Numerical Analysis of Dah Lake Water, Ballia, Uttar Pradesh, India

Anjali Goswami

Department of Basic Sciences College of Science and Theoretical Studies Saudi Electronic University, Riyadh-11673, Saudi Arabia Email: a.goswami@seu.edu.sa

Abstract

Water is very important for extant the life of all living person and animals. The current manuscript is associated to Dah lake water. Lake water is polluted by undesirable things. This research deals with the dissolution of Physicochemical parameters of Dah lake water such as potential of Hydrogen (pH), Turbidity (TD), Electric Conductivity (EC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Alkalinity (TA), Chloride (CL), Total Hardness (TH), Calcium (Ca) and Magnesium (Mg). After analysis it is concluded that the Dah lake water is not condign for drinking purposes because some attributes are not satisfying the desirable limits prescribed by WHO. The attributes are numerically interpreted using Cluster Analysis, Correlation matrix, factor Analysis and Data matrix which shows that lake water is unfit for drinking purposes. Hence discreet quantification should be encouraged so that the lake water will be fit for drinking purposes and survival of animals.

Key words: Dah Lake,

1. Introduction

Water is the very useful for survival of life[2][3][4]. Without water nobody can be survived. To maintain the ecosystem water is very essential. The health of lakes and their biological diversity are directly related to health. Dah Lake water is devalued through the unsought liveliness of human and animals. Thus the lake water is confiscating dissonant for drinking. The main point is to identify the attributes quality whether they are under limits of WHO or not. If suitable precaution is refined then the lake water will be suitable for drinking and domestic purposes.

2. Materials and Methods

2.1 Study Area

Dah Lake is ox-bow lake in Ballia. During rainy season, it overflows though a scanty negligible lake but becomes confluent with several large low lying areas and also establishes continuity with the river Ghaghara. The Lake receives water through two streamlets via Bhedia nala and Nara.

2.2 Collection of Specimen:

Specimens were brought from selected points in volatile carafe to ignore surrounding climate as per usual practice.

2.3 Investigation of Samples:

The attributes are examined for different attributes such as as potential of Hydrogen (pH), Turbidity (TD), Electric Conductivity (EC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Alkalinity (TA), Chloride (CL), Total Hardness (TH), Calcium (Ca) and Magnesium (Mg) as per the standard methods (APHA, 1998)[7][8]. The experimental of values of the attributes of water quality characterization are shown in table 2 and WHO standard of the attributes are shown in Table 1. The attributes of the Dah lakes are graphically presented in Fig 1, Fig 2 and Fig 3. In Fig 1 scattered plots are represented. In Fig 2 Box plots are represented and in Fig 3 Pie graphs are represented.

Table 1: Standard value of attributes.

Attributes	Standard value according to WHO			
pH	6.5–8.5			
Turbidity (TD)	1-5 (NTU)			
Electric Conductivity (EC)	300 (μmhos/cm)			
Biochemical Oxygen Demand (BOD)	6 (mgL ⁻¹)			
Chemical Oxygen Demand (COD)	10 (mgL ⁻¹)			
Dissolved Oxygen (DO)	6-8 (mgL ⁻¹)			
Total Alkalinity (TA)	80-120 (mgL ⁻¹)			
Chloride (CL)	200-300 (mgL ⁻¹)			
Total Hardness (TH)	80-100 (mgL ⁻¹)			
Calcium (Ca)	20-30 (mgL ⁻¹)			
Magnesium (Mg)	10 (mgL ⁻¹)			

WHO–World Health Organization

Name EC COD **BOD** DO TA TH TD Cl Ca Mg (NTU) | µmhos pН of $(mgL^{-1})|(mgL^{-1})|(mgL^{-1})|(mgL^{-1})|(mgL^{-1})|(mgL^{-1})|(mgL^{-1})|$ Station /cm 38.22 4.34 2.0 7.98 202 98 18.9 S17.95 8.42 164 74.4 S2 7.48 7.67 35.32 3.96 1.86 7.68 188 124 88 67.8 19.0 7.72 7.56 28.42 1.89 179 69 17.5 **S**3 3.78 6.92 146 56.2 7.89 8.22 22.46 182 134 76 14.6 **S**4 3.67 1.67 6.89 66.9 **S**5 7.42 7.45 32.42 3.86 1.78 7.82 192 156 87 77.2 18.2 **S**6 7.82 6.96 | 28.50 1.56 176 132 95 13.5 3.56 6.66 62.6

Table 2: Water Quality at of Dah Lake water

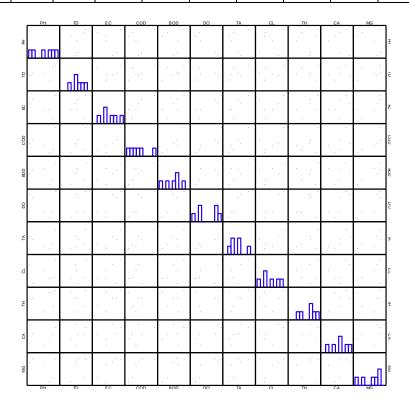


Figure 1: Scatter Plot Matrix

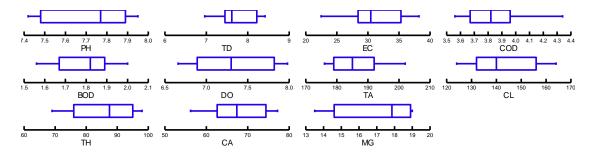


Figure 2: Box Plots

50 Anjali Goswami

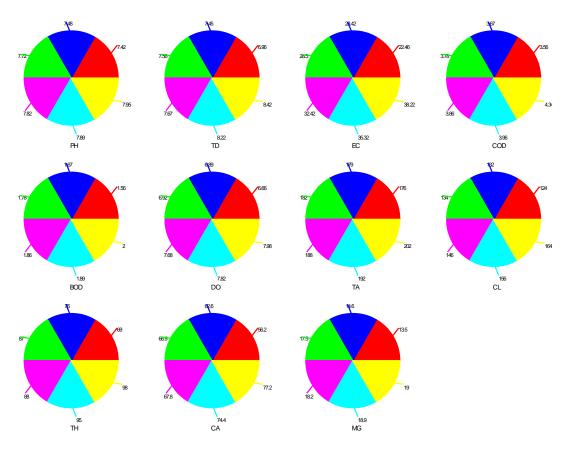


Figure 3: Pie Graphs

3 Results and Discussion:

Disparateness of numerous attributes such as potential of Hydrogen (pH), Turbidity (TD), Electric Conductivity (EC), Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO), Total Alkalinity (TA), Chloride (CL), Total Hardness (TH), Calcium (Ca) and Magnesium (Mg) impregnation along the Dah Lake water are listed in Table 3. Some attributes are not satisfying the standard limit prescribed by WHO. Thus the results clearly mentioned that water is not suitable for drinking purposes. Using IBM SPSS 21 software Cluster analysis is applied and a Dendogram is shown in Fig 4 and Component plot is shown in Fig 5. There are two topographically consistent clusters are created. Propound result clears that the results are not similar in cluster 2 and cluster 1. Component plot shows that maximum loading in third component. That is dissimilarity in loading also. Factor analysis is also performed using Systat 13 software and data matrix is shown in Fig 6 and corresponding loading plot is shown in Fig 7. This also enables us that the attributes are different in nature. Correlation matrix also performed using Microsoft Excel 7 software which shows the relationship between the attributes and it cleared that some attributes are negatively correlated and some attributes are positively correlated. Overall from the above discussion it is clear that Dah Lake is not suitable for drinking purposes. So suitable precaution is needed.

	PH	TD	EC	COD	BOD	DO	TA	CL	TH	CA	MG
PH	1 11	1D	LC	COD	ВОД	DO	171	CL	111	CA	MO
	1										
TD	0.4511344	1									
EC	-0.2449528	0.1662337	1								
COD	0.0809301	0.6557244	0.8424037	1							
BOD	-0.0504377	0.5791009	0.7034235	0.8826215	1						
DO	-0.3618281	0.4385993	0.8416726	0.8614312	0.7174251	1					
TA	-0.0248034	0.6353586	0.7788214	0.9316495	0.7231858	0.9375171	1				
CL	0.1693676	0.3788289	0.42605	0.6171757	0.5620834	0.5403642	0.681357	1			
TH	0.0954596	-0.0375073	0.6491447	0.430007	0.0101898	0.4560555	0.5115702	0.1943584	1		
CA	-0.2369575	0.3638816	0.5161961	0.5569395	0.2366161	0.8092897	0.8154736	0.4934544	0.5802037	1	
MG	-0.4552166	0.3670839	0.7901734	0.8082377	0.899862	0.866382	0.7397896	0.4399459	0.0912764	0.4276012	1

Table 3: Correlation Matrix

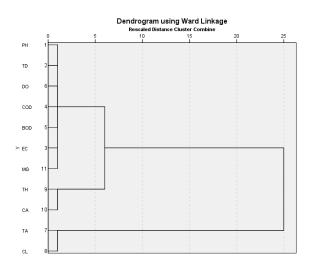


Figure 4: Dendrogram using Ward Linkage

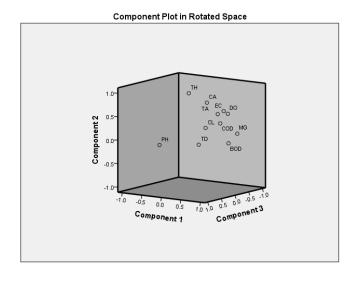


Figure 5: Component Plot

52 Anjali Goswami

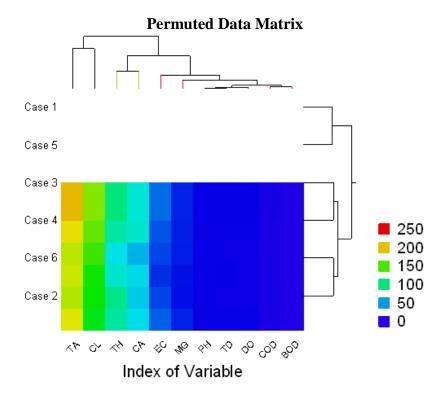


Figure 6: Data Matrix Plot

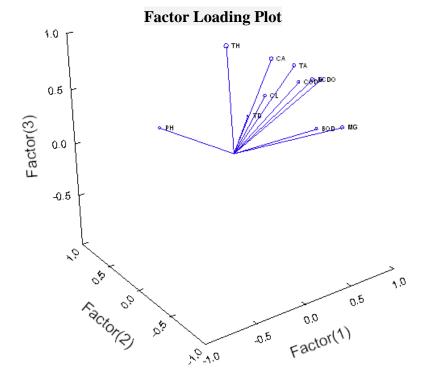


Figure 7: Factor Loading Plot

Conclusion

It is concluded that the water of Dah Lake is unfit for drinking purposes. So suitable steps should be required so that it will be perfect for drinking and domestic purposes.

Conflict of interest:

There is no conflict of interest regarding this research paper.

References

- [1] APHA. (1998). Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF, Washington D.C.
- [2] Salahuddin. (2020). Analysis of Magnesium contents of Ground water at surrounding areas of Dildar Nagar of U.P. India. *International Journal of Innovative Research in Science, Engineering and Technology*, 9 (4), 1607-1610.
- [3] Salahuddin. (2015). Analysis of electrical conductivity of ground water at different locations of Dildar Nagar of U.P, India, *Advances in Applied Science Research*, 6 (7), 137-140.
- [4] Salahuddin, Intazar Husain. (2020). Analysis of Sea Water from Tupilipalem Coastal area, India. *International Journal of Oceans and Oceanography*. 14 (2), 277-283.
- [5] Salahuddin., Intazar Husain. (2020). Analysis of Katraj Lake Water in Pune Region of Maharashtra, India. *International Journal of Lakes and Rivers*.13 (1), 27-34.
- [6] Salahuddin., Intazar Husain. (2020). Analysis of Lower Lake Water in Bhopal Region of Madhya Pradesh, India. *International Journal of Lakes and Rivers*.13 (1), 17-25.
- [7] Salahuddin., R. K Khola. (2014). Physico-Chemical Analysis for the Presence of Oxygen Content of Ground Water at Different Locations of Dildar Nagar of U.P, India. *Global Journal of Science Frontier Research (B)*, 14 (6), 01-03.
- [8] Salahuddin., R. K. Khola (2013). Analysis of Chloride Content in the Surface of water using two ways Anova. *International Journal for Pharmaceutical Research Scholars*, 2 (4), 51-53.
- [9] Salahuddin. (2014). Physico-chemical analysis of upper lake water in Bhopal region of Madhya Pradesh, India. *Advances in Applied Science Research*, 5 (5), 165-169.
- [10] Salahuddin. (2013). Analysis of Chloride Content in the Surface of water at different locations of Madhya Pradesh. *International Journal for Pharmaceutical Research Scholars*, 2 (4), 107-109.