \leq 1 \ \forall x, y \in X \text{ and } s \geq 1
\]
then \(T\) has a unique fixed point.
Proof: Let \(x_0 \in X \) and \(\{x_n\}_{n=1}^{\infty} \) be a sequence in \(X \) defined by the recursion
\[
x_n = Tx_{n-1} = T^n x_0 \quad n=1, 2, 3, 4
\]
(2)

By (1) and (2) we obtain that
\[
d(x_n, x_{n+1}) = d(Tx_{n-1}, Tx_n)
\leq a \max\{ d(x_{n-1}, Tx_{n-1}), d(x_n, Tx_n), d(x_{n-1}, x_n) \}
+ b(d(x_{n-1}, Tx_n) + d(x_n, Tx_{n-1}))
\]
\[
d(Tx_{n-1}, Tx_n)
\leq a \max\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n-1}, x_n) \} + b(d(x_{n-1}, x_{n+1})
+ d(x_n, x_n))
\]
\[
d(x_n, x_{n+1}) \leq a \max\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \} + b(d(x_{n-1}, x_{n+1}))
\]
\[
d(x_n, x_{n+1}) \leq a M_1 + b d(x_{n-1}, x_n) + d(x_n, x_{n+1})
\]
(3)

where, \(M_1 = \max\{ d(x_{n-1}, x_n), d(x_n, x_{n+1}) \} \)

Now two cases arises,

Case I: If suppose that \(M_1 = d(x_n, x_{n+1}) \) then we have,
\[
d(x_n, x_{n+1}) \leq a d(x_n, x_{n+1}) + b d(x_{n-1}, x_n) + d(x_n, x_{n+1})
\]
\[
d(x_n, x_{n+1}) \leq a d(x_n, x_{n+1}) + b d(x_{n-1}, x_n) + b d(x_n, x_{n+1})
\]
\[
(1-a-b)d(x_n, x_{n+1}) \leq b d(x_{n-1}, x_n)
\]
\[
d(x_n, x_{n+1}) \leq \frac{b}{1-a-b} d(x_{n-1}, x_n)
\]
\[
d(x_n, x_{n+1}) \leq k d(x_{n-1}, x_n)
\]

where \(k = \frac{b}{1-a-b} < 1 \)
\[
\Rightarrow d(x_n, x_{n+1}) \leq k d(x_{n-1}, x_n)
\]
\[
\Rightarrow d(x_n, x_{n+1}) \leq k^2 d(x_{n-2}, x_{n-1})
\]

continuing this process, we get
\[
\Rightarrow d(x_n, x_{n+1}) \leq k^n d(x_0, x_1)
\]

Case II: If suppose that \(M_1 = d(x_{n-1}, x_n) \) then we have,
\[
d(x_n, x_{n+1}) \leq a d(x_{n-1}, x_n) + b d(x_{n-1}, x_n) + d(x_n, x_{n+1})
\]
\[
d(x_n, x_{n+1}) \leq a d(x_{n-1}, x_n) + b d(x_{n-1}, x_n) + b d(x_n, x_{n+1})
\]
\[
(1-b) d(x_n, x_{n+1}) \leq (a+b) d(x_{n-1}, x_n)
\]
\[
d(x_n, x_{n+1}) \leq \frac{(a+b)}{1-b} d(x_{n-1}, x_n)
\]

where \(k = \frac{a+b}{1-b} < 1 \)
\[
\Rightarrow d(x_n, x_{n+1}) \leq k d(x_{n-1}, x_n)
\]
\[
\Rightarrow d(x_n, x_{n+1}) \leq k^2 d(x_{n-2}, x_{n-1})
\]

continuing this process, we get
\[
\Rightarrow d(x_n, x_{n+1}) \leq k^n d(x_0, x_1)
\]

Thus \(T \) is a contractive mapping.

Now, we show that \(\{x_n\}_{n=1}^{\infty} \) is a Cauchy sequence in \(X \). Let \(m, n \in N, m > n \),
\[
d(x_n, x_m) \leq s \{d(x_n, x_{n+1}) + d(x_{n+1}, x_m)\}
\]
\[
\leq s d(x_n, x_{n+1}) + s^2 \{d(x_{n+1}, x_{n+2}) + d(x_{n+2}, x_m)\}
\]
\[\leq s d(x_n, x_{n+1}) + s^2 d(x_{n+1}, x_{n+2}) + s^2 d(x_{n+2}, x_m), \]
\[\leq s d(x_n, x_{n+1}) + s^2 d(x_{n+1}, x_{n+2}) + s^2 d(x_{n+2}, x_{n+3}) + \ldots \]
\[\leq sk^nd(x_0, x_1) + s^2 k^{n+1}d(x_0, x_1) + s^3 k^{n+2}d(x_0, x_1) + \ldots \]
\[\leq sk^n d(x_0, x_1) [1 + sk + (sk)^2 + (sk)^3 + \ldots \cdot]. \]
\[\leq \frac{sk^n}{1-sk} d(x_0, x_1). \]

Then \(\lim_{n \to \infty} d(x_n, x_m) = 0 \), as \(n, m \to \infty \), since \(k < 1 \), \(\lim_{n \to \infty} \frac{sk^n}{1-sk} d(x_0, x_1) = 0 \) as \(n, m \to \infty \).

Hence \(\{x_n\}_{n=1}^{\infty} \) is a Cauchy sequence in \(X \). Since \(\{x_n\}_{n=1}^{\infty} \) is a Cauchy sequence, \(\{x_n\} \) converges to \(x^* \in X \).

Now, we show that \(x^* \) is the fixed point of \(T \).
\[d(x^*, Tx^*) \leq s(d(x^*, x_{n+1}) + d(x_{n+1}, Tx^*)), \]
\[\leq s d(x^*, x_{n+1}) + s d(Tx_n, Tx^*), \]
\[d(x^*, Tx^*) \leq s d(x^*, x_{n+1}) + s a \max\{d(x_n, Tx_n), d(x^*, Tx^*), d(x_n, x^*)\} \]
\[+ sb\{d(x_n, Tx^*) + d(x^*, Tx_n)\}, \]
\[d(x^*, Tx^*) \leq s d(x^*, x_{n+1}) + s a \max\{d(x_n, x_{n+1}), d(x^*, Tx^*), d(x_n, x^*)\} \]
\[+ sb\{d(x_n, Tx^*) + d(x^*, x_{n+1})\}, \]
\[\leq s d(x^*, x_{n+1}) + sa \max\{d(x_n, x_{n+1}), d(x^*, Tx^*), d(x_n, x^*)\} + s^2 b\{d(x_n, x^*) + d(x^*, x_{n+1})\} + sb d(x^*, x_{n+1}), \]
\[(1 - s^2)b d(x^*, Tx^*) \leq s(1 + b)d(x^*, x_{n+1}) \]
\[+ sa \max\{d(x_n, x_{n+1}), d(x^*, Tx^*), d(x_n, x^*)\} + s^2 b d(x_n, x^*), \]
\[(1 - s^2)b d(x^*, Tx^*) \leq s(1 + b + as)d(x^*, x_{n+1}) + s^2 (a + b)d(x_n, x^*), \]
\[d(x^*, Tx^*) \leq \frac{s(1 + b + as)}{(1 - s^2)} d(x^*, x_{n+1}) + \frac{s^2 (a + b)}{(1 - s^2)} d(x_n, x^*). \]

Case-I: If suppose that \(M_2 = d(x_n, x_{n+1}) \) then we have,
\[(1 - s^2)b d(x^*, Tx^*) \leq s(1 + b)d(x^*, x_{n+1}) + sa d(x_n, x_{n+1}) + s^2 b d(x_n, x^*), \]
\[\leq s(1 + b)d(x^*, x_{n+1}) + s^2 a d(x_n, x^*) + d(x^*, x_{n+1}) + s^2 b d(x_n, x^*), \]
\[(1 - s^2)b d(x^*, Tx^*) \leq s(1 + b + as)d(x^*, x_{n+1}) + s^2 (a + b)d(x_n, x^*), \]
\[d(x^*, Tx^*) \leq \frac{s(1 + b + as)}{(1 - s^2)} d(x^*, x_{n+1}) + \frac{s^2 (a + b)}{(1 - s^2)} d(x_n, x^*). \]

Taking \(\lim_{n \to \infty} \), we get
\[\lim_{n \to \infty} d(x^*, Tx^*) = 0, \]
\[\Rightarrow x^* = Tx^*. \]

Therefore \(x^* \) is the fixed point of \(T \).

Case-II: If suppose that \(M_2 = d(x_n, x^*) \) then,
\[(1 - s^2)b d(x^*, Tx^*) \leq s(1 + b)d(x^*, x_{n+1}) + sa d(x_n, x^*) + s^2 b d(x_n, x^*), \]
\[(1 - s^2)b d(x^*, Tx^*) \leq s(1 + b)d(x^*, x_{n+1}) + (sa + s^2 b)d(x_n, x^*), \]
\[d(x^*, Tx^*) \leq \frac{s(1 + b)}{(1 - s^2)} d(x^*, x_{n+1}) + \frac{(sa + s^2 b)}{(1 - s^2)} d(x_n, x^*), \]

Taking \(\lim_{n \to \infty} \), we get
\[\lim_{n \to \infty} d(x^*, Tx^*) = 0, \]
\[\Rightarrow x^* = Tx^*. \]

Therefore \(x^* \) is the fixed point of \(T \).
A Fixed Point Theorem For b-Metric Space

Case-III: If suppose that $M_2 = d(x^*, Tx^*)$ then

$$(1 - s^2 b)d(x^*, Tx^*) \leq s(1 + b)d(x^*, x_{n+1}) + s a d(x^*, Tx^*) + s^2 b d(x_n, x^*),$$

$$(1 - sa - s^2 b)d(x^*, Tx^*) \leq s(1 + b)d(x^*, x_{n+1}) + s^2 b d(x_n, x^*).$$

Therefore x^* is the unique fixed point.

Uniqueness of Fixed Point:

We have to show that x^* is unique fixed point of T.

Assume that x' is another fixed point of T then we have

$$T x' = x' \quad \text{and} \quad d(x^*, x') = d(Tx^*, Tx').$$

$$\leq a \max \{d(x^*, Tx^*), d(x', Tx'), d(x^*, x')\} + b \{d(x^*, Tx^*), d(x^*, x')\},$$

$$\leq a \max \{d(x^*, x^*), d(x^*, x'), d(x^*, x')\} + b \{d(x^*, x^*), d(x^*, x')\},$$

$$\leq ad(x^*, x') + b(d(x^*, x'), d(x^*, x')},$$

$$\leq ad(x^*, x') + 2bd(x^*, x'),$$

$$d(x^*, x') \leq (a + 2b) \{d(x^*, x')\}.$$

This is contradiction. Therefore $x^* = x'$.

This completes the proof. Hence x^* is the unique fixed point.

Corollary

Let (X, d) be a complete b-metric space. Let T be a mapping $T: X \to X$ such that

$$d(Tx, Ty) \leq a(d(x, Tx) + d(y, Ty)) + b(d(x, Ty) + d(y, Ty))$$

(1)

where $a, b > 0$ such that $2a + b(2s + 1) < 1 \forall x, y \in X$ and $s \geq 1$ then T has a unique fixed point.

REFERENCE:

