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Abstract
Reservoirs are fundamental elements of water-management systems, serving
key functions such as water conservation, flood control, water treatment, and
supporting aquatic environments. Effective reservoir management requires a
dynamic process to identify uncertainties affecting behavior and minimize their
impact on performance.
We aim to develop a mathematical model of a reservoir compartment system
and its operations. Reservoir operations are represented by a set of simultaneous
non-linear equations. The equilibrium of this system of equations is derived,
and the reproduction number is calculated. We discuss local and global stability
analyses with variations in parameters. The derived model is then simulated to
describe the typical operation of a reservoir system, providing a stable utility
solution for the reservoir.
Keywords: Basic Reproduction number, Compartment model, Non-linear
equations, Reservoir system, Stability analysis, Simulation

1. Introduction

A water reservoir is an enclosed area for storing water, usually constructed by building
a dam across water resources using natural or constructed depressions. Water is
collected upstream of a river. Reservoirs play a crucial role in storing water during the
rainy season, controlling the flow of floods, and gradually releasing water during
periods of lower flow. They are used for drinking, irrigation, industrial purposes,
fishing, boating, and other recreational activities. Additionally, reservoirs are used for
generating electricity.

In the western region of India, rivers are generally full during the monsoon, but carry
very little water during the rest of the year. Hence, proper reservoir operation
management is essential to meet water demand throughout the year. In summer, water
demand increases, and evaporation due to higher temperatures causes water loss.
Therefore, managing reservoir water levels to meet demand is critical.

Yeh discussed several approaches for optimal reservoir operation along with their
limitations (Yeh, 1985). Vedula and Rogers introduced a non-fuzzy multi-objective
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optimization approach (Vedula and Rogers, 1981). Nagesh D. and Reddy M. used
evolutionary algorithms and swarm intelligence methods for water resource
management (D. Nagesh and M. Reddy, 2020). A model based on mixed-integer
programming techniques, catering to different needs through step-by-step operation of
multi-reservoirs, was developed by Mohammad Heydari, Faridah Othman, and
Kourosh Qaderi (2015). Florian T. Bessler, Dragan A. Savic, and Godfrey A. Walters
(2013) proposed a general operating policy for water supply systems using data mining.
Dingzhi Peng, Shenglian Guo, Pan Liu, and Ting Liu (2016) provided a reservoir
storage curve using remote sensing data for multipurpose reservoir operation and
strategic risk management.

Most of the work related to reservoir operation employs linear programming
techniques. In this study, we consider reservoir components such as the environment,
irrigation, daily use, industrial use, and sewage, forming a system of non-linear
differential equations. We also discuss various stability analyses to observe the
behavior of reservoir compartments given the parameters.

2. Mathematical Model

The proposed mathematical model consists of four compartments: Reservoir Level,
Daily Demand (Irrigation, Daily Usage, and Industrial Usage), Evaporation, and
Sewage. The upstream river flow charges the reservoir compartment. To meet water
demand, water is released from the reservoir for various purposes such as irrigation,
daily needs, and industrial uses. The sewage compartment accounts for water after
utilization, including polluted water. This waste or utilized water is either diverted to
another river or returned to the same river downstream. R, I, E, and S represent the cubic
volume of water in the Reservoir, Irrigation, Evaporation, and Sewage compartments,
respectively.
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Figure 1 schematic representation of variable and components dependency in the
mathematical model

2.1 Assumption:
e The input from the river and upstream remains constant during the period 0 < t <
T.
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e Daily water usage for various purposes remains constant during the period 0 < t <
T.

e The evaporation rate remains constant during the period 0 <t < T.

e Water loss due to humidity remains constant during the period 0 <t < T.

e Seepage losses remain constant during the period 0 <t < T.

The system is governed by the following equations:
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Where R(0) = E(0) =1(0) =S(0) =0

Table 1: The parameter values

Parameter Value

r Input of water into the reservoir from the river 2

a Evaporation rate from the reservoir, irrigation, and | 1
sewage compartments

B Rate of incoming water into the reservoir, irrigation, and | 2.32
sewage due to rain

n Rate of water supplied to the daily demand compartment | 2.6
for irrigation, daily uses, and industrial uses

M Rate of water received from the reservoir for irrigation, | 2.3

daily uses, and industrial uses after losses due to seepage
and evaporation

g Utilization rate of water 10.2
y Rate of wastewater drained into the sewage 4.6
A Rate of sewage water drainage 4.4
K Maximum capacity of the reservoir 6

q Losses due to humidity 4.4

3. Boundedness of Solutions:
We analyze the solution of the model to ensure it is both non-negative and bounded:
The Set Q={(R,E,1,5)/0<R<K0<E<E"0<I<I",0<S<S"}
« __  ATK v _ arBK v _ 4rBK(y+g—nK)
where E* =g I = Gxmamemo 2@k =4F)(g—n1K)
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From equation (1), % =0

From equation (1),2—1:= 0
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From equation (4), % =0
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3.1 Equilibrium point:
For the simplest case, the equilibrium points are (K, 0, 0, 0) and (3.7963, 0.1816,
0.2554, 0.3483), with the latter being calculated numerically.
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For, the local stability

r(l—ZTRj—aE—nl —-oR+ -nR 0
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A —al +p mR—aE—-g 0

0 —-aS+ [ y —aE-1

The free equilibrium point does not provide information about the stability of the
solution. Therefore, we find the eigenvalues of the Jacobian at equilibrium point E,,
which are —4.7512,—0.5053, and —1.1759 + 2.3075i. All eigenvalues are negative
or have negative real parts, indicating that the system is locally stable.

To assess asymptotic stability, we calculate the basic reproduction number using the
next-generation matrix method (Diekmann et al., 2009; Hefferman et al., 2005;
Driessche et al., 2002). The next-generation matrix is FV =1, where F and V are the
Jacobian matrices of X and A, evaluated for reservoir, evaporation, daily use, irrigation,
and sewage at the equilibrium point.

Next, we analyze the stability at the equilibrium point.

Let Xx'=(R,E,1,S)

X '= J(X) —v(X)

rR@—BJ aRE — BE+nRIaEl - BE+qgl

K —yl+aSE-BE+ASaRE - BE+nRI
aRE — BE +73RI

aRE — BE +7RI

3(X) =| a(R+1+8)|, y(x) =
mRI
0

Where J(X) denotes new water entering the system and v(X)denotes water

transferring from one compartment to another.
The derivatives of J(X) and v(X) evaluated at the equilibrium point provide the

matrices F and V, each of the order 4 x 4, defined as follows:
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V is non-singular matrix.
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The first equilibrium has no significant meaning, so we discard that case. Thus, in the
second case, the basic reproduction number R, of the matrix AV ~lis given by R, =
0.3424 < 1.

Theorem: (Stability at Ro). If Ro <1 then equilibrium point is local asymptotically
stable.

The system is globally stable if det(I — FV~1) > 0. The reservoir model is globally
stableasdet(l — FV~1) =1—-R, =1 —0.4973 = 0.5027 [9].

The impact on the system on varying the parameter is also observed. Which is as
follows

4. Simulation and Interpretation
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Figure 2: a) Effect of the rate of supply to daily demand (n) on the volume of water in
the reservoir (b) Daily demand (c) Effect of the rate of water received by the daily
demand compartment (n;) on the volume of water in the reservoir (d) Daily demand
compartment (e) Effect of the rate of supply on the volume of sewage (f) Effect of the
utilization factor on daily demand (g) Effect of the rate of drain water into sewage on
the volume of water in sewage

By simulating the reservoir, we observe significant effects of varying water supply for
daily uses on maintaining the reservoir level. Initially, the water level rises to 3.8 cubic
volumes, becoming steady after the 15th day. The volume of the reservoir increases by
3% to 5% when the supply of water for daily use is reduced by 5%. Conversely,
increasing the water supply rate by 5% decreases the reservoir volume by 3%.

An increase in the rate of water supply for daily use by 10% results in a 7% drop in the
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reservoir level and a 2% increase in the sewage compartment, indicating that excess
water for utilization may lead to wastage. We notice that every 5% variation in sewage
volume corresponds to a 9% to 10% change in the volume rate of supply for daily uses.
The utilization rate has a minor effect on daily water use: varying the utilization rate by
1.5% of the total volume increases the drain water into sewage by 1%.

5. Sensitivity Analysis:

Table — 2 represents the he sensitivity analysis for the parameters. With the use of Vr? =
%Qpr
ap Q'
model parameter.

obtain the normalized sensitivity index of the parameters where p denotes the

Table 2: Sensitivity Analysis

Parameter | Value | Parameter | Value
r - B +
n + Y +
M + A _
a * g _

Sensitivity analysis suggests the rate of water enters into the reservoir, and the supply
of water for daily demand makes a significant effect for maintaining the reservoir level.

6. Conclusion

A non-linear mathematical model for the reservoir system has been formulated. The
stability of the water supply through the reservoir is analyzed using the basic
reproduction number, calculated with numerical data. The basic reproduction number
is 0.3434, indicating that controlling the water supply to the daily demand compartment
will maintain the water level in the reservoir. Additionally, changes in various
compartments are observed when the supply rate to the daily demand compartment is
altered. Therefore, the supply rate should be controlled to ensure stability.
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